THE MATHEMATICAL THEORY OF CONTEXTUALITY Lecture 3: Quantum realizability

Samson Abramsky
Department of Computer Science, University College London

TACL 2024 Summer School

Brief review of Hilbert spaces

Brief review of Hilbert spaces

Hilbert space is a complex inner product space. There is a norm defined from the inner product, and the space has to be complete in this norm.

Brief review of Hilbert spaces

Hilbert space is a complex inner product space. There is a norm defined from the inner product, and the space has to be complete in this norm.

The salient notion of basis is orthonormal basis: a basis consisting of pairwise orthogonal unit vectors.

Brief review of Hilbert spaces

Hilbert space is a complex inner product space. There is a norm defined from the inner product, and the space has to be complete in this norm.

The salient notion of basis is orthonormal basis: a basis consisting of pairwise orthogonal unit vectors.

Up to isomorphism, there is only one Hilbert space in each dimension.

Brief review of Hilbert spaces

Hilbert space is a complex inner product space. There is a norm defined from the inner product, and the space has to be complete in this norm.

The salient notion of basis is orthonormal basis: a basis consisting of pairwise orthogonal unit vectors.

Up to isomorphism, there is only one Hilbert space in each dimension.
So for ordinary QM, the possibilities are (in principle) just \mathbb{C}^{n} and $\ell_{2}(\omega)$.

Brief review of Hilbert spaces

Hilbert space is a complex inner product space. There is a norm defined from the inner product, and the space has to be complete in this norm.

The salient notion of basis is orthonormal basis: a basis consisting of pairwise orthogonal unit vectors.

Up to isomorphism, there is only one Hilbert space in each dimension.
So for ordinary QM, the possibilities are (in principle) just \mathbb{C}^{n} and $\ell_{2}(\omega)$.
C^{*} algebras are an elegant algebraic approach, but not really more general: by the Gelfand-Naimark theorem, every C^{*} algebra is isomorphic to a subalgebra of $B(\mathcal{H})$.

Brief review of Hilbert spaces

Hilbert space is a complex inner product space. There is a norm defined from the inner product, and the space has to be complete in this norm.

The salient notion of basis is orthonormal basis: a basis consisting of pairwise orthogonal unit vectors.

Up to isomorphism, there is only one Hilbert space in each dimension.
So for ordinary QM, the possibilities are (in principle) just \mathbb{C}^{n} and $\ell_{2}(\omega)$.
C^{*} algebras are an elegant algebraic approach, but not really more general: by the Gelfand-Naimark theorem, every C^{*} algebra is isomorphic to a subalgebra of $B(\mathcal{H})$.

Quantum information mostly restricts consideration to finite dimensions: \mathbb{C}^{n}.

Brief review of Hilbert spaces

Hilbert space is a complex inner product space. There is a norm defined from the inner product, and the space has to be complete in this norm.

The salient notion of basis is orthonormal basis: a basis consisting of pairwise orthogonal unit vectors.

Up to isomorphism, there is only one Hilbert space in each dimension.
So for ordinary QM, the possibilities are (in principle) just \mathbb{C}^{n} and $\ell_{2}(\omega)$.
C^{*} algebras are an elegant algebraic approach, but not really more general: by the Gelfand-Naimark theorem, every C^{*} algebra is isomorphic to a subalgebra of $B(\mathcal{H})$.

Quantum information mostly restricts consideration to finite dimensions: \mathbb{C}^{n}.
Finite dimensional linear algebra: isn't that trivial?

Brief review of Hilbert spaces

Hilbert space is a complex inner product space. There is a norm defined from the inner product, and the space has to be complete in this norm.

The salient notion of basis is orthonormal basis: a basis consisting of pairwise orthogonal unit vectors.

Up to isomorphism, there is only one Hilbert space in each dimension.
So for ordinary QM, the possibilities are (in principle) just \mathbb{C}^{n} and $\ell_{2}(\omega)$.
C^{*} algebras are an elegant algebraic approach, but not really more general: by the Gelfand-Naimark theorem, every C^{*} algebra is isomorphic to a subalgebra of $B(\mathcal{H})$.

Quantum information mostly restricts consideration to finite dimensions: \mathbb{C}^{n}. Finite dimensional linear algebra: isn't that trivial?

No!

Complex Matrices, bras and kets

Since we are working in finite dimensions, operators can be represented by complex matrices.

Complex Matrices, bras and kets

Since we are working in finite dimensions, operators can be represented by complex matrices.

Matrix transpose is A^{T}. The adjoint A^{*} is the conjugate transpose of A. Thus $\left[a_{i, j}\right]^{*}=\left[\overline{a_{j, i}}\right]$.

Complex Matrices, bras and kets

Since we are working in finite dimensions, operators can be represented by complex matrices.

Matrix transpose is A^{T}. The adjoint A^{*} is the conjugate transpose of A. Thus $\left[a_{i, j}\right]^{*}=\left[\overline{a_{j, i}}\right]$.
A projector P is a self-adjoint idempotent $\left(P^{*}=P^{2}=P\right)$.

Complex Matrices, bras and kets

Since we are working in finite dimensions, operators can be represented by complex matrices.

Matrix transpose is A^{T}. The adjoint A^{*} is the conjugate transpose of A. Thus $\left[a_{i, j}\right]^{*}=\left[\overline{a_{j, i}}\right]$.

A projector P is a self-adjoint idempotent $\left(P^{*}=P^{2}=P\right)$.
A self-adjoint A can be written (Spectral theorem) as $A=\sum_{i} \lambda_{i} P_{i}$, where the λ_{i} are real numbers (the eigenvalues), and $\sum_{i} P_{i}=I$.

Complex Matrices, bras and kets

Since we are working in finite dimensions, operators can be represented by complex matrices.

Matrix transpose is A^{T}. The adjoint A^{*} is the conjugate transpose of A. Thus $\left[a_{i, j}\right]^{*}=\left[\overline{a_{j, i}}\right]$.

A projector P is a self-adjoint idempotent $\left(P^{*}=P^{2}=P\right)$.
A self-adjoint A can be written (Spectral theorem) as $A=\sum_{i} \lambda_{i} P_{i}$, where the λ_{i} are real numbers (the eigenvalues), and $\sum_{i} P_{i}=I$.
A ket is a (column, $d \times 1$) vector. Thus for the qubit $\left(\mathbb{C}^{2}\right),|0\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right],|1\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

Complex Matrices, bras and kets

Since we are working in finite dimensions, operators can be represented by complex matrices.

Matrix transpose is A^{T}. The adjoint A^{*} is the conjugate transpose of A. Thus $\left[a_{i, j}\right]^{*}=\left[\overline{a_{j, i}}\right]$.
A projector P is a self-adjoint idempotent $\left(P^{*}=P^{2}=P\right)$.
A self-adjoint A can be written (Spectral theorem) as $A=\sum_{i} \lambda_{i} P_{i}$, where the λ_{i} are real numbers (the eigenvalues), and $\sum_{i} P_{i}=I$.
A ket is a (column, $d \times 1$) vector. Thus for the qubit $\left(\mathbb{C}^{2}\right),|0\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right],|1\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
A bra is the adjoint of a ket. We can multiply a bra $(1 \times d)$ with a ket $(d \times 1)$ to get a 1×1 matrix, which we identify with a scalar. This is just the complex inner product.

Complex Matrices, bras and kets

Since we are working in finite dimensions, operators can be represented by complex matrices.

Matrix transpose is A^{T}. The adjoint A^{*} is the conjugate transpose of A. Thus $\left[a_{i, j}\right]^{*}=\left[\overline{a_{j, i}}\right]$.
A projector P is a self-adjoint idempotent $\left(P^{*}=P^{2}=P\right)$.
A self-adjoint A can be written (Spectral theorem) as $A=\sum_{i} \lambda_{i} P_{i}$, where the λ_{i} are real numbers (the eigenvalues), and $\sum_{i} P_{i}=I$.
A ket is a (column, $d \times 1$) vector. Thus for the qubit $\left(\mathbb{C}^{2}\right),|0\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right],|1\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
A bra is the adjoint of a ket. We can multiply a bra $(1 \times d)$ with a ket $(d \times 1)$ to get a 1×1 matrix, which we identify with a scalar. This is just the complex inner product.
If $A=\left[a_{i, j}\right]$ is a $m \times n$ matrix and B a $p \times q$ matrix, then the Kronecker product $A \otimes B:=\left[a_{i, j} B\right]$ is an $m p \times n q$ matrix, which represents the tensor product of the corresponding linear maps.

Complex Matrices, bras and kets

Since we are working in finite dimensions, operators can be represented by complex matrices.
Matrix transpose is A^{T}. The adjoint A^{*} is the conjugate transpose of A. Thus $\left[a_{i, j}\right]^{*}=\left[\overline{a_{j, i}}\right]$.
A projector P is a self-adjoint idempotent $\left(P^{*}=P^{2}=P\right)$.
A self-adjoint A can be written (Spectral theorem) as $A=\sum_{i} \lambda_{i} P_{i}$, where the λ_{i} are real numbers (the eigenvalues), and $\sum_{i} P_{i}=I$.
A ket is a (column, $d \times 1$) vector. Thus for the qubit $\left(\mathbb{C}^{2}\right),|0\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right],|1\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
A bra is the adjoint of a ket. We can multiply a bra $(1 \times d)$ with a ket $(d \times 1)$ to get a 1×1 matrix, which we identify with a scalar. This is just the complex inner product.
If $A=\left[a_{i, j}\right]$ is a $m \times n$ matrix and B a $p \times q$ matrix, then the Kronecker product $A \otimes B:=\left[a_{i, j} B\right]$ is an $m p \times n q$ matrix, which represents the tensor product of the corresponding linear maps.

Categorically, the category of matrices is a monoidal (even compact closed) skeleton of the category of finite-dimensional Hilbert spaces.

Tensor Product

Tensor Product

Compound systems in QM are represented by tensor products $\mathcal{H} \otimes \mathcal{K}$ of the corresponding Hilbert spaces \mathcal{H} and \mathcal{K}.

Tensor Product

Compound systems in QM are represented by tensor products $\mathcal{H} \otimes \mathcal{K}$ of the corresponding Hilbert spaces \mathcal{H} and \mathcal{K}.

This is where Alice and Bob live!

Tensor Product

Compound systems in QM are represented by tensor products $\mathcal{H} \otimes \mathcal{K}$ of the corresponding Hilbert spaces \mathcal{H} and \mathcal{K}.

This is where Alice and Bob live!
If \mathcal{H} has ONB $\left\{\psi_{i}\right\}$ and \mathcal{K} has ONB $\left\{\phi_{j}\right\}$ then $\mathcal{H} \otimes \mathcal{K}$ has ONB $\left\{\psi_{i} \otimes \phi_{j}\right\}$.

Tensor Product

Compound systems in QM are represented by tensor products $\mathcal{H} \otimes \mathcal{K}$ of the corresponding Hilbert spaces \mathcal{H} and \mathcal{K}.

This is where Alice and Bob live!
If \mathcal{H} has ONB $\left\{\psi_{i}\right\}$ and \mathcal{K} has ONB $\left\{\phi_{j}\right\}$ then $\mathcal{H} \otimes \mathcal{K}$ has ONB $\left\{\psi_{i} \otimes \phi_{j}\right\}$.
If we represent qubit space with a standard basis $\{|0\rangle,|1\rangle\}$, then n-qubit space has basis

$$
\left\{|s\rangle: s \in\{0,1\}^{n}\right\}
$$

Quantum Realizability

Quantum Realizability

Quantum Mechanics has been axiomatized with sufficient precision (by von Neumann, c. 1932) to allow a precise definition of the class QM of quantum realizable empirical models for a given observational scenario.

Quantum Realizability

Quantum Mechanics has been axiomatized with sufficient precision (by von Neumann, c. 1932) to allow a precise definition of the class QM of quantum realizable empirical models for a given observational scenario.

The main ingredients:

Quantum Realizability

Quantum Mechanics has been axiomatized with sufficient precision (by von Neumann, c. 1932) to allow a precise definition of the class QM of quantum realizable empirical models for a given observational scenario.

The main ingredients:

- States are given by rank-1 projectors, represented (non-uniquely, up to $U(1)$) by unit vectors in complex Hilbert space

Quantum Realizability

Quantum Mechanics has been axiomatized with sufficient precision (by von Neumann, c. 1932) to allow a precise definition of the class QM of quantum realizable empirical models for a given observational scenario.

The main ingredients:

- States are given by rank-1 projectors, represented (non-uniquely, up to $U(1)$) by unit vectors in complex Hilbert space
- Dynamics are given by the Schrödinger equation, whose solutions are given by unitary maps on the Hilbert space.

Quantum Realizability

Quantum Mechanics has been axiomatized with sufficient precision (by von Neumann, c. 1932) to allow a precise definition of the class QM of quantum realizable empirical models for a given observational scenario.

The main ingredients:

- States are given by rank-1 projectors, represented (non-uniquely, up to $U(1)$) by unit vectors in complex Hilbert space
- Dynamics are given by the Schrödinger equation, whose solutions are given by unitary maps on the Hilbert space.
- Observables are given by self-adjoint operators on the Hilbert space.

Quantum Realizability

Quantum Mechanics has been axiomatized with sufficient precision (by von Neumann, c. 1932) to allow a precise definition of the class QM of quantum realizable empirical models for a given observational scenario.

The main ingredients:

- States are given by rank-1 projectors, represented (non-uniquely, up to $U(1)$) by unit vectors in complex Hilbert space
- Dynamics are given by the Schrödinger equation, whose solutions are given by unitary maps on the Hilbert space.
- Observables are given by self-adjoint operators on the Hilbert space.
- The possible outcomes of an observable $A=\sum_{i} \lambda_{i} P_{i}$ are given by the eigenvalues λ_{i}.

Quantum Realizability

Quantum Mechanics has been axiomatized with sufficient precision (by von Neumann, c. 1932) to allow a precise definition of the class QM of quantum realizable empirical models for a given observational scenario.

The main ingredients:

- States are given by rank-1 projectors, represented (non-uniquely, up to $U(1)$) by unit vectors in complex Hilbert space
- Dynamics are given by the Schrödinger equation, whose solutions are given by unitary maps on the Hilbert space.
- Observables are given by self-adjoint operators on the Hilbert space.
- The possible outcomes of an observable $A=\sum_{i} \lambda_{i} P_{i}$ are given by the eigenvalues λ_{i}.
- The probability of getting the outcome λ_{i} when measuring A on the state Q represented by $|\psi\rangle$ is given by the Born rule:

$$
\operatorname{Tr}\left(P_{i} Q\right)=\left|\left\langle e_{i} \mid \psi\right\rangle\right|^{2}
$$

where e_{i} represents the rank-1 projector P_{i}.

Caveats

Caveats

Quantum information has to consider noisy environments, hence unsharp measurements and preparations.

Caveats

Quantum information has to consider noisy environments, hence unsharp measurements and preparations.

Thus one studies mixed rather than pure states (density operators rather than vectors), unsharp measurements (POVM's) rather than sharp (projective) measurements, etc.

Caveats

Quantum information has to consider noisy environments, hence unsharp measurements and preparations.

Thus one studies mixed rather than pure states (density operators rather than vectors), unsharp measurements (POVM's) rather than sharp (projective) measurements, etc.

However, one can always resort to a larger-dimensional Hilbert space, and recover mixed from pure states, unsharp from sharp measurements by tracing out the additional degrees of freedom.

Caveats

Quantum information has to consider noisy environments, hence unsharp measurements and preparations.

Thus one studies mixed rather than pure states (density operators rather than vectors), unsharp measurements (POVM's) rather than sharp (projective) measurements, etc.

However, one can always resort to a larger-dimensional Hilbert space, and recover mixed from pure states, unsharp from sharp measurements by tracing out the additional degrees of freedom.

Formally, this is underwritten by results such as the Stinespring Dilation theorem.

Caveats

Quantum information has to consider noisy environments, hence unsharp measurements and preparations.

Thus one studies mixed rather than pure states (density operators rather than vectors), unsharp measurements (POVM's) rather than sharp (projective) measurements, etc.

However, one can always resort to a larger-dimensional Hilbert space, and recover mixed from pure states, unsharp from sharp measurements by tracing out the additional degrees of freedom.

Formally, this is underwritten by results such as the Stinespring Dilation theorem. Informally, appeal to "the Church of the larger Hilbert space".

Caveats

Quantum information has to consider noisy environments, hence unsharp measurements and preparations.

Thus one studies mixed rather than pure states (density operators rather than vectors), unsharp measurements (POVM's) rather than sharp (projective) measurements, etc.

However, one can always resort to a larger-dimensional Hilbert space, and recover mixed from pure states, unsharp from sharp measurements by tracing out the additional degrees of freedom.

Formally, this is underwritten by results such as the Stinespring Dilation theorem.
Informally, appeal to "the Church of the larger Hilbert space".
We shall stick to the simplest level of presentation ...

Operational Interpretation of QM

These mathematical structures are associated with operational procedures which can be performed in the lab (or observed in nature):

Operational Interpretation of QM

These mathematical structures are associated with operational procedures which can be performed in the lab (or observed in nature):

- Preparation procedures to produce quantum states

Operational Interpretation of QM

These mathematical structures are associated with operational procedures which can be performed in the lab (or observed in nature):

- Preparation procedures to produce quantum states
- Measurement devices: interferometers, photon detectors etc.

Operational Interpretation of QM

These mathematical structures are associated with operational procedures which can be performed in the lab (or observed in nature):

- Preparation procedures to produce quantum states
- Measurement devices: interferometers, photon detectors etc.
- Empirical probabilities of getting outcomes when measuring a state produced by preparation P with measurement device D.

Operational Interpretation of QM

These mathematical structures are associated with operational procedures which can be performed in the lab (or observed in nature):

- Preparation procedures to produce quantum states
- Measurement devices: interferometers, photon detectors etc.
- Empirical probabilities of getting outcomes when measuring a state produced by preparation P with measurement device D.

This leads to the study of generalized probabilistic theories as a means of studying the space of "possible physical theories" via their operational content.

Operational Interpretation of QM

These mathematical structures are associated with operational procedures which can be performed in the lab (or observed in nature):

- Preparation procedures to produce quantum states
- Measurement devices: interferometers, photon detectors etc.
- Empirical probabilities of getting outcomes when measuring a state produced by preparation P with measurement device D.

This leads to the study of generalized probabilistic theories as a means of studying the space of "possible physical theories" via their operational content.

Developments such as device-independent QKD.

The Bloch sphere representation of qubits

Truth makes an angle with reality

Properties of the Qubit

Note the following key features:

Properties of the Qubit

Note the following key features:

- States of the qubit are represented as points on the surface of the sphere. Note that there are a continuum of possible states.

Properties of the Qubit

Note the following key features:

- States of the qubit are represented as points on the surface of the sphere. Note that there are a continuum of possible states.
- Each pair (Up, Down) of antipodal points on the sphere define a possible measurement that we can perform on the qubit. Each such measurement has two possible outcomes, corresponding to Up and Down in the given direction. We can think of this physically e.g. as measuring Spin Up or Spin Down in a given direction in space.

Properties of the Qubit

Note the following key features:

- States of the qubit are represented as points on the surface of the sphere. Note that there are a continuum of possible states.
- Each pair (Up, Down) of antipodal points on the sphere define a possible measurement that we can perform on the qubit. Each such measurement has two possible outcomes, corresponding to Up and Down in the given direction. We can think of this physically e.g. as measuring Spin Up or Spin Down in a given direction in space.
- When we subject a qubit to a measurement (Up, Down), the state of the qubit determines a probability distribution on the two possible outcomes. The probabilities are determined by the angles between the qubit state $|\psi\rangle$ and the points (|Up \rangle, \mid Down \rangle) which specify the measurement. In algebraic terms, $|\psi\rangle,|\mathrm{Up}\rangle$ and \mid Down are unit vectors in the complex vector space \mathbb{C}^{2}, and the probability of observing Up when in state $|\psi\rangle$ is given by the square modulus of the inner product:

$$
|\langle\psi \mid U p\rangle|^{2} .
$$

This is known as the Born rule. It gives the basic predictive content of quantum mechanics.

Qubits vs. Bits

Qubits vs. Bits

The sense in which the qubit generalises the classical bit is that, for each question we can ask - i.e. for each measurement - there are just two possible answers. We can view the states of the qubit as superpositions of the classical states 0 and 1 , so that we have a probability of getting each of the answers for any given state.

Qubits vs. Bits

The sense in which the qubit generalises the classical bit is that, for each question we can ask - i.e. for each measurement - there are just two possible answers. We can view the states of the qubit as superpositions of the classical states 0 and 1 , so that we have a probability of getting each of the answers for any given state.

But in addition, we have the important feature that there are a continuum of possible questions we can ask. However, note that on each run of the system, we can only ask one of these questions. We cannot simultaneously observe Up or Down in two different directions. Note that this corresponds to the feature of the scenario we discussed, that Alice and Bob could only look at one their local registers on each round.

Qubits vs. Bits

The sense in which the qubit generalises the classical bit is that, for each question we can ask - i.e. for each measurement - there are just two possible answers. We can view the states of the qubit as superpositions of the classical states 0 and 1 , so that we have a probability of getting each of the answers for any given state.

But in addition, we have the important feature that there are a continuum of possible questions we can ask. However, note that on each run of the system, we can only ask one of these questions. We cannot simultaneously observe Up or Down in two different directions. Note that this corresponds to the feature of the scenario we discussed, that Alice and Bob could only look at one their local registers on each round.

Note in addition that a measurement has an effect on the state, which will no longer be the original state $|\psi\rangle$, but rather one of the states Up or Down, in accordance with the measured value.

Quantum Entanglement

Quantum Entanglement

Bell state:

EPR state:

Quantum Entanglement

Bell state:

EPR state:

Compound systems are represented by tensor product: $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$. Typical element:

$$
\sum_{i} \lambda_{i} \cdot \phi_{i} \otimes \psi_{i}
$$

Superposition encodes correlation.

Quantum Entanglement

Bell state:

EPR state:

Compound systems are represented by tensor product: $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$. Typical element:

$$
\sum_{i} \lambda_{i} \cdot \phi_{i} \otimes \psi_{i}
$$

Superposition encodes correlation.
Einstein's 'spooky action at a distance'. Even if the particles are spatially separated, measuring one has an effect on the state of the other.

A Probabilistic Model Of An Experiment

A Probabilistic Model Of An Experiment

Example: The Bell Model

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a_{1}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{2}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{1}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{2}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

A Probabilistic Model Of An Experiment

Example: The Bell Model

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a_{1}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{2}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{1}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{2}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Important note: this is physically realizable!

A Probabilistic Model Of An Experiment

Example: The Bell Model

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a_{1}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{2}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{1}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{2}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Important note: this is physically realizable!
Generated by Bell state

$$
\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

subjected to measurements in the $X Y$-plane, at relative angle $\pi / 3$.

A Probabilistic Model Of An Experiment

Example: The Bell Model

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a_{1}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{2}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{1}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{2}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Important note: this is physically realizable!
Generated by Bell state

$$
\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

subjected to measurements in the $X Y$-plane, at relative angle $\pi / 3$.
Extensively tested experimentally.

Computing the Bell table

Computing the Bell table

Spin measurements lying in the equatorial plane of the Bloch sphere Spin Up: $\left(|\uparrow\rangle+e^{i \phi}|\downarrow\rangle\right) / \sqrt{2}$, Spin Down: $\left(|\uparrow\rangle+e^{i(\phi+\pi)}|\downarrow\rangle\right) / \sqrt{2}$

Computing the Bell table

Spin measurements lying in the equatorial plane of the Bloch sphere Spin Up: $\left(|\uparrow\rangle+e^{i \phi}|\downarrow\rangle\right) / \sqrt{2}$, Spin Down: $\left(|\uparrow\rangle+e^{i(\phi+\pi)}|\downarrow\rangle\right) / \sqrt{2}$
X itself, $\phi=0$:
Spin Up $(|\uparrow\rangle+|\downarrow\rangle) / \sqrt{2}$ and Spin Down $(|\uparrow\rangle-|\downarrow\rangle) / \sqrt{2}$.

Computing the Bell table

Computing the Bell table

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a	b	0	$1 / 2$	$1 / 2$	0
a^{\prime}	b	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a	b^{\prime}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a^{\prime}	b^{\prime}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$

Computing the Bell table

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a	b	0	$1 / 2$	$1 / 2$	0
a^{\prime}	b	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a	b^{\prime}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a^{\prime}	b^{\prime}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$

Alice: $a=X, a^{\prime}$ at $\phi=\pi / 3$ (on first qubit)
Bob: $b=X, b^{\prime}$ at $\phi=\pi / 3$ (on second qubit)

Computing the Bell table

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a	b	0	$1 / 2$	$1 / 2$	0
a^{\prime}	b	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a	b^{\prime}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a^{\prime}	b^{\prime}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$

Alice: $a=X, a^{\prime}$ at $\phi=\pi / 3$ (on first qubit)
Bob: $b=X, b^{\prime}$ at $\phi=\pi / 3$ (on second qubit)
The event in yellow is represented by

$$
\frac{|\uparrow\rangle+|\downarrow\rangle}{\sqrt{2}} \otimes \frac{|\uparrow\rangle+e^{i 4 \pi / 3}|\downarrow\rangle}{\sqrt{2}}=\frac{|\uparrow \uparrow\rangle+e^{i 4 \pi / 3}|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle+e^{i 4 \pi / 3}|\downarrow \downarrow\rangle}{2} .
$$

Computing the Bell table

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a	b	0	$1 / 2$	$1 / 2$	0
a^{\prime}	b	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a	b^{\prime}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a^{\prime}	b^{\prime}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$

Alice: $a=X, a^{\prime}$ at $\phi=\pi / 3$ (on first qubit)
Bob: $b=X, b^{\prime}$ at $\phi=\pi / 3$ (on second qubit)
The event in yellow is represented by

$$
\frac{|\uparrow\rangle+|\downarrow\rangle}{\sqrt{2}} \otimes \frac{|\uparrow\rangle+e^{i 4 \pi / 3}|\downarrow\rangle}{\sqrt{2}}=\frac{|\uparrow \uparrow\rangle+e^{i 4 \pi / 3}|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle+e^{i 4 \pi / 3}|\downarrow \downarrow\rangle}{2} .
$$

Probability of this event M when measuring $\left(a, b^{\prime}\right)$ on $B=(|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle) / \sqrt{2}$ is given by Born rule:

$$
|\langle B \mid M\rangle|^{2}
$$

Computing Bell by Born

Computing Bell by Born

Since the vectors $|\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle,|\downarrow \downarrow\rangle$ are pairwise orthogonal, $|\langle B \mid M\rangle|^{2}$ simplifies to

$$
\left|\frac{1+e^{i 4 \pi / 3}}{2 \sqrt{2}}\right|^{2}=\frac{\left|1+e^{i 4 \pi / 3}\right|^{2}}{8}
$$

Computing Bell by Born

Since the vectors $|\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle,|\downarrow \downarrow\rangle$ are pairwise orthogonal, $|\langle B \mid M\rangle|^{2}$ simplifies to

$$
\left|\frac{1+e^{i 4 \pi / 3}}{2 \sqrt{2}}\right|^{2}=\frac{\left|1+e^{i 4 \pi / 3}\right|^{2}}{8}
$$

Using the Euler identity $e^{i \theta}=\cos \theta+i \sin \theta$, we have

$$
\left|1+e^{i \theta}\right|^{2}=(1+\cos \theta+i \sin \theta)(1+\cos \theta-i \sin \theta)=2+2 \cos \theta .
$$

Computing Bell by Born

Since the vectors $|\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle,|\downarrow \downarrow\rangle$ are pairwise orthogonal, $|\langle B \mid M\rangle|^{2}$ simplifies to

$$
\left|\frac{1+e^{i 4 \pi / 3}}{2 \sqrt{2}}\right|^{2}=\frac{\left|1+e^{i 4 \pi / 3}\right|^{2}}{8}
$$

Using the Euler identity $e^{i \theta}=\cos \theta+i \sin \theta$, we have

$$
\left|1+e^{i \theta}\right|^{2}=(1+\cos \theta+i \sin \theta)(1+\cos \theta-i \sin \theta)=2+2 \cos \theta .
$$

Hence

$$
\frac{\left|1+e^{i 4 \pi / 3}\right|^{2}}{8}=\frac{2+2 \cos (4 \pi / 3)}{8}=\frac{1}{8}
$$

Computing Bell by Born

Since the vectors $|\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle,|\downarrow \downarrow\rangle$ are pairwise orthogonal, $|\langle B \mid M\rangle|^{2}$ simplifies to

$$
\left|\frac{1+e^{i 4 \pi / 3}}{2 \sqrt{2}}\right|^{2}=\frac{\left|1+e^{i 4 \pi / 3}\right|^{2}}{8}
$$

Using the Euler identity $e^{i \theta}=\cos \theta+i \sin \theta$, we have

$$
\left|1+e^{i \theta}\right|^{2}=(1+\cos \theta+i \sin \theta)(1+\cos \theta-i \sin \theta)=2+2 \cos \theta .
$$

Hence

$$
\frac{\left|1+e^{i 4 \pi / 3}\right|^{2}}{8}=\frac{2+2 \cos (4 \pi / 3)}{8}=\frac{1}{8}
$$

The other entries can be computed similarly.

Mysteries of the Quantum Representation

Mysteries of the Quantum Representation

Operationally, we see readings on measurement instruments, and observe probabilities of outcomes.

Mysteries of the Quantum Representation

Operationally, we see readings on measurement instruments, and observe probabilities of outcomes.

We never "see" a complex number!

Mysteries of the Quantum Representation

Operationally, we see readings on measurement instruments, and observe probabilities of outcomes.

We never "see" a complex number!
And yet, QM uses this representation in complex Hilbert spaces to compute the positive real numbers corresponding to what we actually observe.

Mysteries of the Quantum Representation

Operationally, we see readings on measurement instruments, and observe probabilities of outcomes.

We never "see" a complex number!
And yet, QM uses this representation in complex Hilbert spaces to compute the positive real numbers corresponding to what we actually observe.

What convincing explanation can we give for this?

Mysteries of the Quantum Representation

Operationally, we see readings on measurement instruments, and observe probabilities of outcomes.

We never "see" a complex number!
And yet, QM uses this representation in complex Hilbert spaces to compute the positive real numbers corresponding to what we actually observe.

What convincing explanation can we give for this?
Attempts to find compelling axioms from which the QM representation in complex Hilbert space can be derived.

Mysteries of the Quantum Representation

Operationally, we see readings on measurement instruments, and observe probabilities of outcomes.

We never "see" a complex number!
And yet, QM uses this representation in complex Hilbert spaces to compute the positive real numbers corresponding to what we actually observe.

What convincing explanation can we give for this?
Attempts to find compelling axioms from which the QM representation in complex Hilbert space can be derived.

Lucien Hardy, "Quantum Mechanics from five reasonable axioms"

Mysteries of the Quantum Representation

Operationally, we see readings on measurement instruments, and observe probabilities of outcomes.

We never "see" a complex number!
And yet, QM uses this representation in complex Hilbert spaces to compute the positive real numbers corresponding to what we actually observe.

What convincing explanation can we give for this?
Attempts to find compelling axioms from which the QM representation in complex Hilbert space can be derived.

Lucien Hardy, "Quantum Mechanics from five reasonable axioms"
Other attempts by Masanes and Mueller, Brukner and Dakic, the Pavia group (D'Ariano, Chiribella and Perinotti), ...

Empirical Models

Empirical Models

Example: The Bell Model

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a_{1}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{2}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{1}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{2}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Empirical Models

Example: The Bell Model

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a_{1}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{2}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{1}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{2}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Important note: this is quantum realizable.

Empirical Models

Example: The Bell Model

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a_{1}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{2}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{1}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{2}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Important note: this is quantum realizable.
Generated by Bell state

$$
\frac{|00\rangle+|11\rangle}{\sqrt{2}},
$$

subjected to measurements in the $X Y$-plane, at relative angle $\pi / 3$.

The PR Box

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a_{1}	b_{1}	1	0	0	1
a_{1}	b_{2}	1	0	0	1
a_{2}	b_{1}	1	0	0	1
a_{2}	b_{2}	0	1	1	0
The PR Box					

The PR Box

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a_{1}	b_{1}	1	0	0	1
a_{1}	b_{2}	1	0	0	1
a_{2}	b_{1}	1	0	0	1
a_{2}	b_{2}	0	1	1	0
	The PR Box				

This satisfies No-Signalling, so is consistent with SR, but it is not quantum realisable.

Empirical models as vectors

We can regard an empirical model $\left\{d_{C}\right\}_{C \in \mathcal{M}}$ as a vector

$$
\mathbf{v}=\left(\mathbf{v}_{C, s}\right)_{C \in \mathcal{M}, s \in \mathcal{E}(C)}, \quad \mathbf{v}_{C, s}:=d_{C}(s)
$$

in a high-dimensional real vector space.

Empirical models as vectors

We can regard an empirical model $\left\{d_{C}\right\}_{C \in \mathcal{M}}$ as a vector

$$
\mathbf{v}=\left(\mathbf{v}_{C, s}\right)_{C \in \mathcal{M}, s \in \mathcal{E}(C)}, \quad \mathbf{v}_{C, s}:=d_{C}(s)
$$

in a high-dimensional real vector space.
Note that, in a Bell-type scenario with n parties, k measurement choices at each site, and l possible outcomes for each measurement, the dimension is $k^{n} l^{n}$.

Empirical models as vectors

We can regard an empirical model $\left\{d_{C}\right\}_{C \in \mathcal{M}}$ as a vector

$$
\mathbf{v}=\left(\mathbf{v}_{C, s}\right)_{C \in \mathcal{M}, s \in \mathcal{E}(C)}, \quad \mathbf{v}_{C, s}:=d_{C}(s)
$$

in a high-dimensional real vector space.
Note that, in a Bell-type scenario with n parties, k measurement choices at each site, and l possible outcomes for each measurement, the dimension is $k^{n} l^{n}$.

Note also that empirical models over a given measurement scenario are closed under convex combinations:

$$
\left.\mu d+(1-\mu) d^{\prime}\right)_{C}(s):=\mu d_{C}(s)+(1-\mu) d_{C}^{\prime}(s)
$$

Moreover, convex combinations of compatible models are compatible.

The Quantum Set

The Quantum Set

A subtle convex set sandwiched between two polytopes.

The Quantum Set

A subtle convex set sandwiched between two polytopes.

The Quantum Set

A subtle convex set sandwiched between two polytopes.

Key question: find compelling principles to explain why Nature picks out the quantum set.

Geometry of Empirical Models

For any given measurement scenario:

Geometry of Empirical Models

For any given measurement scenario:
(Probabilistic) Contextuality: relative interior Logical Contextuality: faces
Strong Contextuality:
Lower dimensional subspaces
(e.g. vertices)
AvN Contextuality:
$\mathrm{AvN} \subsetneq \mathrm{SC}$

Geometry of Empirical Models

For any given measurement scenario:
(Probabilistic) Contextuality: relative interior
Logical Contextuality: Logical Contextuality:
faces
Strong Contextuality:
Lower dimensional subspaces
(e.g. vertices)

AvN Contextuality:
AvN $\subsetneq S C$

Geometry of Empirical Models

For any given measurement scenario:
(Probabilistic) Contextuality: relative interior Logical Contextuality: faces
Strong Contextuality:
Lower dimensional subspaces
(e.g. vertices)

AvN Contextuality:
$\mathrm{AvN} \subsetneq \mathrm{SC}$

Geometry of Empirical Models

For any given measurement scenario:
(Probabilistic) Contextuality: relative interior Logical Contextuality: faces
Strong Contextuality:
Lower dimensional subspaces
(e.g. vertices)

AvN Contextuality:
$\mathrm{AvN} \subsetneq \mathrm{SC}$

$$
\text { Probabilistic }<\text { Logical }<\text { Strong }<\text { AvN }
$$

Interlude: complexity of the quantum set

Interlude: complexity of the quantum set

- Consider the question: given a finite probability table (observable data, strategy for non-local game), is there a quantum realisation? That is, is there a quantum state and measurements which give rise to it via the Born rule.

Interlude: complexity of the quantum set

- Consider the question: given a finite probability table (observable data, strategy for non-local game), is there a quantum realisation? That is, is there a quantum state and measurements which give rise to it via the Born rule.
- If we fix the dimension of the Hilbert space, this reduces to the existential theory of real-closed fields, decidable in PSPACE (Tarski, Canny).

Interlude: complexity of the quantum set

- Consider the question: given a finite probability table (observable data, strategy for non-local game), is there a quantum realisation? That is, is there a quantum state and measurements which give rise to it via the Born rule.
- If we fix the dimension of the Hilbert space, this reduces to the existential theory of real-closed fields, decidable in PSPACE (Tarski, Canny).
- If we ask for realization in any finite dimensional Hilbert space, this is undecidable. Moreover, there are finite tables which are realizable in infinite-dimensional Hilbert space, but not in any finite-dimensional space. (Slofstra, 2019, 2020).

Interlude: complexity of the quantum set

- Consider the question: given a finite probability table (observable data, strategy for non-local game), is there a quantum realisation? That is, is there a quantum state and measurements which give rise to it via the Born rule.
- If we fix the dimension of the Hilbert space, this reduces to the existential theory of real-closed fields, decidable in PSPACE (Tarski, Canny).
- If we ask for realization in any finite dimensional Hilbert space, this is undecidable. Moreover, there are finite tables which are realizable in infinite-dimensional Hilbert space, but not in any finite-dimensional space. (Slofstra, 2019, 2020).
- Even more spectacularly, we have the MIP* $=$ RE result of Ji, Natarajan, Vidick, Wright, Yuen (2020).

Interlude: complexity of the quantum set

- Consider the question: given a finite probability table (observable data, strategy for non-local game), is there a quantum realisation? That is, is there a quantum state and measurements which give rise to it via the Born rule.
- If we fix the dimension of the Hilbert space, this reduces to the existential theory of real-closed fields, decidable in PSPACE (Tarski, Canny).
- If we ask for realization in any finite dimensional Hilbert space, this is undecidable. Moreover, there are finite tables which are realizable in infinite-dimensional Hilbert space, but not in any finite-dimensional space. (Slofstra, 2019, 2020).
- Even more spectacularly, we have the MIP* $=$ RE result of Ji, Natarajan, Vidick, Wright, Yuen (2020).
- This is simultaneously a major result in complexity theory, quantum foundations, and mathematics:
- While QIP $=I P=$ PSPACE, allowing multiple quantum provers sharing entangled states allows all semidecidable problems to be represented (e.g. halting problem, provability of arithmetical statements).
- The Tsirelson conjecture is refuted (in infinite dimensions). Commuting subalgebras cannot be represented on tensor products in general.
- The Connes Embedding Problem is answered in the negative.

Quantifying contextuality: the contextual fraction

We look for a convex decomposition

$$
\begin{equation*}
e=\lambda e^{N C}+(1-\lambda) e^{\prime} \tag{1}
\end{equation*}
$$

where $e^{N C}$ is a non-contextual model and e^{\prime} is another empirical model.

Quantifying contextuality: the contextual fraction

We look for a convex decomposition

$$
\begin{equation*}
e=\lambda e^{N C}+(1-\lambda) e^{\prime} \tag{1}
\end{equation*}
$$

where $e^{N C}$ is a non-contextual model and e^{\prime} is another empirical model.
The maximum value of λ in such a decomposition is called the non-contextual fraction of e. We write it as $\operatorname{NCF}(e)$, and the contextual fraction by $\operatorname{CF}(e):=1-\operatorname{NCF}(e)$.

Quantifying contextuality: the contextual fraction

We look for a convex decomposition

$$
\begin{equation*}
e=\lambda e^{N C}+(1-\lambda) e^{\prime} \tag{1}
\end{equation*}
$$

where $e^{N C}$ is a non-contextual model and e^{\prime} is another empirical model.
The maximum value of λ in such a decomposition is called the non-contextual fraction of e. We write it as $\operatorname{NCF}(e)$, and the contextual fraction by $\operatorname{CF}(e):=1-\operatorname{NCF}(e)$.

1. Computable by a linear program.
2. The normalised violation by e of any Bell inequality is at most $\operatorname{CF}(e)$;
3. this bound is attained, i.e. there exists a Bell inequality whose normalised violation by e is $\mathrm{CF}(e)$;
4. moreover, for any decomposition of the form $e=\operatorname{NCF}(e) e^{N C}+\mathrm{CF}(e) e^{S C}$, this Bell inequality is tight at the non-contextual model $e^{N C}$ and maximally violated at the strongly contextual model $e^{S C}$.

Computing the Contextual Fraction

Computing the Contextual Fraction

Given a measurement scenario $\langle X, \mathcal{M}, O\rangle$, the incidence matrix \mathbf{M} has

- rows indexed by $\langle C, s\rangle, C \in \mathcal{M}, s \in O^{C}$
- columns indexed by global assignments $g \in O^{X}$

$$
\mathbf{M}[\langle C, s\rangle, g]:= \begin{cases}1 & \text { if }\left.g\right|_{C}=s \\ 0 & \text { otherwise }\end{cases}
$$

Computing the Contextual Fraction

Given a measurement scenario $\langle X, \mathcal{M}, O\rangle$, the incidence matrix \mathbf{M} has

- rows indexed by $\langle C, s\rangle, C \in \mathcal{M}, s \in O^{C}$
- columns indexed by global assignments $g \in O^{X}$

$$
\mathbf{M}[\langle C, s\rangle, g]:=\left\{\begin{array}{l}
1 \text { if }\left.g\right|_{C}=s \\
0 \text { otherwise }
\end{array}\right.
$$

The columns of the matrix correspond to the deterministic NCHV models. Every NCHV model is equivalent to a mixture of deterministic models.

Computing the Contextual Fraction

Given a measurement scenario $\langle X, \mathcal{M}, O\rangle$, the incidence matrix \mathbf{M} has

- rows indexed by $\langle C, s\rangle, C \in \mathcal{M}, s \in O^{C}$
- columns indexed by global assignments $g \in O^{X}$

$$
\mathbf{M}[\langle C, s\rangle, g]:= \begin{cases}1 & \text { if }\left.g\right|_{C}=s \\ 0 & \text { otherwise }\end{cases}
$$

The columns of the matrix correspond to the deterministic NCHV models. Every NCHV model is equivalent to a mixture of deterministic models.

A probability distribution on (i.e. mixture of) deterministic NCHV models is given by a column vector \mathbf{C}; while an empirical model over the scenario can be flattened into a row vector \mathbf{v}^{e}.

Computing the Contextual Fraction

Given a measurement scenario $\langle X, \mathcal{M}, O\rangle$, the incidence matrix \mathbf{M} has

- rows indexed by $\langle C, s\rangle, C \in \mathcal{M}, s \in O^{C}$
- columns indexed by global assignments $g \in O^{X}$

$$
\mathbf{M}[\langle C, s\rangle, g]:= \begin{cases}1 & \text { if }\left.g\right|_{C}=s \\ 0 & \text { otherwise }\end{cases}
$$

The columns of the matrix correspond to the deterministic NCHV models. Every NCHV model is equivalent to a mixture of deterministic models.

A probability distribution on (i.e. mixture of) deterministic NCHV models is given by a column vector \mathbf{C}; while an empirical model over the scenario can be flattened into a row vector \mathbf{v}^{e}.

Computing the non-contextual fraction corresponds to solving the following linear program:

$$
\begin{array}{ll}
\text { Find } & \mathbf{c} \in \mathbb{R}^{n} \\
\text { maximising } & \mathbf{1} \cdot \mathbf{c} \\
\text { subject to } & \mathbf{M c} \leq \mathbf{v}^{e} \tag{2}\\
\text { and } & \mathbf{c} \geq \mathbf{0}
\end{array}
$$

Generalized Bell Inequalities

An inequality for a measurement scenario $\langle X, \mathcal{M}, O\rangle$ given by a set of coefficients $\alpha=\{\alpha(C, s)\}_{C \in \mathcal{M}, s \in \mathcal{E}(C)}$ and a bound R. For a model e, the inequality reads as

$$
\mathcal{B}_{\alpha}(e) \leq R,
$$

where the left-hand side is given by

$$
\mathcal{B}_{\alpha}(e):=\sum_{C \in \mathcal{M}, s \in \mathcal{E}(C)} \alpha(C, s) e_{C}(s)
$$

Wlog we can take R non-negative (in fact, we can take $R=0$).

Generalized Bell Inequalities

An inequality for a measurement scenario $\langle X, \mathcal{M}, O\rangle$ given by a set of coefficients $\alpha=\{\alpha(C, s)\}_{C \in \mathcal{M}, s \in \mathcal{E}(C)}$ and a bound R. For a model e, the inequality reads as

$$
\mathcal{B}_{\alpha}(e) \leq R,
$$

where the left-hand side is given by

$$
\mathcal{B}_{\alpha}(e):=\sum_{C \in \mathcal{M}, s \in \mathcal{E}(C)} \alpha(C, s) e_{C}(s)
$$

Wlog we can take R non-negative (in fact, we can take $R=0$).
It is called a Bell inequality if it is satisfied by any non-contextual model. If it is saturated by some non-contextual model, the Bell inequality is said to be tight.

Generalized Bell Inequalities

An inequality for a measurement scenario $\langle X, \mathcal{M}, O\rangle$ given by a set of coefficients $\alpha=\{\alpha(C, s)\}_{C \in \mathcal{M}, s \in \mathcal{E}(C)}$ and a bound R. For a model e, the inequality reads as

$$
\mathcal{B}_{\alpha}(e) \leq R,
$$

where the left-hand side is given by

$$
\mathcal{B}_{\alpha}(e):=\sum_{C \in \mathcal{M}, s \in \mathcal{E}(C)} \alpha(C, s) e_{C}(s)
$$

Wlog we can take R non-negative (in fact, we can take $R=0$).
It is called a Bell inequality if it is satisfied by any non-contextual model. If it is saturated by some non-contextual model, the Bell inequality is said to be tight.

Whereas a Bell inequality establishes a bound for the value of $\mathcal{B}_{\alpha}(e)$ amongst non-contextual models, for a general no-signalling model e, this quantity is limited only by

$$
\|\alpha\|:=\sum_{C \in \mathcal{M}} \max \{\alpha(C, s) \mid s \in \mathcal{E}(C)\}
$$

Relating Bell inequality violation to the contextual fraction

Relating Bell inequality violation to the contextual fraction

Definition

The normalised violation of a Bell inequality $\langle\alpha, R\rangle$ by an empirical model e is the value

$$
\frac{\max \left\{0, \mathcal{B}_{\alpha}(e)-R\right\}}{\|\alpha\|-R} .
$$

Relating Bell inequality violation to the contextual fraction

Definition

The normalised violation of a Bell inequality $\langle\alpha, R\rangle$ by an empirical model e is the value

$$
\frac{\max \left\{0, \mathcal{B}_{\alpha}(e)-R\right\}}{\|\alpha\|-R} .
$$

Proposition

Let e be an empirical model. Its normalised violation of any Bell inequality is at most $\mathrm{CF}(e)$.

Relating Bell inequality violation to the contextual fraction

Definition

The normalised violation of a Bell inequality $\langle\alpha, R\rangle$ by an empirical model e is the value

$$
\frac{\max \left\{0, \mathcal{B}_{\alpha}(e)-R\right\}}{\|\alpha\|-R} .
$$

Proposition

Let e be an empirical model. Its normalised violation of any Bell inequality is at most $\mathrm{CF}(e)$.

Proposition

Let e be an empirical model. Then there is a Bell inequality whose normalised violation by e is exactly $\mathrm{CF}(e)$. Moreover, this Bell inequality is tight at the non-contextual model $e^{N C}$.

Quantifying Contextuality \& Bell Inequalities

Quantifying Contextuality \& Bell Inequalities

$$
\begin{array}{ll}
\operatorname{maximise} & \mathbf{1} \cdot \mathbf{x} \\
\text { subject to } & \mathbf{M} \mathbf{x} \leq \mathbf{v}_{e} \\
\text { and } & \mathbf{x} \geq \mathbf{0}
\end{array}
$$

Setting $\lambda=\mathbf{1} \cdot \mathbf{x}^{*}$

$$
e=\lambda e_{\mathrm{NC}}+(1-\lambda) e_{\mathrm{SC}}
$$

Quantifying Contextuality \& Bell Inequalities

$$
\begin{array}{ll}
\operatorname{maximise} & \mathbf{1} \cdot \mathbf{x} \\
\text { subject to } & \mathbf{M} \mathbf{x} \leq \mathbf{v}_{e} \\
\text { and } & \mathbf{x} \geq \mathbf{0}
\end{array}
$$

Setting $\lambda=\mathbf{1} \cdot \mathbf{x}^{*}$

$$
e=\lambda e_{\mathrm{NC}}+(1-\lambda) e_{\mathrm{SC}}
$$

Dual program:

$$
\begin{array}{ll}
\operatorname{minimise} & \mathbf{y} \cdot \mathbf{v}_{e} \\
\text { subject to } & \mathbf{M}^{T} \mathbf{y} \geq \mathbf{1} \\
\text { and } & \mathbf{y} \geq \mathbf{0}
\end{array}
$$

computes tight Bell inequality (separating hyperplane)

Contextuality and quantum advantage

Contextuality and quantum advantage

- Measurement-based quantum computation (MBQC)
- Raussendorf, Physical Review A, 2018.
- SA, Barbosa, Mansfield, Physical Review Letters, 2018.

$$
\overbrace{1-\bar{p}_{S}}^{\text {error }} \geq \underbrace{[1-\mathrm{CF}(e)]}_{\text {classicality }} \overbrace{\nu(f)}^{\text {hardness }}
$$

quantifiable relationship!

The same quantitative relationship arises for

- cooperative games (ABM)
- communication complexity (Linde Wester D.Phil thesis)

Contextuality and quantum advantage

- Measurement-based quantum computation (MBQC)
- Raussendorf, Physical Review A, 2018.
- SA, Barbosa, Mansfield, Physical Review Letters, 2018.

$$
\overbrace{1-\bar{p}_{S}}^{\text {error }} \geq \underbrace{[1-\mathrm{CF}(e)]}_{\text {classicality }} \overbrace{\nu(f)}^{\text {hardness }}
$$

quantifiable relationship!

The same quantitative relationship arises for

- cooperative games (ABM)
- communication complexity (Linde Wester D.Phil thesis)

Not yet a systematic theory of quantum advantage - currently just scattered examples.

Contextuality and quantum advantage

- Measurement-based quantum computation (MBQC)
- Raussendorf, Physical Review A, 2018.
- SA, Barbosa, Mansfield, Physical Review Letters, 2018.

quantifiable relationship!

The same quantitative relationship arises for

- cooperative games (ABM)
- communication complexity (Linde Wester D.Phil thesis)

Not yet a systematic theory of quantum advantage - currently just scattered examples.
Where the "line in the sand" is drawn separating quantum advantage from efficient classical simulability is still unclear.

Contextuality and quantum advantage with shallow circuits

Contextuality and quantum advantage with shallow circuits

- An important starting point is the Bravyi-Gossett-Koenig work on shallow circuits. This gives an unconditional separation, albeit for a circuit class rather than a standard complexity class.

Contextuality and quantum advantage with shallow circuits

- An important starting point is the Bravyi-Gossett-Koenig work on shallow circuits. This gives an unconditional separation, albeit for a circuit class rather than a standard complexity class.
- Recent work by my student Sivert Aasnaess has clarified and greatly generalised the BGK construction.

Contextuality and quantum advantage with shallow circuits

- An important starting point is the Bravyi-Gossett-Koenig work on shallow circuits. This gives an unconditional separation, albeit for a circuit class rather than a standard complexity class.
- Recent work by my student Sivert Aasnaess has clarified and greatly generalised the BGK construction.
- The general construction takes a multipartite non-locality construction with a Bell inequality violation, and turns it into a shallow quantum circuit family $\left\{Q_{n}\right\}$ with a provable advantage in success probability over any classical shallow circuit family $\left\{C_{n}\right\}$.

Contextuality and quantum advantage with shallow circuits

- An important starting point is the Bravyi-Gossett-Koenig work on shallow circuits. This gives an unconditional separation, albeit for a circuit class rather than a standard complexity class.
- Recent work by my student Sivert Aasnaess has clarified and greatly generalised the BGK construction.
- The general construction takes a multipartite non-locality construction with a Bell inequality violation, and turns it into a shallow quantum circuit family $\left\{Q_{n}\right\}$ with a provable advantage in success probability over any classical shallow circuit family $\left\{C_{n}\right\}$.
- The non-locality is weakened to bounded locality because there can be communication in the circuit, but asymptotically the advantage witnessed by the Bell inequality violation is recovered.

Contextuality and quantum advantage with shallow circuits

- An important starting point is the Bravyi-Gossett-Koenig work on shallow circuits. This gives an unconditional separation, albeit for a circuit class rather than a standard complexity class.
- Recent work by my student Sivert Aasnaess has clarified and greatly generalised the BGK construction.
- The general construction takes a multipartite non-locality construction with a Bell inequality violation, and turns it into a shallow quantum circuit family $\left\{Q_{n}\right\}$ with a provable advantage in success probability over any classical shallow circuit family $\left\{C_{n}\right\}$.
- The non-locality is weakened to bounded locality because there can be communication in the circuit, but asymptotically the advantage witnessed by the Bell inequality violation is recovered.
- With a two-stage query construction, this works for any choice of measurements. For the case of Weyl operators, a one-stage construction a la BGK is recovered.

Contextuality and quantum advantage with shallow circuits

- An important starting point is the Bravyi-Gossett-Koenig work on shallow circuits. This gives an unconditional separation, albeit for a circuit class rather than a standard complexity class.
- Recent work by my student Sivert Aasnaess has clarified and greatly generalised the BGK construction.
- The general construction takes a multipartite non-locality construction with a Bell inequality violation, and turns it into a shallow quantum circuit family $\left\{Q_{n}\right\}$ with a provable advantage in success probability over any classical shallow circuit family $\left\{C_{n}\right\}$.
- The non-locality is weakened to bounded locality because there can be communication in the circuit, but asymptotically the advantage witnessed by the Bell inequality violation is recovered.
- With a two-stage query construction, this works for any choice of measurements. For the case of Weyl operators, a one-stage construction a la BGK is recovered.
- This provides a basis for a broader study of how to transform contextuality arguments systematically into instances of quantum advantage. Other promising areas where these ideas can be applied are communication complexity, and VQE solvers.

