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The proof theory of multiple-valued logics, as well as its complexity, have been deeply studied,
particularly for the class of the so-called fuzzy logics. However, the study of a systematic
presentation of these logics with a view to the design of efficient satisfiability solvers has received
less attention. Since satisfiability is usually the main logical question addressed in instances of
real-world related problems, this study is motivated both from a purely mathematical and also a
more applied perspective. Finding a clausal-form like definition that would help the automatic
management of the SAT question is a rather open question, which we will address in this work.
We will focus here in SAT as the problem of determining, for a given formula, whether there is
an assignment making that formula true (sometimes called strong SAT), as opposed to other
definitions related to assigning a particular value to the formula.

It is immediate that SAT for Gödel and Product logics is equal to that of classical logic (see
eg. [3]), but the  Lukasiewicz logic case offers deeper challenges. In the literature, we find studies
on purely syntactical clausal forms for  Lukasiewicz logics for instance in [4] and [2]. While the
first one addresses only a subclass of  Lukasiewicz formulas, the second offers a definition of a
clausal form which is universal for SAT, but seems of limited use when attempting to design a
resolution-like algorithm.

We propose a definition of clausal form for  Lukasiewicz logic that is universal for SAT and
whose structure offers a high potential, since the many-valued operators (namely, the non lattice
ones) are applied to single literals.

Definition 1.1. We let monadic  Lukasiewicz formulas be the formulas build with the language
⊕,⊙ and a single literal.

For instance, ((¬x)3 ⊕ (¬x)) ⊙ (3¬x) is a monadic  Lukasiewicz term, while x⊕ y or x⊙ ¬x
are not.1

Definition 1.2. A formula φ is in  L-SAT conjunctive normal form if it has the structure∧
i∈I

∨
j∈J

ti,j(xi,j)

for t monadic  Lukasiewicz formulas.
We denote by  L-SATCNF to the set of formulas in  L-SAT conjunctive normal form.

We can define a mapping σ : Fm → L-SATCNF in such a way that the following result holds:

Theorem 1.3. Let φ be a  Lukasiewicz formula. Then φ is SAT if and only if σ(φ) is SAT.

The proof and construction rely in several known results about  Lukasiewicz logic, namely:

Lemma 1.4 (from [1]). φ is SAT in  L if and only if it is SAT in MVn for some n ⩽ ( ♯φ
n )n,

for ♯φ the number of apparitions of variables in φ and n the number of different variables in φ.

1By ln or nl we mean the usual application of the  Lukasiewicz product or sum n times.
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This implies that φ is SAT in  L if and only if it is SAT in MVkφ , for kφ = mcm({p : p ⩽
♯φ
n )n, p prime}).

Lemma 1.5 (Existence of so-called Ostermann terms, from [5]). Let a ∈ [0, 1] be a finite sum
of inverses of powers of 2. Then there is a formula from [0, 1] in [0, 1] in one free variable τa(x),
such that

1. τa(x) = 1 if and only if x ⩾ a,

2. τa(x) is a composition of y ⊙ y and y ⊕ y.

We do not detail the construction of σ here for lack of space, but the sketch of the definition
and proof of universality is as follows.

Let us denote by D the finite sums of inverse powers of 2 belonging to [0, 1], as in Lemma 1.5.
It is easy to check that, given any n, we can chose some finite Dn ⊂ D such that 0, 1 ∈ Dn and
for every i/n, (i+ 1)/n ∈ MVn (for i < n) there is a single di ∈ Dn for which i/n < di < i+ 1/n,
and such that no other element belongs to Dn. Furthermore, an involutive negation can be
defined over them in the obvious way (namely, ∼ di = dn−i−1), as well as two suitable notions
of (closed) product between them (roughly speaking, the top one, and the bottom one). Using
these ideas, in combination with the above completeness for SAT with respect to a single finite
algebra, we can define constructively the translation σ relying in the possibility to split each
implication (a → b = 1 if and only if, for any element x in Dkφ , either a ⩽ x or x ⩽ b). The
involutive negation (both over the elements of the algebra and over Dkφ

), when used carefully,
allows us to address both inequalities as the previous ones, leading to a total splitting of the
formulas in Ostermann terms over the elements in Dkφ

applied to the literals arising from the
variables in φ. The distributivity of MV algebras allows to conclude the final form as CNF.

We will also present a resolution method complete with respect to the presented forms, which
needs of a finite number of rules to produce an assignment satisfying the formula. The fact that
the outermost level is that of classical CNF, and that the multi-valuedness is limited to single
variables makes this forms amenable to be solved either in the previous way or modeled with
tools like MIP or relying, for the outermost level of the solving algorithm, in efficient classical
SAT solvers. Furthermore, while the bound for finite satisfiability under Lemma 1.4 for the
translated formula would be very high, a refinement of our Theorem, following from the proof
itself, is that φ is SAT if and only if τ(φ) is SAT in MVkφ .
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