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Functorializing probability theory: the distribution functor

We shall consider discrete distributions only; in fact, everything can done in
measure-theoretic generality. (Lawvere, Giry et al.)

A discrete distribution on a set X is a function d : X → [0, 1] which has finite support,
and such that ∑

x∈X

d(x) = 1.

Equivalently, discrete distributions define probability measures on subsets S of X:

d(S) =
∑
x∈S

d(x).

We write D(X) for the set of R-distributions on X.

Functorial action: Given a function f : X → Y , we define

D(f) : D(X) → D(Y ) :: d 7→ [y 7→
∑

f(x)=y

d(x)].

In terms of measures:
D(f)(d)(S) = d(f−1(S)).
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Functorial structure

This “functorial action” indeed yields a functor D : Set −→ Set. (Exercise!)

The functorial action generalizes marginalization.

To see this, take the projection function π1 : X × Y → X.

Then given a joint distribution d ∈ D(X × Y ), D(π1)(d) is the marginal of d:

D(π1)(d)(x) =
∑
y∈Y

d(x, y).

More generally, the functorial action pushes measures forward along maps.

Additional structure:
There are “canonical maps” (natural transformations)

δX : X → D(X), µX : D(D(X)) → D(X)

which make the distribution functor into a monad.

Normalization corresponds to this monad being affine

D(1) ∼= 1.
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Semirings

A semiring is a structure (R,+, 0,×, 1) such that
• (R,+, 0) is an abelian monoid
• (R,×, 1) is a monoid
• multiplication distributes over addition:

a · (b+ c) = a · b+ a · c.

The semiring is commutative if × is.

Examples
• Rings
• N
• R≥0

• ({0, 1},∨, 0,∧, 1), more generally any distributive lattice

Widely used in Computer Science, e.g. for path algorithms, weighted automata etc.

Features in tropical geometry (the max-plus semiring).
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The Parameterized Distribution Functor

Fix a commutative semiring R. An R-distribution on X is a function d : X → R which
has finite support, and such that ∑

x∈X

d(x) = 1.

We write DR(X) for the set of R-distributions on X.

Examples: R≥0 (probability distributions), B (non-empty subsets), R (signed measures).

Functorial action: Given a function f : X → Y , we define

DR(f) : DR(X) → DR(Y ) :: d 7→ [y 7→
∑

f(x)=y

d(x)].

This yields a functor DR : Set −→ Set.
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Presheaves

A presheaf of sets on a topological space (X, TX) is a functor

P : T op
X → Set.

Spelling this out, for each open set U ⊆ X, we have a set P (U), and whenever U ⊆ V ,
there is a function, the restriction map

ρVU : P (V ) → P (U)

subject to the functoriality requirements: if U ⊆ V ⊆ W , then

ρVU ◦ ρWV = ρWU , ρUU = idP (U).

Example: the presheaf of functions
For each open set U , F(U) is the set of continuous functions f : U → R.

Restriction is function restriction!
If U ⊆ V and f : V → R, ρVU (f) := f |U .

Functoriality is easily verified: in this notation

(f |V )U = f |U .
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Some notes on presheaves

• Presheaves can be defined on any poset, and in fact on any (small) category. They are
just contravariant functors to Set.

• We can also define presheaves in categories other than Set. For example, a presheaf
of abelian groups on a space X is a functor

P : T op
X → AbGrp

• If P : T op
X → Set is a presheaf, and F : Set → Set is a functor, then

F ◦ P : T op
X → Set is a presheaf.

• Morphisms of presheaves are just natural transformations.

• The category of all presheaves on a space X has a very rich structure — it is a topos.
We shall not go into this aspect.

• However, there is an important conceptual aspect which should be understood.
Presheaves allow us to formalise the concept of variable set. The variation is
essentially over contexts. So presheaves provide the natural setting for talking about
contextuality!
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essentially over contexts. So presheaves provide the natural setting for talking about
contextuality!
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Covers, gluing and the sheaf condition

Sheaf theory is about the passage from local to global; about piecing together consistent
local information into global information.

Let U = {Ui}i∈I be a family of open sets, covering U =
⋃

i∈I Ui.

A family on U for the presheaf P is a family {xi}i∈I with xi ∈ P (Ui), i ∈ I.

The family is compatible if for all i, j ∈ I,

xi|Ui∩Uj = xj |Ui∩Uj

The presheaf satisfies the gluing condition for the cover U if for every compatible family
{xi}i∈I on U, there exists x ∈ P (U) such that, for all i ∈ I,

x|Ui = xi

It satisfies the unique gluing condition for U, or satisfies the sheaf condition with
respect to U, if the element satisfying the gluing condition for a given compatible family is
unique.

The presheaf P is a sheaf if for every open cover U, it satisfies the sheaf condition for U.
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Gluing functional sections

sU

sV

U

V

U ∩ V O

If sU |U∩V = sV |U∩V , they can be glued to form

s : U ∪ V −→ O

such that s|U = sU and s|V = sV .
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Obstructions

A major theme of modern mathematics is to identify and characterise situations where we
cannot extend local information to global information.

Mathematically, we seek to define invariants of the structure which provide obstructions
to such extensions.

In the case where it is possible to extend from local to global, these obstructions vanish.

Where they do not vanish, they provide witnesses to this failure to extend from local to
global — a constructive evidence for an impossibility.

In particular, this is one of the main intuitions behind sheaf cohomology.
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The Sheaf of Events

• Set of variables X (we will think of this as a discrete space)

• Set of outcomes O

The presheaf of events:
E : P(X)op → Set :: U 7→ OU

Conceptually, a local section s ∈ E(U) represents the event of measuring or observing the
variables x ∈ U , and observing the outcomes or values s(x).

Restriction is by function restriction:

ρUV (s) = s|V , V ⊆ U

This presheaf is easily seen to satisfy the sheaf condition.

A useful generalization: we have a set Ox of outcomes for each measurement x. Then
E(U) =

∏
x∈U Ox. Restriction is by projection.
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A Deterministic Universe is Classical

As we shall see, contextuality arises exactly where the sheaf property fails. Contextuality
witnesses – Bell tests and other forms we will study – are exactly witnesses to this failure
– obstructions to gluing.

Thus a purely deterministic model, living on the event sheaf, is non-contextual. So if we
want to find contextuality, we need to allow distributions over events.

This is in fact the content of the Conway-Kochen “Free Will Theorem”.
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Contextual Probability Theory

We can form the presheaf F = DR ◦ E : P(X)op → Set by functor composition.

Explicitly: F : U 7→ DR(O
U ).

Restriction is by marginalization: if U ⊆ V and d ∈ F(V ),

d|U : s 7→
∑

t∈F(V ),t|U=s

d(s)

Rather than a fixed probability space (X, d), d ∈ DR(X), we can now consider a variable
probability space

(F(U), dU ), U ⊆ X, dU ∈ F(U)

which varies functorially over the set of variables U .

We shall now see how this arises naturally in some important situations.
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A Probabilistic Model Of An Experiment

Example: The Bell Model

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1/2 0 0 1/2

a1 b2 3/8 1/8 1/8 3/8

a2 b1 3/8 1/8 1/8 3/8

a2 b2 1/8 3/8 3/8 1/8

The entry in row 2 column 3 says:
If Alice looks at a1 and Bob looks at b2, then 1/8th of the time, Alice sees a 0

and Bob sees a 1.
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Mathematical Structure of Probability Tables

A B (0, 0) (1, 0) (0, 1) (1, 1)

a b 0 1/2 1/2 0

a′ b 3/8 1/8 1/8 3/8

a b′ 3/8 1/8 1/8 3/8

a′ b′ 3/8 1/8 1/8 3/8

The measurement contexts are

{a, b}, {a′, b}, {a, b′}, {a′, b′}.

Each measurement has possible outcomes 0 or 1. The matrix entry at row (a′, b) and
column (0, 1) indicates the event

{a′ 7→ 0, b 7→ 1}.

Each row of the table specifies a probability distribution on events OC for a given
choice of measurements C.
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A B (0, 0) (1, 0) (0, 1) (1, 1)
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Presheaves, Sheaves and Gluing

Mathematically, this defines a presheaf. We have:

• A set of measurements X (the ‘space’). In our example, X = {a1, a2, b1, b2}.

• A family of subsets of X, the measurement contexts (a ‘cover’); in our example,
these are {{a1, b1}, {a2, b1}, {a1, b2}, {a2, b2}}.

• To each such set C a probability distribution on local sections s : C → O, where O
is the set of outcomes. In our case, O = {0, 1}.

These local sections correspond to the directly observable joint outcomes of compatible
measurements, which can actually be performed jointly on the system.

The different sets of compatible measurements correspond to the different contexts of
measurement and observation of the physical system.

The fact that the behaviour of these observable outcomes cannot be accounted for by some
context-independent global description of reality corresponds to the geometric fact that
these local sections cannot be glued together into a global section.
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Obstructions to gluing distributions

In geometric language, Bell’s theorem and related results corresponds to the fact that
there is a local section which cannot be extended to a global section which is
compatible with the family of distributions.

In other words, the space of local probabilities/possibilities is sufficiently logically
‘twisted’ to obstruct such an extension.

The quantum phenomena of non-locality and contextuality correspond exactly to the
existence of obstructions to global sections in this sense.
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Empirical Models: Reconstructing Probability Tables

We are given a measurement scenario µ = ⟨X,M, O⟩:

An empirical model for µ is a family {eC}C∈M, eC ∈ DRE(C), which is compatible:
for all C,C ′ ∈ M,

eC |C ∩ C ′ = eC′ |C ∩ C ′.

Compatibility ⇐⇒ No-Signalling

E.g. in the bipartite case, consider C = {ma,mb}, C ′ = {ma,m
′
b}.

Fix s0 ∈ E({ma}). Compatibility implies∑
s∈E(C),s|ma=s0

eC(s) =
∑

s′∈E(C′),s′|ma=s0

eC′(s′).

This says that the probability for Alice to get the outcome s0(ma) is the same, whether we
marginalize over the possible outcomes for Bob with measurement mb, or with m′

b.

In other words, Bob’s choice of measurement cannot influence Alice’s outcome.
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Global Sections

We are given an empirical model {eC}C∈M.

Question: does there exist a global section for this family?

I.e. d ∈ DRE(X) such that, for all C ∈ M
d|C = eC .

A joint distribution, defined on all measurements, which marginalizes to yield the
empirically observed probabilities?

Note that s ∈ E(X) = OX specifies an outcome for every measurement simultaneously,
independent of the measurement context.
For every context C, it restricts to yield s|C.

Thus it can be seen as a deterministic hidden variable — an instruction set!

If d is a global section for the model {eC}, we recover the predictions of the model by
averaging over the values of these hidden variables:

eC(s) = d|C(s) =
∑

s′∈E(X),s′|C=s

d(s′) =
∑

s′∈E(X)

δs′|C(s) · d(s′).
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Sheaf formulation of contextuality
Measurement scenarios ⟨X,M, O⟩ :

• X is a set of variables or measurement labels. Sufficient to consider finite discrete
space — the base space of the bundle.

• M = {Ci}i∈I set of contexts i.e. co-measurable variables. In quantum terms,
compatible observables.

• O is set of outcomes or values for the variables, which we take to be the same in each
fibre.

We have a sheaf of sets over P(X), namely E :: U 7−→ OU with restriction

E(U ⊆ U ′) : E(U ′) −→ E(U) :: s 7−→ s|U .

Each s ∈ E(U) is a section, and, in particular, g ∈ E(X) is a global section.

A probability table can be represented by a family {pC}C∈M with pC a probability
distribution on E(C) = OC , where contexts C corresponds to the rows of the table.

20 / 29



Sheaf formulation of contextuality
Measurement scenarios ⟨X,M, O⟩ :

• X is a set of variables or measurement labels. Sufficient to consider finite discrete
space — the base space of the bundle.

• M = {Ci}i∈I set of contexts i.e. co-measurable variables. In quantum terms,
compatible observables.

• O is set of outcomes or values for the variables, which we take to be the same in each
fibre.

We have a sheaf of sets over P(X), namely E :: U 7−→ OU with restriction

E(U ⊆ U ′) : E(U ′) −→ E(U) :: s 7−→ s|U .

Each s ∈ E(U) is a section, and, in particular, g ∈ E(X) is a global section.

A probability table can be represented by a family {pC}C∈M with pC a probability
distribution on E(C) = OC , where contexts C corresponds to the rows of the table.

20 / 29



Sheaf formulation of contextuality
Measurement scenarios ⟨X,M, O⟩ :

• X is a set of variables or measurement labels. Sufficient to consider finite discrete
space — the base space of the bundle.

• M = {Ci}i∈I set of contexts i.e. co-measurable variables. In quantum terms,
compatible observables.

• O is set of outcomes or values for the variables, which we take to be the same in each
fibre.

We have a sheaf of sets over P(X), namely E :: U 7−→ OU with restriction

E(U ⊆ U ′) : E(U ′) −→ E(U) :: s 7−→ s|U .

Each s ∈ E(U) is a section, and, in particular, g ∈ E(X) is a global section.

A probability table can be represented by a family {pC}C∈M with pC a probability
distribution on E(C) = OC , where contexts C corresponds to the rows of the table.

20 / 29



Sheaf formulation of contextuality
Measurement scenarios ⟨X,M, O⟩ :

• X is a set of variables or measurement labels. Sufficient to consider finite discrete
space — the base space of the bundle.

• M = {Ci}i∈I set of contexts i.e. co-measurable variables. In quantum terms,
compatible observables.

• O is set of outcomes or values for the variables, which we take to be the same in each
fibre.

We have a sheaf of sets over P(X), namely E :: U 7−→ OU with restriction

E(U ⊆ U ′) : E(U ′) −→ E(U) :: s 7−→ s|U .

Each s ∈ E(U) is a section, and, in particular, g ∈ E(X) is a global section.

A probability table can be represented by a family {pC}C∈M with pC a probability
distribution on E(C) = OC , where contexts C corresponds to the rows of the table.

20 / 29



Sheaf formulation of contextuality
Measurement scenarios ⟨X,M, O⟩ :

• X is a set of variables or measurement labels. Sufficient to consider finite discrete
space — the base space of the bundle.

• M = {Ci}i∈I set of contexts i.e. co-measurable variables. In quantum terms,
compatible observables.

• O is set of outcomes or values for the variables, which we take to be the same in each
fibre.

We have a sheaf of sets over P(X), namely E :: U 7−→ OU with restriction

E(U ⊆ U ′) : E(U ′) −→ E(U) :: s 7−→ s|U .

Each s ∈ E(U) is a section, and, in particular, g ∈ E(X) is a global section.

A probability table can be represented by a family {pC}C∈M with pC a probability
distribution on E(C) = OC , where contexts C corresponds to the rows of the table.

20 / 29



Sheaf formulation of contextuality
Measurement scenarios ⟨X,M, O⟩ :

• X is a set of variables or measurement labels. Sufficient to consider finite discrete
space — the base space of the bundle.

• M = {Ci}i∈I set of contexts i.e. co-measurable variables. In quantum terms,
compatible observables.

• O is set of outcomes or values for the variables, which we take to be the same in each
fibre.

We have a sheaf of sets over P(X), namely E :: U 7−→ OU with restriction

E(U ⊆ U ′) : E(U ′) −→ E(U) :: s 7−→ s|U .

Each s ∈ E(U) is a section, and, in particular, g ∈ E(X) is a global section.

A probability table can be represented by a family {pC}C∈M with pC a probability
distribution on E(C) = OC , where contexts C corresponds to the rows of the table.

20 / 29



Empirical Models

The logical and strong forms of contextuality are concerned with possibilities, which can
be represented by a subpresheaf S of E , where for each context U ⊆ X, S(U) ⊆ OU is the
set of all possible outcomes.

Explicitly, S is defined as follows, where supp(pC |U ∩ C) is the support of the marginal of
pC at U ∩ C.

S(U) :=
{
s ∈ OU

∣∣ ∀C ∈ M. s|U∩C ∈ supp(pC |U∩C)
}

We can use this formalisation to characterize contextuality as follows.

Definition
For any empirical model S:

• For all C ∈ M and s ∈ S(C), S is logically contextual at s, written LC(S, s), if s is
not a member of any compatible family.

• S is strongly contextual, written SC(S), if LC(S, s) for all s. Equivalently, if it has
no global section, i.e. if S(X) = ∅.
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Two views of variation: indexed and fibred
Indexed family of sets {Xi}i∈I .

Formally, take
X :=

∐
i∈I

Xi := {(i, x) : i ∈ I, x ∈ Xi}

The family is ϕ : I → P(X), ϕ(i) = {(i, x) : x ∈ Xi}.

There is also a natural projection function

p : X → I p : (i, x) 7→ i

Conversely, given p : X → I, we can form the indexed family {Xi}i∈I , where
Xi := p−1({i}).

These are equivalent ways of looking at the same idea.

With additional structure we get:
− topological bundles, fibre bundles, principal bundles, . . .
− fibrations vs. indexed categories, . . .

Sheaves on X are equivalently formulated as continuous maps p : Y → X which are local
homeomorphisms (espaces étalé).
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Bundle Pictures

Logical Contextuality
• Ignore precise probabilities
• Events are possible or not
• E.g. the Hardy model:

00 01 10 11

ab ✓ ✓ ✓ ✓

ab′ × ✓ ✓ ✓

a′b × ✓ ✓ ✓

a′b′ ✓ ✓ ✓ ×

•a
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• a′

•b′
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•
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Strong Contextuality

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1 0 0 1

a1 b2 1 0 0 1

a2 b1 1 0 0 1

a2 b2 0 1 1 0

The PR Box
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Bundle Pictures

Strong Contextuality
• E.g. the PR box:

00 01 10 11

ab ✓ × × ✓

ab′ ✓ × × ✓

a′b ✓ × × ✓

a′b′ × ✓ ✓ × •a
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Visualizing Contextuality

•a1
•
b1

• a2
•
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The Hardy table and the PR box as bundles

A hierarchy of degrees of contextuality:

Bell < Hardy < GHZ
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Degrees of contextuality

Firstly, we say that a global assignment t ∈ OX is consistent with the support of a
model if for all C ′ ∈ M, t|C′ is in the support at C ′.

An empirical model is

• logically contextual if some possible joint outcome s ∈ OC in the support is not
accounted for by any global assignment t ∈ OX which is consistent with the support of
the model. That is, for no such t do we have t|C = s.

Geometrically, this is saying that some local section cannot be extended to a global
one. Equivalently, that the support of the model cannot be covered by the consistent
global assignments.

• It is strongly contextual if its support has no global section; that is, there is no
consistent global assignment.

This says that no possible joint outcome is accounted for by any global section!

Obviously, strong non-locality implies logical non-locality.
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• It is strongly contextual if its support has no global section; that is, there is no
consistent global assignment.

This says that no possible joint outcome is accounted for by any global section!

Obviously, strong non-locality implies logical non-locality.

28 / 29



Degrees of contextuality
Firstly, we say that a global assignment t ∈ OX is consistent with the support of a
model if for all C ′ ∈ M, t|C′ is in the support at C ′.

An empirical model is

• logically contextual if some possible joint outcome s ∈ OC in the support is not
accounted for by any global assignment t ∈ OX which is consistent with the support of
the model. That is, for no such t do we have t|C = s.

Geometrically, this is saying that some local section cannot be extended to a global
one. Equivalently, that the support of the model cannot be covered by the consistent
global assignments.

• It is strongly contextual if its support has no global section; that is, there is no
consistent global assignment.

This says that no possible joint outcome is accounted for by any global section!

Obviously, strong non-locality implies logical non-locality.

28 / 29



A Hierarchy

We can distinguish three degrees of contextuality among models:
• Strong contextuality implies logical contextuality, which implies (probabilistic)

contextuality.
• The Bell model is non-local, but not logically non-local.
• The Hardy model is logically non-local, but not strongly non-local.

Thus we have a strict hierarchy

contextuality < logical contextuality < strong contextuality

The model arising from the GHZ state (with 3 or more parties) with X, Y measurements
at each site is strongly non-local.

Thus in terms of well-known examples, we have

Bell < Hardy < GHZ
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