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In classical normal modal logic, the class of Sahlqvist formulae has several desirable prop-
erties such as defining canonical logics [15, 16]. The proof of canonicity of the logics defined by
Sahlqvist axioms is obtained by proving that Sahlqvist formulae are elementary, i.e., the classes
of frames they define are also defined by first order sentences. Besides the original Sahlqvist-van
Benthem algorithm to compute such first order correspondent for any given Sahlqvist formula,
other algorithms for second order quantifier elimination have been adapted to Sahlqvist for-
mulas, such as SCAN [9] and DLS [8, 14]. Sahlqvist formulas and their correspondents are
interesting also from a proof-theoretic perspective: for instance, Negri has shown that analytic
calculi can be effectively generated for all the modal logics in the Sahlqvist fragment [13], since
the first order correspondents of Sahlqvist formulas are generalized geometric formulas.

In [11], Goranko and Vakarelov extended Sahlqvist canonicity and correspondence results to
the class of inductive formulas (also known as generalized Sahlqvist formulas), which is strictly
large than the class of Sahlqvist formulas. Based on SCAN and DLS, the algorithm SQEMA
for correspondence on inductive formulas has been introduced in [1, 3].

By reframing Sahlqvist theory in algebraic terms, the syntactic notion Sahlqvist and in-
ductive formulas have been imported as Sahlqvist and inductive inequalities in much more
general settings, and correspondence and canonicity properties analogous to the classical ones
have been proved [7, 2, 4, 6]. Such developments extend Sahlqvist theory to all the logics
the algebraic semantics of which are given by (distributive) normal lattice expansions (LE),
e.g., intuitionistic modal logic, positive modal logic, orthologic, the full Lambek calculus, the
multiplicative-additive fragment of linear logic, semi De-Morgan logic, and so on. The Ack-
ermann Lemma Based Algorithm (ALBA) has been introduced as a successor of SQEMA to
compute first order correspondents in such a general setting. Similarly, also proof theoretic
results concerning inductive inequalities in such logics which partially extend the classical ones
have been proved in [12], and results proving canonicity in a constructive meta-theory reflecting
[10] have been proved in [5].

Contrary to the classical case, checking whether a given inequality is inductive is not an
obviously easy task. Indeed, the strong properties characterising the Boolean setting make it
possible to define the class of Sahlqvist inequalities in a way that straightforwardly induces a
polynomial-time algorithm (on the length of the formula) to check whether a formula belongs
in this class. The definition of inductive (and Sahlqvist) inequality in the more general LE
setting is more involved, and a naive approach would check a certain property (in polynomial
time) for each strict order on the variables, and for each polarity (either positive or negative)
assignment on the variables; hence it would have time complexity O(2vv!p(n)), where v is the
number of variables in the inequality, n is the length of the formula, and p is a polynomial.

In this talk, we show an algorithm that computes whether an inequality is refined inductive
in polynomial time, i.e., O(n+vl+v2h+h2), where n is the length of the formula, l the number
of leaves in its syntax tree, v the number of variables in the inequality, h the number of topmost
nodes having a certain property in the syntax tree.
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Checking whether an inequality is inductive is equivalent to checking for the existence of a
system of refined inductive inequalities which is semantically equivalent (relative to the appro-
priate class of LEs) to the given inequality. Since the algorithm ALBA for correspondence (on
which most of the applications of inductive inequalities rely) pre-processes any input inductive
inequality so as to obtain such a system of refined inductive inequalities, this algorithm finds
its natural place in a practical implementation of ALBA in the preprocessing step applied to
any input inequality.
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