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We recall that a logic L is said to be paraconsistent with respect to a negation connective ¬ when
it contains a ¬-contradictory but not trivial theory. Assuming that L is (at least) Tarskian, this

is equivalent to say that the ¬-explosion rule
φ ¬φ

ψ
is not valid in L.

The 3-valued logic J3 introduced by D’Ottaviano and da Costa in [2] is one of the well known
paraconsistent logics and it can be defined (up to language) as the logic given by the matrix
⟨MV3, { 1

2 , 1}⟩ where MV3 is the 3 element MV-chain. Notice that J3 is strongly related with
the 3-valued Łukasiewicz logic Ł3 as ⟨MV3, {1}⟩ is a matrix semantics for Ł3. Moreover, these
two logics are equivalent deductive systems in the Blok-Pigozzy sense [1]. Notice that, while
Ł3 is explosive and truth-preserving (1 being full truth), J3 is paraconsistent and non-falsity-
preserving, because it preserves every element different from 0 (0 being false). We call J3 the
non-falsity companion of Ł3
The nilpotent minimum logic, NML for short, was firstly introduced by Esteva and Godo in
[3] in order to formalize the logic of the nilpotent minimum t-norm, that was defined by
Fodor in [4] as an example of an involutive left continuous t-norm which is not continuous.
NML is obtained from the monoidal t-norm logic MTL defined in [3], by adding the involu-
tive condition axiom (INV) ¬¬φ → φ and the (weak) nilpotent minimum condition axiom
(WNM) (ψ ∗ φ → ⊥) ∨ (ψ ∧ φ → ψ ∗ φ). It is well known that NML is algebraizable and the
class NM of all nilpotent minimum algebras is its equivalent algebraic quasivariety seman-
tics [3]. Moreover, NML is sound and strong complete with respect the standard NM-algebra
[0, 1]NM [7]. That is, NML is the logic defined by the matrix ⟨[0, 1]NM, {1}⟩. The aim of this
talk is to axiomatize and characterize the non-falsity companions of NML and its axiomatic
extensions.
Let A be a subalgebra of [0, 1]NM, then the finitary logic L defined by ⟨A, {1}⟩ is an axiomatic
extension (not necessarily proper) of NML. We call nf-L the non-falsity companion of L. That
is, nf-L is the finitary logic defined by the matrix ⟨A, (0, 1] ∩ A⟩. Consider now the following
restricted inference rule, which is intended for axiomatising nf-L::

• Restricted Square Modus Ponens for L (r-MP2 for L):

From φ and φ → ¬(¬ψ)2 derive ψ, whenever ⊢L φ → ¬(¬ψ)2.

It is not hard to see that from (r-MP2 for L) we can derive the following restricted version of
Modus Ponens:

• Restricted Modus Ponens for L (r-MP for L):

From φ and φ → ψ derive ψ, whenever ⊢L φ → ψ



Note that both inference rules involve conditions on the derivability of formulas in the logic L.
Since any axiomatic extension of NML is complete w.r.t at most two subalgebras of [0, 1]NM [5]
we obtain the following result.

Theorem 1. Let L be an axiomatic extension of NML. The following axiomatization

• Axioms: those of L

• Rules: Adjunction
φ ψ

φ ∧ ψ
and (r-MP2) for L

is a sound and complete axiomatisation of nf-L.

For the case of finite-valued axiomatic extensions NMn, unlike the Lukasievicz case [1, Th.5.2],
we prove that nf-NMn is not equivalent to NMn. With an abuse of language, Nk denotes the
matrix ⟨NMk, {1}⟩ and Jk will denote the matrix ⟨NMk, { 1

k−1 , 2
k−1 , . . . , 1}⟩ where NMk is the

k-element NM-chain. It is shown in [6] that any finitary extension of NMn is complete w.r.t.
following set of matrices {N2k,N2m+1,N2 × N2r+1} for some 0 ⩽ m ⩽ r ⩽ k ⩽ n, For the
case of nf-NMn we cannot accomplish this reduction, but the following one that is restricted to
finitary extensions defined by finite products of Jk’s.

Theorem 2. Let L be a finitary extension of nf-NML defined by Jk1 × · · · × Jks . Then L is complete
w.r.t a finite set of the following matrices:

(i) Jn for some positive integer n > 1.

(ii) Jn ×Jk for some positive integers n ̸= k.

(iii) J2n ×J2k ×J2l+1 for some positive integers l < n < k.

(iv) J2n ×J2m+1 ×J2l+1 for some positive integers m < n and m < l.

Moreover every different matrix of these four types defines a different logic

Finally, next result charcaterizes all finite maximal paraconsistent extensions nf-NML

Theorem 3. The only finite matrices defining maximal paraconsitent extesnions of nf-NML are J3,
J4 and J3 ×J4.

References
[1] M. E. Coniglio, F. Esteva, J. Gispert and L. Godo. Maximality in finite-valued Łukasiewicz Logics

defined by order filters. Journal of Logic and Computation 29,1 pp: 125-156, 2019.
[2] I. D’Ottaviano and N. da Costa. Sur un problème de Jaśkowski. Comptes Rendus de l’Académie de

Sciences de Paris (A-B), 270:1349–1353, 1970.
[3] F. Esteva and L. Godo. Monoidal t-norm based logic: towards a logic for left-continuous t-norms.

Fuzzy Sets and Systems, 124, 271–288, 2001.
[4] J. Fodor. Nilpotent minimum and related connectives for fuzzy logic Proc. FUZZ–IEEE ’95, pp.

2077–2082, 1995.
[5] J. Gispert. Axiomatic extensions of the nilpotent minimum logic. Reports on Mathematical Logic 37:

113-123, 2003.
[6] J. Gispert. Finitary Extensions of the Nilpotent Minimum Logic and (Almost) Structural Complete-

ness. Studia Logica 106(4): 789-808, 2018.
[7] S. Jenei and F. Montagna. A completeness proof of Esteva and Godo’s MTL logic. Studia Logica 70:

183-192, 2002.


