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Brief review of Hilbert spaces

Hilbert space is a complex inner product space. There is a norm defined from the inner
product, and the space has to be complete in this norm.

The salient notion of basis is orthonormal basis: a basis consisting of pairwise
orthogonal unit vectors.

Up to isomorphism, there is only one Hilbert space in each dimension.

So for ordinary QM, the possibilities are (in principle) just Cn and ℓ2(ω).

C∗ algebras are an elegant algebraic approach, but not really more general: by the
Gelfand-Naimark theorem, every C∗ algebra is isomorphic to a subalgebra of B(H).

Quantum information mostly restricts consideration to finite dimensions: Cn.

Finite dimensional linear algebra: isn’t that trivial?

No!
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Complex Matrices, bras and kets
Since we are working in finite dimensions, operators can be represented by complex
matrices.

Matrix transpose is AT . The adjoint A∗ is the conjugate transpose of A. Thus
[ai,j ]

∗ = [aj,i].

A projector P is a self-adjoint idempotent (P ∗ = P 2 = P ).

A self-adjoint A can be written (Spectral theorem) as A =
∑

i λiPi, where the λi are real
numbers (the eigenvalues), and

∑
i Pi = I.

A ket is a (column, d× 1) vector. Thus for the qubit (C2), |0⟩ = [ 10 ], |1⟩ = [ 01 ].

A bra is the adjoint of a ket. We can multiply a bra (1× d) with a ket (d× 1) to get a
1× 1 matrix, which we identify with a scalar. This is just the complex inner product.

If A = [ai,j ] is a m× n matrix and B a p× q matrix, then the Kronecker product
A⊗B := [ai,jB] is an mp× nq matrix, which represents the tensor product of the
corresponding linear maps.

Categorically, the category of matrices is a monoidal (even compact closed) skeleton of the
category of finite-dimensional Hilbert spaces.
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Tensor Product

Compound systems in QM are represented by tensor products H⊗K of the corresponding
Hilbert spaces H and K.

This is where Alice and Bob live!

If H has ONB {ψi} and K has ONB {ϕj} then H⊗K has ONB {ψi ⊗ ϕj}.

If we represent qubit space with a standard basis {|0⟩, |1⟩}, then n-qubit space has basis

{|s⟩ : s ∈ {0, 1}n}
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Quantum Realizability

Quantum Mechanics has been axiomatized with sufficient precision (by von Neumann, c.
1932) to allow a precise definition of the class QM of quantum realizable empirical models
for a given observational scenario.

The main ingredients:

• States are given by rank-1 projectors, represented (non-uniquely, up to U(1)) by unit
vectors in complex Hilbert space

• Dynamics are given by the Schrödinger equation, whose solutions are given by unitary
maps on the Hilbert space.

• Observables are given by self-adjoint operators on the Hilbert space.

• The possible outcomes of an observable A =
∑

i λiPi are given by the eigenvalues λi.

• The probability of getting the outcome λi when measuring A on the state Q
represented by |ψ⟩ is given by the Born rule:

Tr(PiQ) = |⟨ei |ψ⟩|2

where ei represents the rank-1 projector Pi.
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Caveats

Quantum information has to consider noisy environments, hence unsharp measurements
and preparations.

Thus one studies mixed rather than pure states (density operators rather than vectors),
unsharp measurements (POVM’s) rather than sharp (projective) measurements, etc.

However, one can always resort to a larger-dimensional Hilbert space, and recover mixed
from pure states, unsharp from sharp measurements by tracing out the additional degrees
of freedom.

Formally, this is underwritten by results such as the Stinespring Dilation theorem.

Informally, appeal to “the Church of the larger Hilbert space”.

We shall stick to the simplest level of presentation . . .
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Operational Interpretation of QM

These mathematical structures are associated with operational procedures which can
be performed in the lab (or observed in nature):

• Preparation procedures to produce quantum states

• Measurement devices: interferometers, photon detectors etc.

• Empirical probabilities of getting outcomes when measuring a state produced by
preparation P with measurement device D.

This leads to the study of generalized probabilistic theories as a means of studying
the space of “possible physical theories” via their operational content.

Developments such as device-independent QKD.
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The Bloch sphere representation of qubits

|ψ⟩

ϕ

θ

Z = |↑⟩

|↓⟩

Y

X
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Truth makes an angle with reality

|Up⟩

|Down⟩

|ψ⟩

θU

θD
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Properties of the Qubit
Note the following key features:

• States of the qubit are represented as points on the surface of the sphere. Note that
there are a continuum of possible states.

• Each pair (Up,Down) of antipodal points on the sphere define a possible measurement
that we can perform on the qubit. Each such measurement has two possible outcomes,
corresponding to Up and Down in the given direction. We can think of this physically
e.g. as measuring Spin Up or Spin Down in a given direction in space.

• When we subject a qubit to a measurement (Up,Down), the state of the qubit
determines a probability distribution on the two possible outcomes. The probabilities
are determined by the angles between the qubit state |ψ⟩ and the points
(|Up⟩, |Down⟩) which specify the measurement. In algebraic terms, |ψ⟩, |Up⟩ and
|Down⟩ are unit vectors in the complex vector space C2, and the probability of
observing Up when in state |ψ⟩ is given by the square modulus of the inner product:

|⟨ψ|Up⟩|2.

This is known as the Born rule. It gives the basic predictive content of quantum
mechanics.
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Qubits vs. Bits

The sense in which the qubit generalises the classical bit is that, for each question we can
ask — i.e. for each measurement — there are just two possible answers. We can view the
states of the qubit as superpositions of the classical states 0 and 1, so that we have a
probability of getting each of the answers for any given state.

But in addition, we have the important feature that there are a continuum of possible
questions we can ask. However, note that on each run of the system, we can only ask one
of these questions. We cannot simultaneously observe Up or Down in two different
directions. Note that this corresponds to the feature of the scenario we discussed, that
Alice and Bob could only look at one their local registers on each round.

Note in addition that a measurement has an effect on the state, which will no longer be
the original state |ψ⟩, but rather one of the states Up or Down, in accordance with the
measured value.
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Quantum Entanglement

Bell state:

|↑↑⟩+ |↓↓⟩

EPR state:

|01⟩+ |10⟩

Compound systems are represented by tensor product: H1 ⊗H2. Typical element:∑
i

λi · ϕi ⊗ ψi

Superposition encodes correlation.

Einstein’s ‘spooky action at a distance’. Even if the particles are spatially separated,
measuring one has an effect on the state of the other.
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A Probabilistic Model Of An Experiment

Example: The Bell Model

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1/2 0 0 1/2

a1 b2 3/8 1/8 1/8 3/8

a2 b1 3/8 1/8 1/8 3/8

a2 b2 1/8 3/8 3/8 1/8

Important note: this is physically realizable!

Generated by Bell state
|00⟩ + |11⟩√

2
,

subjected to measurements in the XY -plane, at relative angle π/3.

Extensively tested experimentally.
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Computing the Bell table

|ψ⟩

ϕ

θ

Z = |↑⟩

|↓⟩

Y

X

Spin measurements lying in the equatorial plane of the Bloch sphere
Spin Up: (|↑⟩+ eiϕ|↓⟩)/

√
2, Spin Down: (|↑⟩+ ei(ϕ+π)|↓⟩)/

√
2

X itself, ϕ = 0:
Spin Up (|↑⟩+ |↓⟩)/

√
2 and Spin Down (|↑⟩ − |↓⟩)/

√
2.
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Computing the Bell table

A B (0, 0) (1, 0) (0, 1) (1, 1)

a b 0 1/2 1/2 0

a′ b 3/8 1/8 1/8 3/8

a b′ 3/8 1/8 1/8 3/8

a′ b′ 3/8 1/8 1/8 3/8

Alice: a = X, a′ at ϕ = π/3 (on first qubit)
Bob: b = X, b′ at ϕ = π/3 (on second qubit)

The event in yellow is represented by

|↑⟩+ |↓⟩√
2

⊗ |↑⟩+ ei4π/3|↓⟩√
2

=
|↑↑⟩+ ei4π/3|↑↓⟩+ |↓↑⟩+ ei4π/3|↓↓⟩

2
.

Probability of this event M when measuring (a, b′) on B = (|↑↑⟩+ |↓↓⟩)/
√
2 is given by

Born rule:
|⟨B|M⟩|2.
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Computing Bell by Born

Since the vectors |↑↑⟩, |↑↓⟩, |↓↑⟩, |↓↓⟩ are pairwise orthogonal, |⟨B|M⟩|2 simplifies to∣∣∣∣1 + ei4π/3

2
√
2

∣∣∣∣2 =
|1 + ei4π/3|2

8
.

Using the Euler identity eiθ = cos θ + i sin θ, we have

|1 + eiθ|2 = (1 + cos θ + i sin θ)(1 + cos θ − i sin θ) = 2 + 2 cos θ.

Hence
|1 + ei4π/3|2

8
=

2 + 2 cos(4π/3)

8
=

1

8
.

The other entries can be computed similarly.

16 / 30



Computing Bell by Born

Since the vectors |↑↑⟩, |↑↓⟩, |↓↑⟩, |↓↓⟩ are pairwise orthogonal, |⟨B|M⟩|2 simplifies to∣∣∣∣1 + ei4π/3

2
√
2

∣∣∣∣2 =
|1 + ei4π/3|2

8
.

Using the Euler identity eiθ = cos θ + i sin θ, we have

|1 + eiθ|2 = (1 + cos θ + i sin θ)(1 + cos θ − i sin θ) = 2 + 2 cos θ.

Hence
|1 + ei4π/3|2

8
=

2 + 2 cos(4π/3)

8
=

1

8
.

The other entries can be computed similarly.

16 / 30



Computing Bell by Born

Since the vectors |↑↑⟩, |↑↓⟩, |↓↑⟩, |↓↓⟩ are pairwise orthogonal, |⟨B|M⟩|2 simplifies to∣∣∣∣1 + ei4π/3

2
√
2

∣∣∣∣2 =
|1 + ei4π/3|2

8
.

Using the Euler identity eiθ = cos θ + i sin θ, we have

|1 + eiθ|2 = (1 + cos θ + i sin θ)(1 + cos θ − i sin θ) = 2 + 2 cos θ.

Hence
|1 + ei4π/3|2

8
=

2 + 2 cos(4π/3)

8
=

1

8
.

The other entries can be computed similarly.

16 / 30



Computing Bell by Born

Since the vectors |↑↑⟩, |↑↓⟩, |↓↑⟩, |↓↓⟩ are pairwise orthogonal, |⟨B|M⟩|2 simplifies to∣∣∣∣1 + ei4π/3

2
√
2

∣∣∣∣2 =
|1 + ei4π/3|2

8
.

Using the Euler identity eiθ = cos θ + i sin θ, we have

|1 + eiθ|2 = (1 + cos θ + i sin θ)(1 + cos θ − i sin θ) = 2 + 2 cos θ.

Hence
|1 + ei4π/3|2

8
=

2 + 2 cos(4π/3)

8
=

1

8
.

The other entries can be computed similarly.

16 / 30



Computing Bell by Born

Since the vectors |↑↑⟩, |↑↓⟩, |↓↑⟩, |↓↓⟩ are pairwise orthogonal, |⟨B|M⟩|2 simplifies to∣∣∣∣1 + ei4π/3

2
√
2

∣∣∣∣2 =
|1 + ei4π/3|2

8
.

Using the Euler identity eiθ = cos θ + i sin θ, we have

|1 + eiθ|2 = (1 + cos θ + i sin θ)(1 + cos θ − i sin θ) = 2 + 2 cos θ.

Hence
|1 + ei4π/3|2

8
=

2 + 2 cos(4π/3)

8
=

1

8
.

The other entries can be computed similarly.

16 / 30



Mysteries of the Quantum Representation

Operationally, we see readings on measurement instruments, and observe probabilities of
outcomes.

We never “see” a complex number!

And yet, QM uses this representation in complex Hilbert spaces to compute the positive
real numbers corresponding to what we actually observe.

What convincing explanation can we give for this?

Attempts to find compelling axioms from which the QM representation in complex Hilbert
space can be derived.

Lucien Hardy, “Quantum Mechanics from five reasonable axioms”

Other attempts by Masanes and Mueller, Brukner and Dakic, the Pavia group (D’Ariano,
Chiribella and Perinotti), . . .
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Empirical Models

Example: The Bell Model

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1/2 0 0 1/2

a1 b2 3/8 1/8 1/8 3/8

a2 b1 3/8 1/8 1/8 3/8

a2 b2 1/8 3/8 3/8 1/8

Important note: this is quantum realizable.

Generated by Bell state
|00⟩ + |11⟩√

2
,

subjected to measurements in the XY -plane, at relative angle π/3.
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The PR Box

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1 0 0 1

a1 b2 1 0 0 1

a2 b1 1 0 0 1

a2 b2 0 1 1 0

The PR Box

This satisfies No-Signalling, so is consistent with SR, but it is not quantum realisable.
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Empirical models as vectors

We can regard an empirical model {dC}C∈M as a vector

v = (vC,s)C∈M,s∈E(C), vC,s := dC(s)

in a high-dimensional real vector space.

Note that, in a Bell-type scenario with n parties, k measurement choices at each site, and l
possible outcomes for each measurement, the dimension is knln.

Note also that empirical models over a given measurement scenario are closed under
convex combinations:

µd+ (1− µ)d′)C(s) := µdC(s) + (1− µ)d′C(s).

Moreover, convex combinations of compatible models are compatible.
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The Quantum Set

A subtle convex set sandwiched between two polytopes.

NC

C
LC

SC

Q

Key question: find compelling principles to explain why Nature picks out the quantum set.
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Geometry of Empirical Models

For any given measurement scenario:
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Probabilistic < Logical < Strong < AvN
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Interlude: complexity of the quantum set

• Consider the question: given a finite probability table (observable data, strategy for
non-local game), is there a quantum realisation? That is, is there a quantum state
and measurements which give rise to it via the Born rule.

• If we fix the dimension of the Hilbert space, this reduces to the existential theory of
real-closed fields, decidable in PSPACE (Tarski, Canny).

• If we ask for realization in any finite dimensional Hilbert space, this is undecidable.
Moreover, there are finite tables which are realizable in infinite-dimensional Hilbert
space, but not in any finite-dimensional space. (Slofstra, 2019, 2020).

• Even more spectacularly, we have the MIP∗ = RE result of Ji, Natarajan, Vidick,
Wright, Yuen (2020).

• This is simultaneously a major result in complexity theory, quantum foundations, and
mathematics:
▶ While QIP = IP = PSPACE, allowing multiple quantum provers sharing entangled states

allows all semidecidable problems to be represented (e.g. halting problem, provability of
arithmetical statements).

▶ The Tsirelson conjecture is refuted (in infinite dimensions). Commuting subalgebras
cannot be represented on tensor products in general.

▶ The Connes Embedding Problem is answered in the negative.
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Quantifying contextuality: the contextual fraction
We look for a convex decomposition

e = λeNC + (1− λ)e′ (1)

where eNC is a non-contextual model and e′ is another empirical model.

The maximum value of λ in such a decomposition is called the non-contextual fraction
of e. We write it as NCF(e), and the contextual fraction by CF(e) := 1− NCF(e).

1. Computable by a linear program.

2. The normalised violation by e of any Bell inequality is at most CF(e);

3. this bound is attained, i.e. there exists a Bell inequality whose normalised violation by
e is CF(e);

4. moreover, for any decomposition of the form e = NCF(e)eNC + CF(e)eSC , this Bell
inequality is tight at the non-contextual model eNC and maximally violated at the
strongly contextual model eSC .
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Computing the Contextual Fraction

Given a measurement scenario ⟨X,M, O⟩, the incidence matrix M has
• rows indexed by ⟨C, s⟩, C ∈ M, s ∈ OC

• columns indexed by global assignments g ∈ OX

M[⟨C, s⟩, g] :=

{
1 if g|C = s

0 otherwise
.

The columns of the matrix correspond to the deterministic NCHV models. Every NCHV
model is equivalent to a mixture of deterministic models.

A probability distribution on (i.e. mixture of) deterministic NCHV models is given by a
column vector C ; while an empirical model over the scenario can be flattened into a row
vector ve.

Computing the non-contextual fraction corresponds to solving the following linear program:

Find c ∈ Rn

maximising 1 · c
subject to Mc ≤ ve

and c ≥ 0 .

(2)
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Generalized Bell Inequalities
An inequality for a measurement scenario ⟨X,M, O⟩ given by a set of coefficients
α = {α(C, s)}C∈M,s∈E(C) and a bound R. For a model e, the inequality reads as

Bα(e) ≤ R ,

where the left-hand side is given by

Bα(e) :=
∑

C∈M,s∈E(C)

α(C, s)eC(s) .

Wlog we can take R non-negative (in fact, we can take R = 0).

It is called a Bell inequality if it is satisfied by any non-contextual model. If it is
saturated by some non-contextual model, the Bell inequality is said to be tight.

Whereas a Bell inequality establishes a bound for the value of Bα(e) amongst
non-contextual models, for a general no-signalling model e, this quantity is limited only by

∥α∥ :=
∑
C∈M

max {α(C, s) | s ∈ E(C)}
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Relating Bell inequality violation to the contextual fraction

Definition
The normalised violation of a Bell inequality ⟨α,R⟩ by an empirical model e is the value

max{0,Bα(e)−R}
∥α∥ −R

.

Proposition
Let e be an empirical model. Its normalised violation of any Bell inequality is at most
CF(e).

Proposition
Let e be an empirical model. Then there is a Bell inequality whose normalised violation by
e is exactly CF(e). Moreover, this Bell inequality is tight at the non-contextual model eNC .

27 / 30



Relating Bell inequality violation to the contextual fraction

Definition
The normalised violation of a Bell inequality ⟨α,R⟩ by an empirical model e is the value

max{0,Bα(e)−R}
∥α∥ −R

.

Proposition
Let e be an empirical model. Its normalised violation of any Bell inequality is at most
CF(e).

Proposition
Let e be an empirical model. Then there is a Bell inequality whose normalised violation by
e is exactly CF(e). Moreover, this Bell inequality is tight at the non-contextual model eNC .

27 / 30



Relating Bell inequality violation to the contextual fraction

Definition
The normalised violation of a Bell inequality ⟨α,R⟩ by an empirical model e is the value

max{0,Bα(e)−R}
∥α∥ −R

.

Proposition
Let e be an empirical model. Its normalised violation of any Bell inequality is at most
CF(e).

Proposition
Let e be an empirical model. Then there is a Bell inequality whose normalised violation by
e is exactly CF(e). Moreover, this Bell inequality is tight at the non-contextual model eNC .

27 / 30



Relating Bell inequality violation to the contextual fraction

Definition
The normalised violation of a Bell inequality ⟨α,R⟩ by an empirical model e is the value

max{0,Bα(e)−R}
∥α∥ −R

.

Proposition
Let e be an empirical model. Its normalised violation of any Bell inequality is at most
CF(e).

Proposition
Let e be an empirical model. Then there is a Bell inequality whose normalised violation by
e is exactly CF(e). Moreover, this Bell inequality is tight at the non-contextual model eNC .

27 / 30



Quantifying Contextuality & Bell Inequalities

NC

C

SC

Q
ve

maximise 1 · x

subject to Mx ≤ ve

and x ≥ 0

Setting λ = 1 · x∗

e = λeNC + (1− λ)eSC

Dual program:

minimise y · ve

subject to MT y ≥ 1

and y ≥ 0

computes tight Bell inequality (separating hyperplane)
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Contextuality and quantum advantage

• Measurement-based quantum computation (MBQC)
▶ Raussendorf, Physical Review A, 2018.
▶ SA, Barbosa, Mansfield, Physical Review Letters, 2018.

error︷ ︸︸ ︷
1− p̄S ≥ [1− CF(e)]︸ ︷︷ ︸

classicality

hardness︷︸︸︷
ν(f)

quantifiable
relationship!

The same quantitative relationship arises for
• cooperative games (ABM)
• communication complexity (Linde Wester D.Phil thesis)

Not yet a systematic theory of quantum advantage - currently just scattered examples.

Where the “line in the sand” is drawn separating quantum advantage from efficient
classical simulability is still unclear.
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Contextuality and quantum advantage with shallow circuits

• An important starting point is the Bravyi-Gossett-Koenig work on shallow circuits.
This gives an unconditional separation, albeit for a circuit class rather than a
standard complexity class.

• Recent work by my student Sivert Aasnaess has clarified and greatly generalised the
BGK construction.

• The general construction takes a multipartite non-locality construction with a Bell
inequality violation, and turns it into a shallow quantum circuit family {Qn} with a
provable advantage in success probability over any classical shallow circuit family
{Cn}.

• The non-locality is weakened to bounded locality because there can be
communication in the circuit, but asymptotically the advantage witnessed by the Bell
inequality violation is recovered.

• With a two-stage query construction, this works for any choice of measurements. For
the case of Weyl operators, a one-stage construction a la BGK is recovered.

• This provides a basis for a broader study of how to transform contextuality arguments
systematically into instances of quantum advantage. Other promising areas where
these ideas can be applied are communication complexity, and VQE solvers.
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