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Contextuality in a nutshell

Where we have a family of data which is
locally consistent, but globally inconsistent
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Contextuality Analogy: Local Consistency
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Contextuality Analogy: Global Inconsistency
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The Nobel Prize in Physics 2022

Summary

© Nobel Prize Outreach. Photo:
Stefan Bladh

Alain Aspect
Prize share: 1/3

© Nobel Prize Outreach. Photo:
Stefan Bladh

John F. Clauser
Prize share: 1/3

© Nobel Prize Outreach. Photo:
Stefan Bladh

Anton Zeilinger
Prize share: 1/3

The Nobel Prize in Physics 2022 was awarded jointly to Alain Aspect,
John F. Clauser and Anton Zeilinger "for experiments with entangled
photons, establishing the violation of Bell inequalities and pioneering
quantum information science"
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Testing non-local correlations
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Alice-Bob games

Verifier

Alice Bob
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The XOR Game
Alice and Bob play a cooperative game against Verifier (or Nature!):

• Verifier chooses an input x ∈ {0, 1} for Alice, and similarly an input y for Bob. We
assume the uniform distribution for Nature’s choices.

• Alice and Bob each have to choose an output, a ∈ {0, 1} for Alice, b ∈ {0, 1} for Bob,
depending on their input. They are not allowed to communicate during the
game.

• The winning condition: a⊕ b = x ∧ y.

A table of conditional probabilities p(a, b|x, y) defines a probabilistic strategy for this
game. The success probability for this strategy is:

1/4[p(a = b|x = 0, y = 0) + p(a = b|x = 0, y = 1) + p(a = b|x = 1, y = 0)

+ p(a ̸= b|x = 1, y = 1)]
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A Strategy for the Alice-Bob game

Example: The Bell Model

The entry in row 2 column 3 says:
If the Verifier sends Alice a1 and Bob b2, then with probability 1/8, Alice outputs

a 0 and Bob outputs a 1.

This gives a winning probability of 3.25
4 ≈ 0.81.

The optimal classical probability is 0.75!

The proof of this uses (and is essentially the same as) the use of Bell inequalities.

The Bell table exceeds this bound. Since it is quantum realizable using an entangled
pair of qubits, it shows that quantum resources yield a quantum advantage in an
information-processing task.
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Logic and Probability: from Boole to Bell

George Boole 1815–64 John Stewart Bell 1928–90

George Boole was a pioneer of logic, probability, – and of computer science.

There is a remarkable connection between his work in probability from the 1850’s and the
idea of Bell inequalities, fundamental to Bell’s theorem, non-locality, and quantum
information and computation.

This was first pointed out by Itamar Pitowsky, George Boole’s ‘conditions of possible
experience’ and the quantum puzzle (1994).
Discussion in my paper Classical Probability, Classical Logic, and Quantum Mechanics in
volume for Pitowsky Quantum, Probability, Logic (2020).
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Boole’s “conditions of possible experience”
Pitowsky’s pellucid summary:

Boole’s problem is simple: we are given rational numbers which indicate the rel-
ative frequencies of certain events. If no logical relations obtain among the events,
then the only constraints imposed on these numbers are that they each be non-
negative and less than one. If however, the events are logically interconnected,
there are further equalities or inequalities that obtain among the numbers. The
problem thus is to determine the numerical relations among frequencies, in terms
of equalities and inequalities, which are induced by a set of logical relations among
the events. The equalities and inequalities are called “conditions of possible experi-
ence”.

More formally, we are given basic events E1, . . . , En, and boolean functions φ1, . . . , φm of
these events. Such a function can be described by a propositional formula in the variables
E1, . . . , En.
Suppose further that we are given probabilities p(Ei), p(φj) of these events.

Question: What numerical relationships between the probabilities
can we infer from the logical relationships between the events?
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A Simple Observation

We have propositional formulas ϕ1, . . . , ϕN , with probabilities pi = Prob(ϕi).

Suppose that these formulas are not simultaneously satisfiable. Then (e.g.)

N−1∧
i=1

ϕi ⇒ ¬ϕN , or equivalently ϕN ⇒
N−1∨
i=1

¬ϕi.

Using elementary probability theory, we can calculate:

pN ≤ Prob(
N−1∨
i=1

¬ϕi) ≤
N−1∑
i=1

Prob(¬ϕi) =
N−1∑
i=1

(1− pi) = (N − 1)−
N−1∑
i=1

pi.

Hence we obtain the inequality
N∑
i=1

pi ≤ N − 1.
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Logical analysis of the Bell table

(0, 0) (1, 0) (0, 1) (1, 1)

(a1, b1) 1/2 0 0 1/2

(a1, b2) 3/8 1/8 1/8 3/8

(a2, b1) 3/8 1/8 1/8 3/8

(a2, b2) 1/8 3/8 3/8 1/8

If we read 0 as true and 1 as false, the highlighted entries in each row of the table are
represented by the following propositions:

φ1 = (a1 ∧ b1) ∨ (¬a1 ∧ ¬b1) = a1 ↔ b1
φ2 = (a1 ∧ b2) ∨ (¬a1 ∧ ¬b2) = a1 ↔ b2
φ3 = (a2 ∧ b1) ∨ (¬a2 ∧ ¬b1) = a2 ↔ b1
φ4 = (¬a2 ∧ b2) ∨ (a2 ∧ ¬b2) = a2 ⊕ b2.

These propositions are easily seen to be contradictory.
The violation of the logical Bell inequality is 1/4.
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The general form

Given a family of propositions {φi}, we say it is K-consistent if the size of the largest
consistent subfamily is K.

Suppose that we have a K-consistent family {φi} over the basic events E1, . . . , En. For
any probability distribution on the set of truth-value assignments to the Ej , with induced
probabilities p(φi) for the events φi, we have:∑

i

p(φi) ≤ K (1)

Remarkably, all Bell inequalities arise this way (Abramsky and Hardy, Logical Bell
inequalities, Physical Review A 2012)

Theorem
A rational inequality is satisfied by all non-contextual empirical models if and only if it is
equivalent to a logical Bell inequality of the above form.
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Answering Boole, Quantum questions

This gives a full logical answer to Boole’s problem.

The following quotation from Pitowsky suggests that he may have envisaged the possibility
of such a result:

In fact, all facet inequalities for c(n) should follow from “Venn diagrams”, that
is, the possible relations among n events in a probability space.

With contextuality, we are concerned with

quantum conditions of impossible experience
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Science Fiction? – The News from Delft

First Loophole-free Bell test, 2015
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Timeline

1932 von Neumann’s Mathematical Foundations of Quantum Mechanics
1935 EPR Paradox, the Einstein-Bohr debate
1964 Bell’s Theorem
1982 First experimental test of EPR and Bell inequalities

(Aspect, Grangier, Roger, Dalibard)
1984 Bennett-Brassard quantum key distribution protocol
1985 Deutch Quantum Computing paper
1993 Quantum teleportation

(Bennett, Brassard, Crépeau, Jozsa, Peres, Wooters)
1994 Shor’s algorithm
2015 First loophole-free Bell tests (Delft, NIST, Vienna)
2019 Quantum supremacy claimed by Google
2020 Quantum supremacy via boson sampling by USTC
2022 Nobel Prize in Physics for Aspect, Clauser and Zeilinger for Bell experiments
2024 Emerging quantum computing and technology industry . . .
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Formalising empirical data*

*SA, Brandenburger, New Journal of Physics, 2011.

A measurement scenario X = ⟨X,Σ, O⟩:
• X – a finite set of measurements
• Σ – a simplicial complex on X

faces are called the measurement
contexts

• O = (Ox)x∈X – for each x ∈ X a finite
non-empty set of possible outcomes Ox

in\out (0, 0) (0, 1) (1, 0) (1, 1)

(a, b) − − − −
(a, b′) − − − −
(a′, b) − − − −
(a′, b′) − − − −

•a • b

• a′
•b′

•0
•1 •

•

• 0
• 1

•
•
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Contextuality defined

An empirical model {eC}C∈Σ on a measurement scenario (X,Σ, O) is non-contextual if
there is a distribution d on

∏
x∈X Ox such that, for all σ ∈ Σ:

d|σ = eσ.

That is, we can glue all the local information together into a global consistent description
from which the local information can be recovered.

We call such a d a global section.

If no such global section exists, the empirical model is contextual.

Thus contextuality arises where we have a family of data which is locally consistent but
globally inconsistent.

The import of Bell’s theorem and similar results is that there are empirical models arising
from quantum mechanics which are contextual.
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Bundle Diagrams
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Bundle Pictures

Logical Contextuality
• Ignore precise probabilities
• Events are possible or not
• E.g. the Hardy model:

00 01 10 11

ab ✓ ✓ ✓ ✓
ab′ × ✓ ✓ ✓
a′b × ✓ ✓ ✓
a′b′ ✓ ✓ ✓ ×

•a

• b

• a′

•b′

•0

•1
•

•
1

• 0

• 1

•0

•
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Contextuality
Definition
There is a hierarchy of contextuality

Probabilistic ⊂ Logical ⊂ Strong
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The Bell table and the “Möbius strip”

(0, 0) (1, 0) (0, 1) (1, 1)

(a1, b1) 1/2 0 0 1/2

(a1, b2) 3/8 1/8 1/8 3/8

(a2, b1) 3/8 1/8 1/8 3/8

(a2, b2) 1/8 3/8 3/8 1/8

•a

• b

• a′

•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Physics ↭ Probability ↭ Logic ↭ Topology
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Contextuality, Logic and Paradoxes

Liar cycles. A Liar cycle of length N is a sequence of statements

S1 : S2 is true,
S2 : S3 is true,

...
SN−1 : SN is true,

SN : S1 is false.

For N = 1, this is the classic Liar sentence

S : S is false.

Following Cook, Walicki et al. we can model the situation by boolean equations:

x1 = x2, . . . , xn−1 = xn, xn = ¬x1

The “paradoxical” nature of the original statements is now captured by the inconsistency
of these equations.
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Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

{x1, x2} : x1 = x2

{x2, x3} : x2 = x3

...
{xn−1, xn} : xn−1 = xn

{xn, x1} : xn = ¬x1

Any subset of up to n− 1 of these equations is consistent; while the whole set is
inconsistent.

Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the PR
box.

The usual reasoning to derive a contradiction from the Liar cycle corresponds precisely to
the attempt to find a univocal path in the bundle diagram.
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The Robinson Consistency Theorem

A classic result:

Theorem (Robinson Joint Consistency Theorem)
Let Ti be a theory over the language Li, i = 1, 2. If there is no sentence ϕ in L1 ∩ L2 with
T1 ⊢ ϕ and T2 ⊢ ¬ϕ, then T1 ∪ T2 is consistent.

Thus this theorem says that two compatible theories can be glued together. In this binary
case, local consistency implies global consistency.

Note, however, that an extension of the theorem beyond the binary case fails. That is, if
we have three theories which are pairwise compatible, it need not be the case that they can
be glued together consistently.

A minimal counter-example is provided at the propositional level by the following
Specker triangle:

T1 = {x1 −→ ¬x2}, T2 = {x2 −→ ¬x3}, T3 = {x3 −→ ¬x1}.
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