THE MATHEMATICAL THEORY OF CONTEXTUALITY Lecture 1: Introduction

Samson Abramsky
Department of Computer Science, UCL

TACL 2024 Summer School

People

Adam Brandenburger, Lucien Hardy, Shane Mansfield, Rui Soares Barbosa, Ray Lal,
Mehrnoosh Sadrzadeh, Phokion Kolaitis, Georg Gottlob, Carmen Constantin,
Kohei Kishida. Giovanni Caru, Linde Wester, Nadish de Silva, Martti Karvonen

References

Some papers (all available on the arXiv):

- The sheaf-theoretic structure of non-locality and contextuality, SA and Adam Brandenburger, (2011)
- Logical Bell inequalities, SA and Lucien Hardy (2012)
- Contextual Semantics: From Quantum Mechanics to Logic, Databases, Constraints, and Complexity, SA (2014)
- Contextuality, cohomology and paradox, SA, Rui Soares Barbosa, Kohei Kishida, Ray Lal and Shane Mansfield (2015)
- The contextual fraction as a measure of contextuality, SA, Rui Soares Barbosa and Shane Mansfield (2017)
- Towards a complete cohomology invariant for non-locality and contextuality, Giovanni Carù (2018)
- The logic of contextuality, SA and Rui Soares Barbosa (2021)

Contextuality in a nutshell

Where we have a family of data which is locally consistent, but globally inconsistent

Contextuality Analogy: Local Consistency

Contextuality Analogy: Local Consistency

Contextuality Analogy: Global Inconsistency

The Nobel Prize in Physics 2022

Summary

(C) Nobel Prize Outreach. Photo: Stefan Bladh
Alain Aspect
Prize share: $1 / 3$

(C) Nobel Prize Outreach. Photo: Stefan Bladh
John F. Clauser
Prize share: $1 / 3$

© Nobel Prize Outreach. Photo: Stefan Bladh
Anton Zeilinger
Prize share: $1 / 3$

The Nobel Prize in Physics 2022 was awarded jointly to Alain Aspect, John F. Clauser and Anton Zeilinger "for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science"

Testing non-local correlations

Alice-Bob games

The XOR Game

Alice and Bob play a cooperative game against Verifier (or Nature!):

The XOR Game

Alice and Bob play a cooperative game against Verifier (or Nature!):

- Verifier chooses an input $x \in\{0,1\}$ for Alice, and similarly an input y for Bob. We assume the uniform distribution for Nature's choices.

The XOR Game

Alice and Bob play a cooperative game against Verifier (or Nature!):

- Verifier chooses an input $x \in\{0,1\}$ for Alice, and similarly an input y for Bob. We assume the uniform distribution for Nature's choices.
- Alice and Bob each have to choose an output, $a \in\{0,1\}$ for Alice, $b \in\{0,1\}$ for Bob, depending on their input. They are not allowed to communicate during the game.

The XOR Game

Alice and Bob play a cooperative game against Verifier (or Nature!):

- Verifier chooses an input $x \in\{0,1\}$ for Alice, and similarly an input y for Bob. We assume the uniform distribution for Nature's choices.
- Alice and Bob each have to choose an output, $a \in\{0,1\}$ for Alice, $b \in\{0,1\}$ for Bob, depending on their input. They are not allowed to communicate during the game.
- The winning condition: $a \oplus b=x \wedge y$.

The XOR Game

Alice and Bob play a cooperative game against Verifier (or Nature!):

- Verifier chooses an input $x \in\{0,1\}$ for Alice, and similarly an input y for Bob. We assume the uniform distribution for Nature's choices.
- Alice and Bob each have to choose an output, $a \in\{0,1\}$ for Alice, $b \in\{0,1\}$ for Bob, depending on their input. They are not allowed to communicate during the game.
- The winning condition: $a \oplus b=x \wedge y$.

A table of conditional probabilities $p(a, b \mid x, y)$ defines a probabilistic strategy for this game. The success probability for this strategy is:

$$
\begin{aligned}
1 / 4[p(a=b \mid x=0, y=0) & +p(a=b \mid x=0, y=1)+p(a=b \mid x=1, y=0) \\
+ & p(a \neq b \mid x=1, y=1)]
\end{aligned}
$$

A Strategy for the Alice-Bob game

A Strategy for the Alice-Bob game
Example: The Bell Model

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
0	0	$1 / 2$	0	0	$1 / 2$
0	1	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
1	0	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
1	1	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

A Strategy for the Alice-Bob game

Example: The Bell Model

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
0	0	$1 / 2$	0	0	$1 / 2$
0	1	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
1	0	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
1	1	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

The entry in row 2 column 3 says:
If the Verifier sends Alice a_{1} and Bob b_{2}, then with probability $1 / 8$, Alice outputs $a 0$ and Bob outputs a 1 .

A Strategy for the Alice-Bob game

Example: The Bell Model

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
0	0	$1 / 2$	0	0	$1 / 2$
0	1	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
1	0	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
1	1	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

The entry in row 2 column 3 says:
If the Verifier sends Alice a_{1} and Bob b_{2}, then with probability $1 / 8$, Alice outputs a 0 and Bob outputs a 1.

This gives a winning probability of $\frac{3.25}{4} \approx 0.81$.

A Strategy for the Alice-Bob game

Example: The Bell Model

The entry in row 2 column 3 says:
If the Verifier sends Alice a_{1} and Bob b_{2}, then with probability $1 / 8$, Alice outputs a 0 and Bob outputs a 1 .

This gives a winning probability of $\frac{3.25}{4} \approx 0.81$.

The optimal classical probability is 0.75 !

A Strategy for the Alice-Bob game

Example: The Bell Model

The entry in row 2 column 3 says:
If the Verifier sends Alice a_{1} and Bob b_{2}, then with probability $1 / 8$, Alice outputs a 0 and Bob outputs a 1 .

This gives a winning probability of $\frac{3.25}{4} \approx 0.81$.

The optimal classical probability is 0.75 !

The proof of this uses (and is essentially the same as) the use of Bell inequalities.

A Strategy for the Alice-Bob game

Example: The Bell Model

The entry in row 2 column 3 says:
If the Verifier sends Alice a_{1} and Bob b_{2}, then with probability $1 / 8$, Alice outputs a 0 and Bob outputs a 1 .

This gives a winning probability of $\frac{3.25}{4} \approx 0.81$.
The optimal classical probability is 0.75 !

The proof of this uses (and is essentially the same as) the use of Bell inequalities.
The Bell table exceeds this bound. Since it is quantum realizable using an entangled pair of qubits, it shows that quantum resources yield a quantum advantage in an information-processing task.

Logic and Probability: from Boole to Bell

George Boole 1815-64

John Stewart Bell 1928-90

Logic and Probability: from Boole to Bell

George Boole 1815-64

John Stewart Bell 1928-90

George Boole was a pioneer of logic, probability, - and of computer science.

Logic and Probability: from Boole to Bell

George Boole 1815-64

John Stewart Bell 1928-90

George Boole was a pioneer of logic, probability, - and of computer science.

There is a remarkable connection between his work in probability from the 1850's and the idea of Bell inequalities, fundamental to Bell's theorem, non-locality, and quantum information and computation.

Logic and Probability: from Boole to Bell

George Boole 1815-64

John Stewart Bell 1928-90

George Boole was a pioneer of logic, probability, - and of computer science.

There is a remarkable connection between his work in probability from the 1850's and the idea of Bell inequalities, fundamental to Bell's theorem, non-locality, and quantum information and computation.

This was first pointed out by Itamar Pitowsky, George Boole's 'conditions of possible experience' and the quantum puzzle (1994).

Logic and Probability: from Boole to Bell

George Boole 1815-64

John Stewart Bell 1928-90

George Boole was a pioneer of logic, probability, - and of computer science.

There is a remarkable connection between his work in probability from the 1850's and the idea of Bell inequalities, fundamental to Bell's theorem, non-locality, and quantum information and computation.

This was first pointed out by Itamar Pitowsky, George Boole's 'conditions of possible experience' and the quantum puzzle (1994).
Discussion in my paper Classical Probability, Classical Logic, and Quantum Mechanics in volume for Pitowsky Quantum, Probability, Logic (2020).

Boole's "conditions of possible experience"

Pitowsky's pellucid summary:
Boole's problem is simple: we are given rational numbers which indicate the relative frequencies of certain events. If no logical relations obtain among the events, then the only constraints imposed on these numbers are that they each be nonnegative and less than one. If however, the events are logically interconnected, there are further equalities or inequalities that obtain among the numbers. The problem thus is to determine the numerical relations among frequencies, in terms of equalities and inequalities, which are induced by a set of logical relations among the events. The equalities and inequalities are called "conditions of possible experience".

Boole's "conditions of possible experience"

Pitowsky's pellucid summary:
Boole's problem is simple: we are given rational numbers which indicate the relative frequencies of certain events. If no logical relations obtain among the events, then the only constraints imposed on these numbers are that they each be nonnegative and less than one. If however, the events are logically interconnected, there are further equalities or inequalities that obtain among the numbers. The problem thus is to determine the numerical relations among frequencies, in terms of equalities and inequalities, which are induced by a set of logical relations among the events. The equalities and inequalities are called "conditions of possible experience".
More formally, we are given basic events E_{1}, \ldots, E_{n}, and boolean functions $\varphi_{1}, \ldots, \varphi_{m}$ of these events. Such a function can be described by a propositional formula in the variables E_{1}, \ldots, E_{n}.
Suppose further that we are given probabilities $p\left(E_{i}\right), p\left(\varphi_{j}\right)$ of these events.

Boole's "conditions of possible experience"

Pitowsky's pellucid summary:
Boole's problem is simple: we are given rational numbers which indicate the relative frequencies of certain events. If no logical relations obtain among the events, then the only constraints imposed on these numbers are that they each be nonnegative and less than one. If however, the events are logically interconnected, there are further equalities or inequalities that obtain among the numbers. The problem thus is to determine the numerical relations among frequencies, in terms of equalities and inequalities, which are induced by a set of logical relations among the events. The equalities and inequalities are called "conditions of possible experience".
More formally, we are given basic events E_{1}, \ldots, E_{n}, and boolean functions $\varphi_{1}, \ldots, \varphi_{m}$ of these events. Such a function can be described by a propositional formula in the variables E_{1}, \ldots, E_{n}.
Suppose further that we are given probabilities $p\left(E_{i}\right), p\left(\varphi_{j}\right)$ of these events.
Question: What numerical relationships between the probabilities can we infer from the logical relationships between the events?

A Simple Observation

A Simple Observation

We have propositional formulas $\phi_{1}, \ldots, \phi_{N}$, with probabilities $p_{i}=\operatorname{Prob}\left(\phi_{i}\right)$.

A Simple Observation

We have propositional formulas $\phi_{1}, \ldots, \phi_{N}$, with probabilities $p_{i}=\operatorname{Prob}\left(\phi_{i}\right)$.
Suppose that these formulas are not simultaneously satisfiable. Then (e.g.)

$$
\bigwedge_{i=1}^{N-1} \phi_{i} \Rightarrow \neg \phi_{N}
$$

A Simple Observation

We have propositional formulas $\phi_{1}, \ldots, \phi_{N}$, with probabilities $p_{i}=\operatorname{Prob}\left(\phi_{i}\right)$.
Suppose that these formulas are not simultaneously satisfiable. Then (e.g.)

$$
\bigwedge_{i=1}^{N-1} \phi_{i} \Rightarrow \neg \phi_{N}, \quad \text { or equivalently } \quad \phi_{N} \Rightarrow \bigvee_{i=1}^{N-1} \neg \phi_{i} .
$$

A Simple Observation

We have propositional formulas $\phi_{1}, \ldots, \phi_{N}$, with probabilities $p_{i}=\operatorname{Prob}\left(\phi_{i}\right)$.
Suppose that these formulas are not simultaneously satisfiable. Then (e.g.)

$$
\bigwedge_{i=1}^{N-1} \phi_{i} \Rightarrow \neg \phi_{N}, \quad \text { or equivalently } \quad \phi_{N} \Rightarrow \bigvee_{i=1}^{N-1} \neg \phi_{i} .
$$

Using elementary probability theory, we can calculate:

$$
p_{N} \leq \operatorname{Prob}\left(\bigvee_{i=1}^{N-1} \neg \phi_{i}\right) \leq \sum_{i=1}^{N-1} \operatorname{Prob}\left(\neg \phi_{i}\right)=\sum_{i=1}^{N-1}\left(1-p_{i}\right)=(N-1)-\sum_{i=1}^{N-1} p_{i} .
$$

A Simple Observation

We have propositional formulas $\phi_{1}, \ldots, \phi_{N}$, with probabilities $p_{i}=\operatorname{Prob}\left(\phi_{i}\right)$.
Suppose that these formulas are not simultaneously satisfiable. Then (e.g.)

$$
\bigwedge_{i=1}^{N-1} \phi_{i} \Rightarrow \neg \phi_{N}, \quad \text { or equivalently } \quad \phi_{N} \Rightarrow \bigvee_{i=1}^{N-1} \neg \phi_{i} .
$$

Using elementary probability theory, we can calculate:

$$
p_{N} \leq \operatorname{Prob}\left(\bigvee_{i=1}^{N-1} \neg \phi_{i}\right) \leq \sum_{i=1}^{N-1} \operatorname{Prob}\left(\neg \phi_{i}\right)=\sum_{i=1}^{N-1}\left(1-p_{i}\right)=(N-1)-\sum_{i=1}^{N-1} p_{i} .
$$

Hence we obtain the inequality

$$
\sum_{i=1}^{N} p_{i} \leq N-1
$$

Logical analysis of the Bell table

Logical analysis of the Bell table

	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	$1 / 2$	0	0	$1 / 2$
$\left(a_{1}, b_{2}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{2}, b_{1}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{2}, b_{2}\right)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Logical analysis of the Bell table

	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	$1 / 2$	0	0	$1 / 2$
$\left(a_{1}, b_{2}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$\left.\begin{array}{\|c}3 / 8 \\ \left(a_{2}, b_{1}\right)\end{array}\right) 3 / 8$
	$1 / 8$	$1 / 8$	$3 / 8$	
$\left(a_{2}, b_{2}\right)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

If we read 0 as true and 1 as false, the highlighted entries in each row of the table are represented by the following propositions:

$$
\begin{aligned}
& \varphi_{1}=\left(a_{1} \wedge b_{1}\right) \vee\left(\neg a_{1} \wedge \neg b_{1}\right)=a_{1} \leftrightarrow b_{1} \\
& \varphi_{2}=\left(a_{1} \wedge b_{2}\right) \vee\left(\neg a_{1} \wedge \neg b_{2}\right)=a_{1} \leftrightarrow b_{2} \\
& \varphi_{3}=\left(a_{2} \wedge b_{1}\right) \vee\left(\neg a_{2} \wedge \neg b_{1}\right)=a_{2} \leftrightarrow b_{1} \\
& \varphi_{4}=\left(\neg a_{2} \wedge b_{2}\right) \vee\left(a_{2} \wedge \neg b_{2}\right)=a_{2} \oplus b_{2} .
\end{aligned}
$$

Logical analysis of the Bell table

	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	$1 / 2$	0	0	$1 / 2$
$\left(a_{1}, b_{2}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$\left.\begin{array}{\|c}3 / 8 \\ \left(a_{2}, b_{1}\right)\end{array}\right) 3 / 8$
	$1 / 8$	$1 / 8$	$3 / 8$	
$\left(a_{2}, b_{2}\right)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

If we read 0 as true and 1 as false, the highlighted entries in each row of the table are represented by the following propositions:

$$
\begin{aligned}
& \varphi_{1}=\left(a_{1} \wedge b_{1}\right) \quad \vee\left(\neg a_{1} \wedge \neg b_{1}\right)=a_{1} \leftrightarrow b_{1} \\
& \varphi_{2}=\left(a_{1} \wedge b_{2}\right) \\
& \varphi_{3}\left(\neg a_{1} \wedge \neg b_{2}\right)=a_{1} \leftrightarrow
\end{aligned} b_{2} .
$$

These propositions are easily seen to be contradictory.

Logical analysis of the Bell table

	$(0,0)$	$(1,0)$	$(0,1)$
	$(1,1)$		
$\left(a_{1}, b_{1}\right)$	$1 / 2$	0	0
	$1 / 2$		
$\left(a_{1}, b_{2}\right)$	$3 / 8$	$1 / 8$	$1 / 8$
	$3 / 8$		
$\left(a_{2}, b_{1}\right)$	$3 / 8$	$1 / 8$	$1 / 8$
$\left(a_{2}, b_{2}\right)$	$1 / 8$	$3 / 8$	$3 / 8$
	$3 / 8$	$1 / 8$	

If we read 0 as true and 1 as false, the highlighted entries in each row of the table are represented by the following propositions:

$$
\begin{aligned}
& \varphi_{1}=\left(a_{1} \wedge b_{1}\right) \quad \vee\left(\neg a_{1} \wedge \neg b_{1}\right)=a_{1} \leftrightarrow b_{1} \\
& \varphi_{2}=\left(a_{1} \wedge b_{2}\right) \\
& \varphi_{3}\left(\neg a_{1} \wedge \neg b_{2}\right)=a_{1} \leftrightarrow
\end{aligned} b_{2} .
$$

These propositions are easily seen to be contradictory.
The violation of the logical Bell inequality is $1 / 4$.

The general form

The general form

Given a family of propositions $\left\{\varphi_{i}\right\}$, we say it is K-consistent if the size of the largest consistent subfamily is K.

The general form

Given a family of propositions $\left\{\varphi_{i}\right\}$, we say it is K-consistent if the size of the largest consistent subfamily is K.

Suppose that we have a K-consistent family $\left\{\varphi_{i}\right\}$ over the basic events E_{1}, \ldots, E_{n}. For any probability distribution on the set of truth-value assignments to the E_{j}, with induced probabilities $p\left(\varphi_{i}\right)$ for the events φ_{i}, we have:

$$
\begin{equation*}
\sum_{i} p\left(\varphi_{i}\right) \leq K \tag{1}
\end{equation*}
$$

The general form

Given a family of propositions $\left\{\varphi_{i}\right\}$, we say it is K-consistent if the size of the largest consistent subfamily is K.

Suppose that we have a K-consistent family $\left\{\varphi_{i}\right\}$ over the basic events E_{1}, \ldots, E_{n}. For any probability distribution on the set of truth-value assignments to the E_{j}, with induced probabilities $p\left(\varphi_{i}\right)$ for the events φ_{i}, we have:

$$
\begin{equation*}
\sum_{i} p\left(\varphi_{i}\right) \leq K \tag{1}
\end{equation*}
$$

Remarkably, all Bell inequalities arise this way (Abramsky and Hardy, Logical Bell inequalities, Physical Review A 2012)

Theorem

A rational inequality is satisfied by all non-contextual empirical models if and only if it is equivalent to a logical Bell inequality of the above form.

Answering Boole, Quantum questions

Answering Boole, Quantum questions

This gives a full logical answer to Boole's problem.

Answering Boole, Quantum questions

This gives a full logical answer to Boole's problem.
The following quotation from Pitowsky suggests that he may have envisaged the possibility of such a result:

In fact, all facet inequalities for $c(n)$ should follow from "Venn diagrams", that is, the possible relations among n events in a probability space.

Answering Boole, Quantum questions

This gives a full logical answer to Boole's problem.
The following quotation from Pitowsky suggests that he may have envisaged the possibility of such a result:

In fact, all facet inequalities for $c(n)$ should follow from "Venn diagrams", that is, the possible relations among n events in a probability space.

With contextuality, we are concerned with
quantum conditions of impossible experience

Science Fiction? - The News from Delft

Science Fiction? - The News from Delft

First Loophole-free Bell test, 2015

Science Fiction？－The News from Delft

First Loophole－free Bell test， 2015

NATURE｜LETTER
日本茼票的

Loophole－free Bell inequality violation using electron spins separated by 1.3 kilometres

B．Hensen，H．Bernien，A．E．Dréau，A．Reiserer，N．Kalb，M．S．Blok，J．Ruitenberg，R．F．L．Vermeulen，R．N．Schouten，C．Abellán，W． Amaya，V．Pruneri，M．W．Mitchell，M．Markham，D．J．Twitchen，D．Elkouss，S．Wehner，T．H．Taminiau \＆R．Hanson

Nature 526，682－686（29 October 2015）doi：10．1038／nature15759
Received 19 August 2015 Accepted 28 September 2015 Published online 21 October 2015
More than $\mathbf{5 0}$ years ago ${ }^{1}$ ，John Bell proved that no theory of nature that obeys locality and realism ${ }^{2}$ can reproduce all the predictions of quantum theory：in any local－realist theory，the correlations between outcomes of measurements on distant particles satisfy an inequality that can be violated if the particles are entangled．Numerous Bell inequality tests have been reported ${ }^{3}, 4,5,6,7,8,9,10,11,12,13$ ；however，all experiments reported so far required additional assumptions to obtain a contradiction with local realism，resulting in＇loopholes ${ }^{\prime 13,14,15,}$ 16．Here we report a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell＇s inequality．We use an event－ready scheme ${ }^{17,18,19}$ that enables the generation of robust entanglement between distant electron spins （estimated state fidelity of 0.92 ± 0.03 ）．Efficient spin read－out avoids the fair－sampling assumption（detection loophole ${ }^{14,15}$ ），while the use of fast random－basis selection and spin read－out combined with a spatial separation of 1.3 kilometres ensure the required locality conditions ${ }^{13}$ ．We performed 245 trials that tested the CHSH－Bell inequality ${ }^{20} S \leq 2$ and found $S=2.42 \pm 0.20$（where S quantifies the correlation between measurement outcomes）．A null－hypothesis test yields a probability of at most $P=0.039$ that a local－realist model for space－like separated sites could produce data with a violation at least as large as we observe，even when allowing for memory ${ }^{16,21}$ in the devices．Our data hence imply statistically significant rejection of the local－realist null hypothesis．This conclusion may be further consolidated in future experiments；for instance，reaching a value of $P=0.001$ would require approximately 700 trials for an observed $S=$ 2．4．With improvements，our experiment could be used for testing less－conventional theories，and for implementing device－independent quantum－secure communication ${ }^{22}$ and randomness certification ${ }^{23,} 24$ ．

NATURE | NEWS

Quantum 'spookiness' passes toughest test yet

Experiment plugs loopholes in previous demonstrations of 'action at a distance', against Einstein's objections - and could make data encryption safer.

Zeeya Merali
27 August 2015

Viewpoint: Closing the Door on Einstein and Bohr's Quantum Debate

Alain Aspect, Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay, Palaiseau, France December 16, 2015 - Physics 8, 123

By closing two loopholes at once, three experimental tests of Bell's inequalities remove the last doubts that we should renounce local realism. They also open the door to new quantum information technologies.

Figure 1: An apparatus for performing a Bell test. A source emits a pair of entangled photons v_{1} and v_{2}. Their polarizations are analyzed by polarizers A and B (grey blocks), which are aligned, respectively,

Timeline

1932 von Neumann's Mathematical Foundations of Quantum Mechanics
1935 EPR Paradox, the Einstein-Bohr debate
1964 Bell's Theorem
1982 First experimental test of EPR and Bell inequalities(Aspect, Grangier, Roger, Dalibard)
1984 Bennett-Brassard quantum key distribution protocol
1985 Deutch Quantum Computing paper
1993 Quantum teleportation(Bennett, Brassard, Crépeau, Jozsa, Peres, Wooters)
1994 Shor's algorithm
2015 First loophole-free Bell tests (Delft, NIST, Vienna)
2019 Quantum supremacy claimed by Google
2020 Quantum supremacy via boson sampling by USTC
2022 Nobel Prize in Physics for Aspect, Clauser and Zeilinger for Bell experiments
2024 Emerging quantum computing and technology industry ...

Formalising empirical data*

*SA, Brandenburger, New Journal of Physics, 2011.

A measurement scenario $\mathbf{X}=\langle X, \Sigma, O\rangle$:

- X - a finite set of measurements
- Σ - a simplicial complex on X faces are called the measurement contexts
- $O=\left(O_{x}\right)_{x \in X}$ - for each $x \in X$ a finite non-empty set of possible outcomes O_{x}

in \backslash out	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
(a, b)	-	-	-	-
$\left(a, b^{\prime}\right)$	-	-	-	-
$\left(a^{\prime}, b\right)$	-	-	-	-
$\left(a^{\prime}, b^{\prime}\right)$	-	-	-	-

Formalising empirical data*

*SA, Brandenburger, New Journal of Physics, 2011.
A measurement scenario $\mathbf{X}=\langle X, \Sigma, O\rangle$:

- X - a finite set of measurements
- Σ - a simplicial complex on X faces are called the measurement contexts
- $O=\left(O_{x}\right)_{x \in X}$ - for each $x \in X$ a finite non-empty set of possible outcomes O_{x}

in \backslash out	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
(a, b)	$1 / 2$	0	0	$1 / 2$
$\left(a, b^{\prime}\right)$	$1 / 2$	0	0	$1 / 2$
$\left(a^{\prime}, b\right)$	$1 / 2$	0	0	$1 / 2$
$\left(a^{\prime}, b^{\prime}\right)$	0	$1 / 2$	$1 / 2$	0

An empirical model $e=\left\{e_{\sigma}\right\}_{e \in \Sigma}$ on \mathbf{X} :

- Each e_{σ} is a prob. distribution over joint outcomes $\prod_{x \in \sigma} O_{x}$ for σ
- generalised no-signalling holds: $\forall \sigma, \tau \in \Sigma, \sigma \subseteq \tau$.

$$
\left.e_{\tau}\right|_{\sigma}=e_{\sigma}
$$

(i.e. marginals are well-defined)

Formalising empirical data*

*SA, Brandenburger, New Journal of Physics, 2011.
A measurement scenario $\mathbf{X}=\langle X, \Sigma, O\rangle$:

- X - a finite set of measurements
- Σ - a simplicial complex on X faces are called the measurement contexts
- $O=\left(O_{x}\right)_{x \in X}$ - for each $x \in X$ a finite non-empty set of possible outcomes O_{x}

in \backslash out	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
(a, b)	$1 / 2$	0	0	$1 / 2$
$\left(a, b^{\prime}\right)$	$1 / 2$	0	0	$1 / 2$
$\left(a^{\prime}, b\right)$	$1 / 2$	0	0	$1 / 2$
$\left(a^{\prime}, b^{\prime}\right)$	0	$1 / 2$	$1 / 2$	0

An empirical model $e=\left\{e_{\sigma}\right\}_{e \in \Sigma}$ on \mathbf{X} :

- Each e_{σ} is a prob. distribution over joint outcomes $\prod_{x \in \sigma} O_{x}$ for σ
- generalised no-signalling holds: $\forall \sigma, \tau \in \Sigma, \sigma \subseteq \tau$.

$$
\left.e_{\tau}\right|_{\sigma}=e_{\sigma}
$$

(i.e. marginals are well-defined)

Contextuality defined

Contextuality defined

An empirical model $\left\{e_{C}\right\}_{C \in \Sigma}$ on a measurement scenario (X, Σ, O) is non-contextual if there is a distribution d on $\prod_{x \in X} O_{x}$ such that, for all $\sigma \in \Sigma$:

$$
\left.d\right|_{\sigma}=e_{\sigma} .
$$

Contextuality defined

An empirical model $\left\{e_{C}\right\}_{C \in \Sigma}$ on a measurement scenario (X, Σ, O) is non-contextual if there is a distribution d on $\prod_{x \in X} O_{x}$ such that, for all $\sigma \in \Sigma$:

$$
\left.d\right|_{\sigma}=e_{\sigma} .
$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

Contextuality defined

An empirical model $\left\{e_{C}\right\}_{C \in \Sigma}$ on a measurement scenario (X, Σ, O) is non-contextual if there is a distribution d on $\prod_{x \in X} O_{x}$ such that, for all $\sigma \in \Sigma$:

$$
\left.d\right|_{\sigma}=e_{\sigma} .
$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

We call such a d a global section.

Contextuality defined

An empirical model $\left\{e_{C}\right\}_{C \in \Sigma}$ on a measurement scenario (X, Σ, O) is non-contextual if there is a distribution d on $\prod_{x \in X} O_{x}$ such that, for all $\sigma \in \Sigma$:

$$
\left.d\right|_{\sigma}=e_{\sigma} .
$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

We call such a d a global section.

If no such global section exists, the empirical model is contextual.

Contextuality defined

An empirical model $\left\{e_{C}\right\}_{C \in \Sigma}$ on a measurement scenario (X, Σ, O) is non-contextual if there is a distribution d on $\prod_{x \in X} O_{x}$ such that, for all $\sigma \in \Sigma$:

$$
\left.d\right|_{\sigma}=e_{\sigma} .
$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

We call such a d a global section.
If no such global section exists, the empirical model is contextual.
Thus contextuality arises where we have a family of data which is locally consistent but globally inconsistent.

Contextuality defined

An empirical model $\left\{e_{C}\right\}_{C \in \Sigma}$ on a measurement scenario (X, Σ, O) is non-contextual if there is a distribution d on $\prod_{x \in X} O_{x}$ such that, for all $\sigma \in \Sigma$:

$$
\left.d\right|_{\sigma}=e_{\sigma} .
$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

We call such a d a global section.

If no such global section exists, the empirical model is contextual.
Thus contextuality arises where we have a family of data which is locally consistent but globally inconsistent.

The import of Bell's theorem and similar results is that there are empirical models arising from quantum mechanics which are contextual.

Bundle Diagrams

Figure 1: $\mathrm{A}(2,2,2)$ Bell-type scenario. The section $\left(a_{1}, b_{1}\right) \mapsto(1,1)$ is represented in the centre. On the right, the global section $\left(a_{1}, b_{1}, a_{2}, b_{2}\right) \mapsto(1,1,0,0)$

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Contextuality

Definition

There is a hierarchy of contextuality

$$
\text { Probabilistic } \subset \text { Logical } \subset \text { Strong }
$$

Figure 2: The Hardy model and the PR-Box model as bundle diagrams.

The Bell table and the "Möbius strip"

	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	$1 / 2$	0	0	$1 / 2$
$\left(a_{1}, b_{2}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{2}, b_{1}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{2}, b_{2}\right)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

The Bell table and the "Möbius strip"

	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$\left(a_{1}, b_{1}\right)$	$1 / 2$	0	0	$1 / 2$
$\left(a_{1}, b_{2}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{2}, b_{1}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{2}, b_{2}\right)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Physics \leadsto Probability $\leadsto m$ Logic $a n$ Topology

Contextuality, Logic and Paradoxes

Contextuality, Logic and Paradoxes

Liar cycles. A Liar cycle of length N is a sequence of statements
$S_{1}: S_{2}$ is true,
$S_{2}: S_{3}$ is true,
$S_{N-1}: S_{N}$ is true,
$S_{N}: S_{1}$ is false.
For $N=1$, this is the classic Liar sentence
$S: S$ is false.

Contextuality, Logic and Paradoxes

Liar cycles. A Liar cycle of length N is a sequence of statements $S_{1}: S_{2}$ is true, $S_{2}: S_{3}$ is true, $S_{N-1}: S_{N}$ is true, $S_{N}: S_{1}$ is false.
For $N=1$, this is the classic Liar sentence

$$
S: S \text { is false. }
$$

Following Cook, Walicki et al. we can model the situation by boolean equations:

$$
x_{1}=x_{2}, \ldots, \quad x_{n-1}=x_{n}, \quad x_{n}=\neg x_{1}
$$

Contextuality, Logic and Paradoxes

Liar cycles. A Liar cycle of length N is a sequence of statements

$$
S_{1}: S_{2} \text { is true, }
$$

$$
S_{2}: S_{3} \text { is true, }
$$

$$
S_{N-1}: S_{N} \text { is true, }
$$

$$
S_{N}: S_{1} \text { is false. }
$$

For $N=1$, this is the classic Liar sentence

$$
S: S \text { is false. }
$$

Following Cook, Walicki et al. we can model the situation by boolean equations:

$$
x_{1}=x_{2}, \ldots, \quad x_{n-1}=x_{n}, \quad x_{n}=\neg x_{1}
$$

The "paradoxical" nature of the original statements is now captured by the inconsistency of these equations.

Contextuality in the Liar; Liar cycles in the PR Box

Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

$$
\begin{aligned}
\left\{x_{1}, x_{2}\right\}: & x_{1}=x_{2} \\
\left\{x_{2}, x_{3}\right\}: & x_{2}=x_{3} \\
\vdots & \\
\left\{x_{n-1}, x_{n}\right\}: & x_{n-1}=x_{n} \\
\left\{x_{n}, x_{1}\right\}: & x_{n}=\neg x_{1}
\end{aligned}
$$

Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

$$
\begin{aligned}
\left\{x_{1}, x_{2}\right\}: & x_{1}=x_{2} \\
\left\{x_{2}, x_{3}\right\}: & x_{2}=x_{3} \\
\vdots & \\
\left\{x_{n-1}, x_{n}\right\}: & x_{n-1}=x_{n} \\
\left\{x_{n}, x_{1}\right\}: & x_{n}=\neg x_{1}
\end{aligned}
$$

Any subset of up to $n-1$ of these equations is consistent; while the whole set is inconsistent.

Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

$$
\begin{array}{rll}
\left\{x_{1}, x_{2}\right\}: & x_{1}=x_{2} \\
\left\{x_{2}, x_{3}\right\}: & x_{2}=x_{3} \\
\vdots & \\
\left\{x_{n-1}, x_{n}\right\}: & x_{n-1}=x_{n} \\
\left\{x_{n}, x_{1}\right\}: & x_{n}=\neg x_{1}
\end{array}
$$

Any subset of up to $n-1$ of these equations is consistent; while the whole set is inconsistent.

Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the PR box.

Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

$$
\begin{aligned}
\left\{x_{1}, x_{2}\right\}: & x_{1}=x_{2} \\
\left\{x_{2}, x_{3}\right\}: & x_{2}=x_{3} \\
\vdots & \\
\left\{x_{n-1}, x_{n}\right\}: & x_{n-1}=x_{n} \\
\left\{x_{n}, x_{1}\right\}: & x_{n}=\neg x_{1}
\end{aligned}
$$

Any subset of up to $n-1$ of these equations is consistent; while the whole set is inconsistent.

Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the PR box.

The usual reasoning to derive a contradiction from the Liar cycle corresponds precisely to the attempt to find a univocal path in the bundle diagram.

The Robinson Consistency Theorem

The Robinson Consistency Theorem

A classic result:
Theorem (Robinson Joint Consistency Theorem)
Let T_{i} be a theory over the language $L_{i}, i=1,2$. If there is no sentence ϕ in $L_{1} \cap L_{2}$ with $T_{1} \vdash \phi$ and $T_{2} \vdash \neg \phi$, then $T_{1} \cup T_{2}$ is consistent.

The Robinson Consistency Theorem

A classic result:

Theorem (Robinson Joint Consistency Theorem)

Let T_{i} be a theory over the language $L_{i}, i=1,2$. If there is no sentence ϕ in $L_{1} \cap L_{2}$ with $T_{1} \vdash \phi$ and $T_{2} \vdash \neg \phi$, then $T_{1} \cup T_{2}$ is consistent.

Thus this theorem says that two compatible theories can be glued together. In this binary case, local consistency implies global consistency.

The Robinson Consistency Theorem

A classic result:

Theorem (Robinson Joint Consistency Theorem)

Let T_{i} be a theory over the language $L_{i}, i=1,2$. If there is no sentence ϕ in $L_{1} \cap L_{2}$ with $T_{1} \vdash \phi$ and $T_{2} \vdash \neg \phi$, then $T_{1} \cup T_{2}$ is consistent.

Thus this theorem says that two compatible theories can be glued together. In this binary case, local consistency implies global consistency.

Note, however, that an extension of the theorem beyond the binary case fails. That is, if we have three theories which are pairwise compatible, it need not be the case that they can be glued together consistently.

The Robinson Consistency Theorem

A classic result:

Theorem (Robinson Joint Consistency Theorem)

Let T_{i} be a theory over the language $L_{i}, i=1,2$. If there is no sentence ϕ in $L_{1} \cap L_{2}$ with $T_{1} \vdash \phi$ and $T_{2} \vdash \neg \phi$, then $T_{1} \cup T_{2}$ is consistent.

Thus this theorem says that two compatible theories can be glued together. In this binary case, local consistency implies global consistency.

Note, however, that an extension of the theorem beyond the binary case fails. That is, if we have three theories which are pairwise compatible, it need not be the case that they can be glued together consistently.

A minimal counter-example is provided at the propositional level by the following Specker triangle:

$$
T_{1}=\left\{x_{1} \longrightarrow \neg x_{2}\right\}, T_{2}=\left\{x_{2} \longrightarrow \neg x_{3}\right\}, T_{3}=\left\{x_{3} \longrightarrow \neg x_{1}\right\} .
$$

