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The essence of contextuality

▶ Not all properties may be observed simultaneously.
▶ Sets of jointly observable properties provide partial, classical snapshots.
▶ Contextuality arises where there is a family of data which is

locally consistent but globally inconsistent
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Contextuality Analogy: Local Consistency
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Contextuality Analogy: Global Inconsistency
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Brief review of Hilbert spaces

Hilbert space is a complex inner product space. There is a norm defined from the inner
product, and the space has to be complete in this norm.

The salient notion of basis is orthonormal basis: a basis consisting of pairwise orthogonal
unit vectors.

Up to isomorphism, there is only one Hilbert space in each dimension.

So for ordinary QM, the possibilities are (in principle) just Cn and ℓ2(ω).

C∗ algebras are an elegant algebraic approach, but not really more general: by the Gelfand-
Naimark theorem, every C∗ algebra is isomorphic to a subalgebra of B(H).

Quantum information mostly restricts consideration to finite dimensions: Cn.

Finite dimensional linear algebra: isn’t that trivial?

No!
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Complex Matrices, bras and kets

Since we are working in finite dimensions, operators can be represented by complexmatrices.

Matrix transpose is AT . The adjoint A∗ is the conjugate transpose of A. Thus [ai,j]
∗ = [aj,i].

A projector P is a self-adjoint idempotent (P∗ = P2 = P).

A self-adjoint A can be written (Spectral theorem) as A =
∑

i λiPi, where the λi are real
numbers (the eigenvalues), and

∑
i Pi = I.

A ket is a (column, d× 1) vector. Thus for the qubit (C2), |0⟩ =
[

1
0
]
, |1⟩ =

[
0
1
]
.

A bra is the adjoint of a ket. We can multiply a bra (1 × d) with a ket (d × 1) to get a 1 × 1
matrix, which we identify with a scalar. This is just the complex inner product.

If A = [ai,j] is a m× n matrix and B a p× q matrix, then the Kronecker product A⊗ B := [ai,jB]
is an mp× nq matrix, which represents the tensor product of the corresponding linear maps.

Categorically, the category of matrices is a monoidal (even compact closed) skeleton of the
category of finite-dimensional Hilbert spaces.
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Tensor Product

Compound systems in QM are represented by tensor products H⊗K of the corresponding
Hilbert spaces H and K.

This is where Alice and Bob live!

If H has ONB {ψi} and K has ONB {ϕj} then H⊗K has ONB {ψi ⊗ ϕj}.

If we represent qubit space with a standard basis {|0⟩, |1⟩}, then n-qubit space has basis

{|s⟩ | s ∈ {0, 1}n}
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Projectors as quantum propositions

Quantum observables or (projective) measurements are defined by families of projectors
{Pi}i with

∑
i Pi = I.

These projective resolutions of the identity give disjoint cases for the various possible
outcomes i.

The commutator [P,Q] := PQ− QP. Thus P commutes with Q iff [P,Q] = 0.
Also, P⊥Q ≡ PQ = QP = 0.

Given projectors P, Q:
▶ PQ is a projector iff [P,Q] = 0.
▶ P+ Q is a projector iff P⊥Q.
▶ I− P is always a projector.

Given a projector P, then {P, (I− P)} is a projective resolution of the identity. Thus projectors
can be viewed as basic quantum propositions with operational content.
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Projectors and subspaces

Projectors are in bijective correspondence with subspaces:

Σ(P) := {v | P(v) = v}

Σ(I− P) = Σ(P)⊥

[P,Q] = 0 ⇒
{

Σ(PQ) = Σ(P) ∩ Σ(Q)
Σ(P+ Q− PQ) = Σ(P) ∨ Σ(Q)

P⊥Q ⇒ Σ(P+ Q) = Σ(P)⊕ Σ(Q)
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Background: traditional quantum logic

John von Neumann, in his seminal
Mathematical Foundations of Quantum Mechanics (1932), identified quantum properties
or propositions as projectors on a Hilbert Space H, i.e. linear operators P on H which are
bounded, self-adjoint (P = P†) and idempotent (P2 = P).

Projectors correspond 1–1 to the closed subspaces of Hilbert space.

Subsequently, Birkhoff and von Neumann, in The Logic of Quantum Mechanics (1936), pro-
posed the lattice of closed subspaces as a non-classical logic to serve as the logical founda-
tions of quantum mechanics.

▶ Interpret ∧ (infimum) and ∨ (supremum) as logical operations.

▶ Distributivity fails: p ∧ (q ∨ r) ̸= (p ∧ q) ∨ (p ∧ r).

▶ Only commuting measurements can be performed together.
So, what is the operational meaning of p ∧ q, when p and q do not commute?
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Quantum physics and logic

An alternative approach

Kochen & Specker (1965), ‘The problem of hidden variables in quantum mechanics’.

▶ The seminal work on contextuality used partial Boolean algebras.

▶ Only admit physically meaningful operations.

▶ Represent incompatibility by partiality.

Kochen (2015), ‘A reconstruction of quantum mechanics’.
▶ Kochen develops a large part of foundations of quantum theory in this framework.
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Partial Boolean algebras
Partial Boolean algebra ⟨A,⊙,0, 1,¬,∨,∧⟩:

▶ a set A

▶ a reflexive, symmetric binary relation ⊙ on A, read commeasurability or compatibility

▶ constants 0, 1 ∈ A

▶ (total) unary operation ¬ : A −→ A

▶ (partial) binary operations ∨,∧ : ⊙ −→ A

such that every set S of pairwise-commeasurable elements is contained in a set T of pairwise-
commeasurable elements which is a Boolean algebra under the restriction of the operations.

The key example: P(H), the projectors on a Hilbert space H.
Conjunction, i.e. meet of projectors, becomes partial, defined only on commuting projectors.

Morphisms of pBAs are maps preserving commeasurability, and the operations wherever
defined. This gives the category pBA.
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Contextuality, or the Kochen–Specker theorem

Kochen & Specker (1965).

Let H be a Hilbert space with dimH ≥ 3, and P(H) its pBA of projectors.

There is no pBA homomorphism P(H) −→ 2.

▶ No assignment of truth values to all propositions that respects the logical operations on
jointly testable propositions.

▶ Spectrum of a pBA cannot have points. . .
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Conditions of impossible experience

Using this terminology, we can express a (physically) remarkable result from Kochen and
Specker as follows:

Theorem
let A be a pba. Then the following are equivalent:
1. A is K-S (i.e. no homomorphism to 2)
2. For some propositional contradiction φ(⃗x) and assignment x⃗ 7→ a⃗,

A |= φ(⃗a)

Thus the event algebra P(H) of quantum mechanics cannot be interpreted globally in a
consistent fashion.

Our local observations– real observations of realmeasurements–cannot be pieced together
globally by reference to a single underlying objective reality. The values that they reveal are
inherently contextual.

How can the world be this way? Still an ongoing debate, an enduring mystery . . .
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Contrast with Intuitionistic logic

Say that a classical contradiction is a propositional formula φ such that CL ⊢ ¬φ.

Theorem
If CL ⊢ ¬φ, then IL ⊢ ¬φ.

Proof.
If CL ⊢ ¬φ, then by Glivenko’s theorem, IL ⊢ ¬¬¬φ. Since IL ⊢ ¬¬¬p −→ ¬p, it follows that
IL ⊢ ¬φ.

Thus every classical contradiction is an intuitionistic contradiction.

As a corollary, we obtain:

Theorem
A classical contradiction cannot be satisfied in any sound semantics for intuitionistic logic.
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Mysteries of partiality

Partial Boolean algebras can behave very differently to the total case.

It is a standard fact that every finitely-generated boolean algebra is finite.

Conway and Kochen (2002) show the following:

Theorem
In P(C4), there is a set of five projectors (local Paulis) which generate a uniformly dense
(infinite) subalgebra.

Some elaborate geometry and algebra is used to show this.

Is there a “logical” proof?
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The category pBA

In Heunen and van der Berg, Non-commutativity as a colimit (2012), it is shown that every
partial Boolean algebra is the colimit of its Boolean subalgebras.

Coproducts have a simple direct description. The coproduct A⊕B of partial Boolean algebras
A, B is their disjoint union with 0A identified with 0B, and 1A identified with 1B. Other than
these identifications, no commeasurability holds between elements of A and elements of B.

N.B. This is very different to coproducts in BA!

By contrast, coequalisers, and general colimits, are shown to exist by Heunen and van der
Berg by an appeal to the Adjoint Functor Theorem. One of our contributions is to give an
explicit construction of the needed colimits,.

More generally, we use this approach to prove the following result, which freely generates
froma given partial Boolean algebra a new onewhere prescribed additional commeasurability
relations are enforced between its elements.
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Theorem
Given a partial Boolean algebra A and a binary relation ⊚ on A, there is a partial Boolean
algebra A[⊚] such that:
▶ There is a pBA-morphism η : A −→ A[⊚] such that a⊚ b ⇒ η(a)⊙A[⊚] η(b).
▶ For every partial Boolean algebra B and pBA-morphism h : A −→ B such that

a⊚ b ⇒ h(a)⊙B h(b), there is a unique homomorphism ĥ : A[⊚] −→ B such that

A A[⊚]

B
h

η

ĥ

This result is proved constructively, by giving proof rules for commeasurability and equiva-
lence relations over a set of syntactic terms generated from A. (In fact, we start with a set of
“pre-terms”, and also give rules for definedness).
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The inductive construction
a ∈ A
ı(a)↓

a⊙A b
ı(a)⊙ ı(b)

a⊚ b
ı(a)⊙ ı(b)

0 ≡ ı(0A), 1 ≡ ı(1A), ¬ı(a) ≡ ı(¬Aa)

a⊙A b
ı(a) ∧ ı(b) ≡ ı(a ∧A b), ı(a) ∨ ı(b) ≡ ı(a ∨A b)

0↓, 1↓
t⊙ u

t ∧ u↓, t ∨ u↓
t↓
¬t↓

t↓
t⊙ t, t⊙ 0, t⊙ 1

t⊙ u
u⊙ t

t⊙ u, t⊙ v, u⊙ v
t ∧ u⊙ v, t ∨ u⊙ v

t⊙ u
¬t⊙ u

t↓
t ≡ t

t ≡ u
u ≡ v

t ≡ u, u ≡ v
t ≡ v

t ≡ u, u⊙ v
t⊙ v

φ(⃗x) ≡Bool ψ(⃗x),
∧

i,j vi ⊙ vj
φ(⃗v) ≡ ψ(⃗v)

t ≡ t′, u ≡ u′, t⊙ u
t ∧ u ≡ t′ ∧ u′, t ∨ u ≡ t′ ∨ u′

t ≡ u
¬t ≡ ¬u
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Coequalisers and colimits

A variation of this construction is also useful, where instead of just forcing commeasurability,
one forces equality by the additional rule

a⊚ a′

ı(a) ≡ ı(a′)

This builds a pBA A[⊚,≡].

Theorem
Let h : A −→ B be a pBA-morphism such that a⊚ a′ ⇒ h(a) = h(a′). Then there is a unique
pBA-morphism ĥ : A[⊚,≡] −→ B such that h = ĥ ◦ η.

This result can be used to give an explicit construction of coequalisers, and hence general
colimits, in pBA.
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An apparent contradiction

BA is a full subcategory of pBA. We know from (Heunen and van den Berg) that A is the
colimit in pBA of its boolean subalgebras. Now let B be the colimit in BA of the same diagram
D of boolean subalgebras of A and the inclusions between them.

Then the cone from D to B is also a cone in pBA, hence there is a mediating morphism from
A to B!

To resolve the apparent contradiction, note that BA is an equational variety of algebras over
Set.

As such, it is complete and cocomplete, but it also admits the one-element algebra 1, in
which 0 = 1. Note that 1 does not have a homomorphism to 2.

In the case of a partial Boolean algebra with the K-S property of not having a homomorphism
to 2, the colimit of its diagram of boolean subalgebras must be 1.
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KS-property and colimits
We can turn this into a theorem:

Theorem
Let A be a partial Boolean algebra. The following are equivalent:
1. A has the K-S property.
2. The colimit of the diagram of boolean subalgebras of A in BA is 1.

In fact, we can formulate the K-S property directly for diagrams of Boolean algebras, without
referring to partial boolean algebras at all.

We say that a diagram in BA is K-S if its colimit in BA is 1.

We could say that such a diagram is “implicitly contradictory”, and in trying to combine all
the information in a colimit, we obtain the manifestly contradictory 1.

A partial Boolean algebra with the K-S property – such as P(H) – holds this implicitly contra-
dictory information together in a single structure.
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KS-property and free extensions

We now consider the relationship of the K-S property to the free extension of partial Boolean
algebras by a relation, as just described.

Proposition
Let A be a partial Boolean algebra. The following are equivalent:
1. A has the K-S property.
2. A[A2] = 1.

Proof.
Firstly, all elements are commeasurable in A[A2], so it is a Boolean algebra. Moreover, there
is a morphism η : A −→ A[A2]. Thus if A is K-S, we must have A[A2] = 1.

Conversely, suppose that A[A2] = 1, and there is a morphism A −→ B to a Boolean algebra A.
By the universal property of A[A2], there is a morphism A[A2] −→ B, and since A[A2] = 1, we
must have B = 1. Thus A is K-S.
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Tensor product and the emergence of non-classicality

As already remarked, the K-S property arises in P(H) when dimH ≥ 3.

Note that P(C2) ∼=
⊕

i∈I 4i, where I is a set of the power of the continuum, and each 4i is the
four-element Boolean algebra.

One of the key points at which non-classicality emerges in quantum theory is the passage
from P(C2), which does not have the K–S property, to P(C4) = P(C2 ⊗ C2), which does.

Can we capture the Hilbert space tensor product in logical form?

Question
Is there a monoidal structure ⊛ on the category pBA such that the functor P : Hilb −→ pBA is
strong monoidal with respect to this structure, i.e. such that P(H)⊛ P(K) ∼= P(H⊗K)?

A positive answer to this question would offer a complete logical characterisation of the
Hilbert space tensor product, and provide an important step towards giving logical founda-
tions for quantum theory in a form useful for quantum information and computation.
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Tensor products of partial Boolean algebras

In (Heunen and van den Berg), it is shown that pBA has a monoidal structure, with A ⊗ B
given by the colimit of the family of C + D, as C ranges over Boolean subalgebras of A, D
ranges over Boolean subalgebras of B, and C+ D is the coproduct of Boolean algebras.

The tensor product there is not constructed explicitly: it relies on the existence of colimits in
pBA, which is proved by an appeal to the Adjoint Functor Theorem.

Our Theorem 5 allows us to give an explicit description of this construction using generators
and relations.

Proposition
Let A and B be partial Boolean algebras. Then

A⊗ B ∼= (A⊕ B)[:]

where : is the relation on the carrier set of A⊕ B given by ı(a) : ȷ(b) for all a ∈ A and b ∈ B.
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Limitations of this tensor product

There is a laxmonoidal functor P : Hilb −→ pBA, which takes a Hilbert space to its projectors,
viewed as a partial Boolean algebra, with an embedding P(H)⊗P(K) −→ P(H⊗K) induced
by the evident embeddings of P(H) and P(K) into P(H⊗K)), given by p 7−→ p⊗1, q 7−→ 1⊗q.

It is easy to see that this embedding is far from being surjective. For example, if we take
H = K = C2, then there are (many) two-valued homomorphisms on A = P(C2), which lift to
two-valued homomorphisms on A⊗ A. However, by the Kochen–Specker theorem, there is
no such homomorphism on P(C4) = P(C2 ⊗ C2).

Interestingly, in (Kochen 2015) it is shown that the images of P(H) and P(K), for any finite-
dimensionalH andK, generate P(H⊗K). This is used there to justify the claim contradicted
by the previous paragraph. The gap in the argument is that more relations hold in P(H⊗K)
than in P(H)⊗ P(K).

Nevertheless, this result is very suggestive. It poses the challenge of finding a stronger
notion of tensor product.
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Towards a more expressive tensor product

An important property satisfied by the rules in Table 1 as applied in constructing A ⊗ B is
that, if t↓ can be derived, then u↓ can be derived for every subterm u of t. This appears to be
too strong a constraint to capture the full logic of the Hilbert space tensor product.

To see why this is an issue, consider projectors p1 ⊗ p2 and q1 ⊗ q2. To ensure in general
that they commute, we need the conjunctive requirement that p1 commutes with q1, and p2
commutes with q2.

However, to show that they are orthogonal, we have a disjunctive requirement: p1⊥q1 or
p2⊥q2. If we establish orthogonality in this way, we are entitled to conclude that p1 ⊗ p2 and
q1 ⊗ q2 are commeasurable, even though (say) p2 and q2 are not.

Indeed, the idea that propositions can be defined on quantum systems even though subex-
pressions are not is emphasized by Kochen.
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Logical exclusivity principle
The basic ingredient is a notion of exclusivity between events (or elements) of a partial
Boolean algebra.

Definition
Let A be a partial Boolean algebra. Two elements a, b ∈ A are said to be exclusive, written
a ⊥ b, if there is a c ∈ A such that a ≤ c and b ≤ ¬c.

Note that x ≤ y in a pBA means that x⊙ y and x ∧ y = x.

Thus a ⊥ b is a weaker requirement than a ∧ b = 0, although the two would be equivalent in
a Boolean algebra. The point is that, in a general partial Boolean algebra, one might have
exclusive events that are not commeasurable (and for which, therefore, the ∧ operation is
not defined).

Definition
A partial Boolean algebra A is said to satisfy the logical exclusivity principle (LEP) if any two
elements that are logically exclusive are also commeasurable, i.e. if ⊥ ⊆ ⊙.
We write epBA for the full subcategory of pBA whose objects are partial Boolean algebras
satisfying LEP.

27 / 60



Logical exclusivity principle
The basic ingredient is a notion of exclusivity between events (or elements) of a partial
Boolean algebra.

Definition
Let A be a partial Boolean algebra. Two elements a, b ∈ A are said to be exclusive, written
a ⊥ b, if there is a c ∈ A such that a ≤ c and b ≤ ¬c.

Note that x ≤ y in a pBA means that x⊙ y and x ∧ y = x.

Thus a ⊥ b is a weaker requirement than a ∧ b = 0, although the two would be equivalent in
a Boolean algebra. The point is that, in a general partial Boolean algebra, one might have
exclusive events that are not commeasurable (and for which, therefore, the ∧ operation is
not defined).

Definition
A partial Boolean algebra A is said to satisfy the logical exclusivity principle (LEP) if any two
elements that are logically exclusive are also commeasurable, i.e. if ⊥ ⊆ ⊙.
We write epBA for the full subcategory of pBA whose objects are partial Boolean algebras
satisfying LEP.

27 / 60



Logical exclusivity principle
The basic ingredient is a notion of exclusivity between events (or elements) of a partial
Boolean algebra.

Definition
Let A be a partial Boolean algebra. Two elements a, b ∈ A are said to be exclusive, written
a ⊥ b, if there is a c ∈ A such that a ≤ c and b ≤ ¬c.

Note that x ≤ y in a pBA means that x⊙ y and x ∧ y = x.

Thus a ⊥ b is a weaker requirement than a ∧ b = 0, although the two would be equivalent in
a Boolean algebra. The point is that, in a general partial Boolean algebra, one might have
exclusive events that are not commeasurable (and for which, therefore, the ∧ operation is
not defined).

Definition
A partial Boolean algebra A is said to satisfy the logical exclusivity principle (LEP) if any two
elements that are logically exclusive are also commeasurable, i.e. if ⊥ ⊆ ⊙.
We write epBA for the full subcategory of pBA whose objects are partial Boolean algebras
satisfying LEP.

27 / 60



Logical exclusivity principle
The basic ingredient is a notion of exclusivity between events (or elements) of a partial
Boolean algebra.

Definition
Let A be a partial Boolean algebra. Two elements a, b ∈ A are said to be exclusive, written
a ⊥ b, if there is a c ∈ A such that a ≤ c and b ≤ ¬c.

Note that x ≤ y in a pBA means that x⊙ y and x ∧ y = x.

Thus a ⊥ b is a weaker requirement than a ∧ b = 0, although the two would be equivalent in
a Boolean algebra. The point is that, in a general partial Boolean algebra, one might have
exclusive events that are not commeasurable (and for which, therefore, the ∧ operation is
not defined).

Definition
A partial Boolean algebra A is said to satisfy the logical exclusivity principle (LEP) if any two
elements that are logically exclusive are also commeasurable, i.e. if ⊥ ⊆ ⊙.
We write epBA for the full subcategory of pBA whose objects are partial Boolean algebras
satisfying LEP.

27 / 60



Logical exclusivity principle
The basic ingredient is a notion of exclusivity between events (or elements) of a partial
Boolean algebra.

Definition
Let A be a partial Boolean algebra. Two elements a, b ∈ A are said to be exclusive, written
a ⊥ b, if there is a c ∈ A such that a ≤ c and b ≤ ¬c.

Note that x ≤ y in a pBA means that x⊙ y and x ∧ y = x.

Thus a ⊥ b is a weaker requirement than a ∧ b = 0, although the two would be equivalent in
a Boolean algebra. The point is that, in a general partial Boolean algebra, one might have
exclusive events that are not commeasurable (and for which, therefore, the ∧ operation is
not defined).

Definition
A partial Boolean algebra A is said to satisfy the logical exclusivity principle (LEP) if any two
elements that are logically exclusive are also commeasurable, i.e. if ⊥ ⊆ ⊙.
We write epBA for the full subcategory of pBA whose objects are partial Boolean algebras
satisfying LEP.
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Logical exclusivity and transitivity
The logical exclusivity principle turns out to be equivalent to the following notion of transitivity.

Definition
A partial Boolean algebra is said to be transitive if for all elements a, b, c, a ≤ b and b ≤ c
implies a ≤ c.

Transitivity can fail in general for a partial Boolean algebra, since one need not have a⊙ c
under the stated hypotheses. Note that the relation ≤ on a partial Boolean algebra is always
reflexive and anti-symmetric, so this condition is equivalent to≤ being a partial order (globally)
on A.

A partial Boolean algebra of the form P(H) is always transitive.

Proposition
Let A be a partial Boolean algebra. Then it satisfies LEP if and only if it is transitive.

As an immediate consequence, any P(H) satisfies LEP.
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A reflective adjunction for logical exclusivity

We can of course form the partial Boolean algebra A[⊥]. While the exclusivity principle holds
for all its elements in the image of η : A −→ A[⊥], it may fail to hold for other elements in
A[⊥].

However, we can adapt our construction to show that one can freely generate, from any
given partial Boolean algebra, a new partial Boolean algebra satisfying LEP.

This LEP-isation is analogous to e.g. the way one can ‘abelianise’ any group, or use Stone–
Čech compactification to form a compact Hausdorff space from any topological space.

29 / 60



A reflective adjunction for logical exclusivity

We can of course form the partial Boolean algebra A[⊥]. While the exclusivity principle holds
for all its elements in the image of η : A −→ A[⊥], it may fail to hold for other elements in
A[⊥].

However, we can adapt our construction to show that one can freely generate, from any
given partial Boolean algebra, a new partial Boolean algebra satisfying LEP.

This LEP-isation is analogous to e.g. the way one can ‘abelianise’ any group, or use Stone–
Čech compactification to form a compact Hausdorff space from any topological space.

29 / 60



A reflective adjunction for logical exclusivity

We can of course form the partial Boolean algebra A[⊥]. While the exclusivity principle holds
for all its elements in the image of η : A −→ A[⊥], it may fail to hold for other elements in
A[⊥].

However, we can adapt our construction to show that one can freely generate, from any
given partial Boolean algebra, a new partial Boolean algebra satisfying LEP.

This LEP-isation is analogous to e.g. the way one can ‘abelianise’ any group, or use Stone–
Čech compactification to form a compact Hausdorff space from any topological space.

29 / 60



Theorem
The category epBA is a reflective subcategory of pBA, i.e. the inclusion functor
I : epBA −→ pBA has a left adjoint X : pBA −→ epBA. Concretely, to any partial Boolean
algebra A, we can associate a Boolean algebra X(A) = A[⊥]∗ which satisfies LEP such that:
▶ there is a homomorphism η : A −→ A[⊥]∗;
▶ for any homomorphism h : A −→ B where B is a partial Boolean algebra B satisfying LEP,

there is a unique homomorphism ĥ : A[⊥]∗ −→ B such that:

A A[⊥]∗

B
h

η

ĥ

The proof of this result follows from a simple adaptation of the proof of Theorem 5, namely
adding the following rule to the inductive system presented in Table 1:

u ∧ t ≡ u, v ∧ ¬t ≡ v
u⊙ v
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A A[⊥]∗

B
h

η

ĥ
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Logical exclusivity tensor product

We can define a stronger tensor product by forcing logical exclusivity to hold.

This amounts to composing with the reflection to epBA; ⊠ := X ◦ ⊗. Explicitly, we define
the logical exclusivity tensor product by

A⊠ B = (A⊗ B)[⊥]∗ = (A⊕ B)[:][⊥]∗.

This is sound for the Hilbert space model. More precisely, P is still a lax monoidal functor
with respect to this tensor product.

How close does it it get us to the full Hilbert space tensor product?
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KS-faithfulness of extensions

We can ask generally if extending commeasurability by some relation R can induce the K-S
property in A[R] when it did not hold in A?
In fact, it is easily seen that this can never happen.

Theorem (K-S faithfulness of extensions)
Let A be a partial Boolean algebra, and R ⊆ A2 a relation on A. Then A is K-S if and only if A[R]
is K-S.

Proof.
If A is not K-S, it has a homomorphism to a non-trivial Boolean algebra B. By the universal
property of A[R], there is a homomorphism ĥ : A[R] −→ B. Thus A[R] is not K-S. Conversely, if
there is a morphism k : A[R] −→ B to a non-trivial Boolean algebra B, then k ◦ η : A −→ B, so
A is not K-S.
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Tensor products

We can apply this in particular to the tensor product.

Corollary
If A and B are not K-S, then neither is A⊗ B[⊥]k.

Proof.
If A and B are not K-S, they have homomorphisms to 2, and hence so does A⊕ B. Applying
the previous theorem inductively k + 1 times, so does A⊗ B[⊥]k = A⊕ B[:][⊥]k.

Under the conjecture that A[⊥]∗ coincides with iterating A[⊥] to a fixpoint, this would show
that the logical exclusivity tensor product A ⊠ B never induces a K-S paradox if none was
present if A or B.

So we have narrowed, but not closed the gap . . .
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Duality for partial Boolean Algebras?

Our aim is to get a duality theory for pBA’s.

At first sight, this looks hopeless:
▶ classical Stone duality for boolean algebras B builds the Stone space of B from the

points, i.e. homomorphisms B −→ 2
▶ by Kochen-Specker, for interesting cases of pBA’s, there are no points!

We will instead generalize the Tarski duality for complete atomic Boolean algebras (CABAs)
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CABAs
Definition (Complete Boolean algebra)
A Boolean algebra A is said to be complete if any subset of elements S ⊆ A has a supremum∨

S in A (and consequently an infimum
∧

S, too). It thus has additional operations∧
,
∨

: P(A) −→ A .

Definition (Atomic Boolean algebra)
An atom of a Boolean algebra is a minimal non-zero element, i.e. an element x ̸= 0 such that
a ≤ x implies a = 0 or a = x.

Atoms are “state descriptions” or “possible worlds”.

A Boolean algebra A is called atomic if every non-zero element sits above an atom, i.e. for all
a ∈ A with a ̸= 0 there is an atom x with x ≤ a.

A CABA is a complete, atomic Boolean algebra.
35 / 60



Tarski duality

CABA Setop

At

P

∼=
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Tarski duality

CABA Setop

At

P

∼=

P : Setop −→ CABA is the contravariant powerset functor:
▶ on objects: a set X is mapped to its powerset PX (a CABA).
▶ on morphisms: a function f : X −→ Y yields a complete Boolean algebra homomorphism

P(f) : P(Y) −→ P(X)

(T ⊆ Y) 7−→ f−1(T) = {x ∈ X | f(x) ∈ T}
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Tarski duality

CABA Setop

At

P

∼=

At : CABAop −→ Set is defined as follows:
▶ on objects: a CABA A is mapped to its set of atoms.
▶ on morphisms: a complete Boolean homomorphism h : A −→ B yields a function

At(h) : At(B) −→ At(A)

mapping an atom y of B to the unique atom x of A such that y ≤ h(x).
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Partial CABAs
Definition (partial complete BA)
A partial complete Boolean algebra is a pBA with an additional (partial) operation∨

:
⊙

−→ A

satisfying the following property: any set S ∈
⊙

is contained in a set T ∈
⊙

which forms a
complete Boolean algebra under the restriction of the operations.

Definition (Atomic Boolean algebra)
A partial Boolean algebra A is called atomic if every non-zero element sits above an atom,
i.e. for all a ∈ A with a ̸= 0 there is an atom x with x ≤ a.

A partial CABA is a complete, atomic partial Boolean algebra.

Note that P(H) is a partial CABA. Atoms are the rank-1 projectors (one-dimensional sub-
spaces), i.e. the pure states.
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Duality for partial CABAs: the idea

▶ The key idea is to replace sets by certain graphs.

▶ Adjacency generalizes ̸=, thus sets embed as complete graphs.

▶ These exclusivity graphs are the “non-commutative spaces” in this duality.

▶ Morphism of graphs are certain relations, generalizing the functional relations which
appear in classical Tarski duality.
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Graph theory notions

Definition
A graph (X,#) is a set equipped with a symmetric irreflexive relation.

Elements of X are called vertices, while unordered pairs {x, y} with x # y are called edges.

Given a vertex x ∈ X and sets of vertices S,T ⊂ X, we write:
▶ x # S when for all y ∈ S, x # y;
▶ S # T when for all x ∈ S and y ∈ T, x # y;
▶ x# := {y ∈ X | y#x} for the neighbourhood of the vertex x;
▶ S# :=

⋂
x∈S x# = {y ∈ X | y # S} for the common neighbourhood of the set S.

A clique is a set of pairwise-adjacent vertices, i.e. a set K ⊂ X with x # K \ {x} for all x ∈ K.

A graph (X,#) has finite clique cardinal if all cliques are finite sets.
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A clique is a set of pairwise-adjacent vertices, i.e. a set K ⊂ X with x # K \ {x} for all x ∈ K.

A graph (X,#) has finite clique cardinal if all cliques are finite sets.
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Graph of atoms

Definition (Graph of atoms)
The graph of atoms of a partial Boolean algebra A, denoted At(A), has as vertices the atoms
of A and an edge between atoms x and x′ if and only if x⊙ x′ and x ∧ x′ = 0.

▶ At(A) is the set of atomic events with an exclusivity relation.
▶ Can interpret these as worlds of maximal information and incompatibility between them.

▶ If A is a Boolean algebra, then At(A) is the complete graph on the set of atoms (# is ̸=).

Recall that in a CABA, any element is uniquely written as a join of atoms, viz. a =
∨

Ua with

Ua := {x ∈ At(A) | x ≤ a}

In a pBA, Ua may not be pairwise commeasurable, hence their join need not even be defined.
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Elements from atoms
Proposition
Let A be a transitive partial CABA. For any element a ∈ A, it holds that a =

∨
K for any clique

K of At(A) which is maximal in Ua.

So an element a is the join of any clique that is maximal in Ua.

Given two maximal cliques K and L, this yields an equality∨
K =

∨
L

where the elements in
∨

K and those in
∨

L are not commeasurable.

The key to reconstructing a partial CABA from its atoms lies in characterising such equalities,

Proposition
Let K and L be cliques in At(A). Then

∨
K =

∨
L iff K# = L#.
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Partial CABA from its graph of atoms
Writing

K ≡ L : ⇔ K# = L#,
elements of A are in 1-to-1 correspondence with ≡-equivalence classes of cliques of At(A).

Alternatively, take the double neighbourhood closures of cliques K##, yielding the sets Ua.

We can describe the algebraic structure of a partial CABA A from its graph of atoms:

▶ 0 = [∅].

▶ 1 = [M] for any maximal clique M.

▶ ¬[K] = [L] for any L maximal in K#, i.e. for any L#K such that L ⊔ K is a maximal clique.

▶ [K]⊙ [L] iff there exist K′ ≡ K and L′ ≡ L such that K′ ∪ L′ is a clique.

▶ [K] ∨ [L] = [K′ ∪ L′].

▶ [K] ∧ [L] = [K′ ∩ L′].

Which conditions on a graph (X,#) allow for such reconstruction?
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Complete exclusivity graphs
Definition
A complete exclusivity graph is a graph (X,#) such that for K, L cliques and x, y ∈ X:
1. If K ⊔ L is a maximal clique, then K# # L#, i.e. x # K and y # L implies x # y.
2. x# ⊆ y# implies x = y.

x y

K L

∃
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1. If K ⊔ L is a maximal clique, then K# # L#, i.e. x # K and y # L implies x # y.
2. x# ⊆ y# implies x = y.

A helpful intuition is to see these as generalising sets with a ̸= relation (the complete graph).

▶ A graph is symmetric and irreflexive.
▶ To be an inequivalence relation, we need cotransitivity: x # z implies x # y or y # z.

▶ Condition 1. is a weaker version of cotransitivity.
▶ Condition 2. eliminates redundant elements: cotransitive + 2. implies ̸=.
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Graph of atoms is complete exclusivity graph

Proposition
Let A be a partial Boolean algebra. Then At(A) is a complete exclusivity graph.

Proof.
Let K, L ⊂ X such that K ⊔ L is a maximal clique, and let x, y be atoms of A.
c :=

∨
K = ¬

∨
L.

x # K means x ≤ ¬
∨

K = ¬c and x # L means y ≤ ¬
∨

L = c.
By transitivity, we conclude that x ⊙ y,
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Morphisms of complete exclusivity graphs
What about morphisms?

Definition
A morphism (X,#) −→ (Y,#) is a relation R : X −→ Y satisfying:
1. x R y, x′ R y′, and y # y′ implies x # x′

2. if K is a maximal clique in Y , R−1(K) contains a maximal clique.
3. for each y ∈ Y , (R−1({y}))## = R−1({y}).

For complete graphs:
1. xRy, x′Ry′, and
2. R−1(Y) = X. (left-total)
3. trivialises.

Given h : A −→ B define y R x iff y ≤ h(x).
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Morphisms of CE graphs and pCABA homomorphisms
Proposition
Let A and B be transitive partial CABAs. Given h : A −→ B a partial complete Boolean algebra
homomorphism, the relation Rh : At(B) −→ At(A) given by

xRhy iff x ≤ h(y)

is a morphism of complete exclusivity graphs. Moreover, the assignment h 7→ Rh is functorial.

Proposition
Let X and Y be complete exclusivity graphs. Given R : X −→ Y a morphism of complete
exclusivity graphs, the function hR : K(Y) −→ K(X) given by hR([K]) := [L] where L is any
clique maximal in R−1(K) is a well-defined partial CABA homomorphism.

Proposition
For any A and B be transitive partial CABAs, epCABA(A,B) ∼= XGph(At(B),At(A)).
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Global points

Homomorphism A −→ 2 corresponds to morphism K1 −→ At(A),

i.e. a subset of atoms of A satisfying:
1. it is an independent (or stable) set
2. it is a maximal clique transversal, i.e. it has a vertex in each maximal clique

The extensive literature on Kochen-Specker constructions is concerned with building graphs
which have no such transversals, thus showing that the corresponding pBA’s have no points.
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Free-forgetful adjunction for CABAs

CABA Setop

Set

At

U

P

PF

P

∼=

⊣ ⊣

▶ Under the duality, it corresponds to the contravariant powerset self-adjunction.
▶ It gives the construction of the free CABA as a double powerset.
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Free-forgetful adjunction for partial CABAs

epCABA XGphop

RGph

At

U

K

KF

V

∼=

⊣ ⊣

▶ Universe of a pCABA is a reflexive (compability) graph ⟨A,⊙⟩

▶ Under duality it corresponds to adjunction between compatibility and exclusivity graphs.
▶ This gives a concrete construction of the free CABA. A compatibility ⟨P,⊙⟩ to a graph

with vertices ⟨C, γ : C −→ {0, 1}⟩ where C maximal compatible set, and edges

⟨C, γ⟩ # ⟨D, δ⟩ iff ∃x ∈ C ∩ D. γ(x) ̸= δ(x) .
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Kochen-Specker paradoxes and Mermin squares
We recall the following result:

Theorem
Let A be a pba. Then the following are equivalent:
1. A is K-S (i.e. no homomorphism to 2)
2. For some propositional contradiction φ(⃗x) and assignment x⃗ 7→ a⃗,

A |= φ(⃗a)

We want to explicitly construct such a contradiction which evaluates to true in P(H).

While we can do this by encoding colouring problems on sets of vectors, there is a more
elegant approach which yields a smaller formula.

This also provides an opportunity to make contact with another important idea, the Pauli
group.
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The Pauli group on qubits

We recall the definition of the Pauli operators onC2, dichotomic (i.e. two-valued) observables
corresponding to measuring spin in the x, y, and z axes, with eigenvalues ±1

X :=

(
0 1
1 0

)
Y :=

(
0 −i
i 0

)
Z :=

(
1 0
0 −1

)
These matrices are self-adjoint, have eigenvalues ±1, and together with the identity matrix I
satisfy the following relations:

X2 = Y2 = Z2 = I
XY = iZ, YZ = iX, ZX = iY, (1)

YX = −iZ, ZY = −iX, XZ = −iY.
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The Pauli 2-group

We can extend this to a group operating on 2 qubits, C2 ⊗ C2.

We write XI := X ⊗ I, etc.

By bilinearity of tensor, we have

αU⊗ βV = αβ(U⊗ V)

Thus e.g. we have
(XZ)(ZX) = (−i)iYY = YY

while
(XX)(ZZ) = i2YY = −YY
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The Peres-Mermin magic square

Now we can define a famous and important construction, the Peres-Mermin magic square:

XI — IX — XX
| | |
IZ — ZI — ZZ
| | |

XZ — ZX — YY

Note that:
▶ The operators in each row and column commute.
▶ The product of each of the rows, and of the first two columns, is II.
▶ The product of the third column is −II.
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Contextuality in the P-M square

We ask if there is a non-contextual value assignment val : X −→ Z2 , where X is the set of
operators in the table, subject to the conditions that
1. if p and q commute, then val(pq) = val(p) + val(q).
2. val(II) = 0 and val(−II) = 1.

If there were such an assignment, we would have a solution for the following set of equations
over Z2 from the above table, one for each row and each column:

a+ b+ c = 0 a+ d+ g = 0
d+ e+ f = 0 b+ e+ h = 0
g+ h+ i = 0 c+ f + i = 1

(2)

Here a is a variable corresponding to val(XI), etc.

Summing the left hand sides yields 0, summing the right hand sides yields 1, contradiction.
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The partial homomorphism condition

The justification for assuming the partial homomorphism condition comes from the quantum
case:
▶ if A and B are commuting observables and ψ is a common eigenvector of A and B, with

eigenvalue v for A and w for B, then ψ is an eigenvector for AB with eigenvalue vw.

Also, II has the unique eigenvalue +1, and −II the unique eigenvalue −1.1

This is Kochen and Specker’s refinement of von Neumann’s much criticized no-go theorem.

1Note that {+1,−1} under multiplication is an isomorphic representation of Z2 , with 0 corresponding to +1 and
1 to −1 under the mapping i 7→ (−1)i.
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From Paulis to projectors

Theorem
There is a bijective correspondence between unitary involutions u (i.e. u = u∗, u2 = I) and
projectors p, given by
▶ u = 2p− I
▶ p = 1

2 (I+ u)
Moreover, the correspondence preserves and reflects commutation of products, and
▶ if p corresponds to u, then I− p corresponds to −u
▶ If p corresponds to u and q to v, and p commutes with q, then p ↔ q corresponds to uv.
Here in a pBA, if a is compatible with b, then a ↔ b := (a ∧ b) ∨ (¬a ∧ ¬b).

Thus we can translate algebraic paradoxes in the Paulis into logical paradoxes in the pBA of
projectors.
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Contextual words

A contextual word in the Pauli 2-group is a product

w = x1 · · · xn

such that:
▶ w can be built up from commuting products
▶ each element occurs in w an even number of times
▶ w = −II.
A contextual word is a witness for contextuality, since it shows that no non-contextual value
assignment can exist.

A contextual word corresponding to the Peres-Mermin square is

((XI IZ)(ZI IX))((XI IX)(ZI IZ))

Note that first principal subterm evaluates to XZ ZX = YY , the second to XX ZZ = −YY.
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From contextual words to paradoxes
We can now use the correspondence between involutive unitaries and projectors to turn the
contextual word into a tautology falsified in the pBA of projectors.

We have the projectors corresponding to the four local Paulis used to construct the contextual
word:

a = p(XI), b = p(IZ), c = p(ZI), d = p(IX)

We can turn the contextual word

((XI IZ)(ZI IX))((XI IX)(ZI IZ))

into the classical tautology

([a ↔ b] ↔ [c ↔ d]) ↔ ([a ↔ d] ↔ [c ↔ b])

The fact that the word evaluates to −II means that this tautology evaluates to false.

Similarly, the classical contradiction

([a ↔ b] ↔ [c ↔ d])⊕ ([a ↔ d] ↔ [c ↔ b])

evaluates to true.
Here e⊕ f := (e ∧ ¬f) ∨ (¬e ∧ f).
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Further notes
A result by Coray shows that every 3-variable classical tautology is satisfied in pBA’s. Thus
this 4-variable example is minimal.

However, the classical contradiction

(a ↔ b) ∧ (b ↔ c) ∧ (c ↔ d) ∧ (d⊕ a)

corresponding to the CHSH game/PR box is not satisfiable in any transitive pBA.

We can consider the following question:
▶ Given a classical contradiction φ, is this satisfied in a projection lattice?

Question If the dimension is unbounded is this decidable? if we bound the dimension, what
is the complexity?
We can ask similar questions for satisfiability in classes of pBA’s.

We can also generalize beyond the Pauli group considered here. See SA, Carmen Constatin
and Serban Cercelescu, Commutation Groups and state-independent contextuality, to appear
at FSCD 2024, also presentation at TACL.
Does the connection to logic and pBA’s persist in these generalizations?
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