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We provide a sound and complete axiomatization of a temporal logic of a sequence of finitely
many finite linear structures linked by surjective bounded morphisms.

Finite linear structures, i.e., finite sets with a strict linear ordering, naturally arise as repre-
sentations of a discrete, bounded time flow. Many domains of our everyday practice including
time series [1], scene analysis [6], chain-of-responsibility design pattern in programming [3], [5],
etc. involve a finite linear structure to represent a sequence of consecutive steps. A familiar
example of such a structure is a movie represented as a sequence of individual frames.

In such scenarios, it is often natural to group consecutive elements into conceptually mean-
ingful units in such a way that these units inherit the temporal order of the original structure.
Moreover, this process can be repeated finitely many times. For a typical example of what is
meant here consider a set of movie frames, grouped into episodes, these further grouped into
scenes, which finally form acts. The structure of episodes inherits the temporal order from the
ordering of individual frames. The same is true for the structure of scenes, and that of acts.

Definition 1. A TES (Temporal Event Structure) is (F1, . . . , Fn, <1, . . . , <n, f1, . . . , fn−1)
where (Fi, <i) are finite strict linear orders, while fi : Fi ↠ Fi+1 are onto monotone maps,
where monotone means fi(a) ≤i+1 fi(b) for all a ≤i b. Let F :=

⋃n
i=1 Fi, <:=

⋃n
i=1 <i, f :=⋃n−1

i=1 fi.

The language L is given by: ϕ = p | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕ | ϕ | ϕ, where p
ranges over proposition symbols. Other logical symbols are defined as usual.

Our intention is to interpret the language L over an arbitrary TES (F,<, f) in such a way
that and range over (F,<,>) while and range over (F, f, f−1). Denote the class of
all TES with n fixed by Tn. The logic Log(Tn) is the set of all formulas of L valid on all
structures in Tn. Log(T2) was investigated in a recent paper [2].

In this contribution we present an axiomatization of Log(Tn) for arbitrary fixed n > 1. Let
Ln be the least subset of L containing the following set of axioms and closed under the standard
rules of uniform substitution, modus ponens and necessitation.

• All classical tautologies, standard axioms of modal logic K for each modal operator;

Inv: GL: NoBranching:
p → p ∧ p ( p → p) → p p → p ∨ p ∨ p
p → p ∧ p ( p → p) → p p → p ∨ p ∨ p

Level: Length: Coherence:
n−1∧
k=1

( k ⊥ → n−k ⊤
) n ⊥

n−1∧
k=1

( k ⊤ → k ⊤ ∧ k ⊤
)

Surj: Bounded: DomConn:
n−1∨
k=1

( k ⊤ → k ⊤ ∧ k ⊤
)

p → p p → p ∨ p ∨ p

Func: Monot:
p → p p → (p ∨ p)



Temporal Logic of Surjective Bounded Morphisms Among n-Finite Linear Processes Razmadze et al.

Abstract Kripke semantics for L is provided by Kripke frames F = (W,R,Rf , R
′, R′

f ) where
W is a nonempty set and each of R,Rf , R

′, R′
f ⊆ W ×W is a binary relation.

Definition 2. We will say that a frame F = (W,R,Rf , R
′, R′

f ) is an Ln-frame if the following
conditions are satisfied: W =

⋃n
i=1 Wi where for all distinct i, j ≤ n we have Wi ̸= ∅ and

Wi∩Wj = ∅; R′ = R−1; R,R′ are non-branching, transitive and well-founded and R =
⋃n

i=1 Ri

where Ri = R ∩ (Wi ×Wi) for i ≤ n; Rf ∩ (Wi ×Wi+1) is a surjective bounded morphism with
respect to Ri and Ri+1; R′

f = R−1
f and Rf is domain connected [2, Def. 3.6].

Theorem 3. For an arbitrary frame F it holds that F |= Ln iff F is an Ln-frame.

Clearly a disjoint union of Ln-frames is again an Ln-frame. This implies that Ln-frames can
be infinite, and fail the trichotomy property for Ri, i ≤ n, while our intended models, TESs
are finite with <i trichotomous. To retain finiteness and trichotomy, we focus our attention on
connected Ln-frames, i.e. on Ln-frames which cannot be presented as a disjoint union of two
Ln-frames. It turns out that a connected Ln-frame is in a way isomorphic to a TES.

Theorem 4. In every connected Ln-frame F = (W,R,Rf , R
′, R′

f ) the set W is finite and each
relation Ri is trichotomous.

The class of connected Ln-frames is modally undefinable since it is not closed under disjoint
unions. The next theorem links connected Ln-frames and TESs.

Theorem 5. There is a one-to-one correspondence between the class Tn and the class of all
connected Ln-frames.

The next theorem shows that each TES can be fully described by an L-formula.

Theorem 6. Given a TES F = (F,<, f) there is a formula ϕF ∈ L such that for an arbitrary
TES T we have: T |= ϕF iff T is isomorphic to F .

Finally, we establish our main finding:

Theorem 7. The logic Ln is sound and complete w.r.t. the class Tn.

It follows that the logic Ln has the finite model property and is decidable.
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