Non-Classical Temporal Logic in Topological Dynamics

David Fernández-Duque University of Barcelona

Barcelona, 2024

Day 2

BEFORE ITL

- 1997 Artemov, Davoren and Nerode introduced the bi-modal classical logic S4C based on ∘ and the **interior semantics** for ■. They proved that
 - ► S4C is Kripke-complete.
 - ► it has the finite model property
- 2005 Kremer and Mints showed that the above results also hold for S4H, the variant of S4C where *f* is a **homeomorphism** (equivalently, an interior map).

They introduced Dynamic Topological Logic (DTL), which extends S4C with \Box .

They showed it can express **minimality** and **Poincaré recurrence.**

NEGATIVE RESULTS

- 2005 Kremer and Mints showed DTL is not complete for Alexandroff spaces.
- 2006 Konev, Kontchakov, Wolter and Zakaryashev proved that
 - ► DTL is undecidable
 - ► DTL_{*H*}, where *f* is restricted to be a homeomorphism/interior map, is non-axiomatizable

2014 F-D showed that DTL is not finitely axiomatisable.

AN OLD HOPE

2004 Kremer suggested replacing DTL by a version of ITL in an unpublished note.

► Is ITL decidable?

► Is ITL finitely axiomatisable?

Let's find out!

Language $\mathcal{L}_{\Diamond\forall}$:

 $\perp \ | \ p \ | \ \varphi \wedge \psi \ | \ \varphi \vee \psi \ | \ \varphi \to \psi \ | \ \circ \varphi \ | \ \Diamond \varphi \ | \ \forall \varphi$

Topological LTL **models:** $(X, S, [\cdot])$ where *X* is a topological space, *S* : *X* \rightarrow *X* and $[\cdot]$ an intuitionistic valuation.

$$\blacktriangleright \ [\![\circ\varphi]\!] = S^{-1}[\![\varphi]\!]$$

$$\blacktriangleright \ [\![\diamondsuit \varphi]\!] = \bigcup_{n=0}^{\infty} S^{-n} [\![\varphi]\!]$$

$$\blacktriangleright \ \llbracket \forall \varphi \rrbracket = \begin{cases} X & \text{if } \llbracket \varphi \rrbracket = X \\ \varnothing & \text{otherwise} \end{cases}$$

Rescuing Kripke semantics

ITL is Kripke-incomplete, but many techniques from modal logic are based on these semantics.

Question: Can we still use Kripke semantics to understand ITL over arbitrary spaces?

Answer: Yes we can, as long as we weaken the **functionality** conditions on *S*.

This idea gives rise to **non-deterministic quasimodels**.

DEFINITION: TYPE

Fix finite Σ closed under subformulas.

A type is a partition $\Phi = (\Phi^+, \Phi^-)$ of Σ satisfying natural **coherence** conditions

 $(p \land q, p, q; \diamondsuit r, r)$

QUASIMODELS

LABELLED POSET: Triple (W, \preccurlyeq, ℓ) where ℓ assigns a type to each $w \in W$ according to the Kripke semantics

WEAK QUASIMODEL: Tuple $(W, \preccurlyeq, R, \ell)$ consisting of a **locally finite** labelled preorder equipped with a **sensible relation**:

- ► *R* is **forward-confluent**
- ► *R* respects tenses

QUASIMODELS: Weak quasimodels $(W, \preccurlyeq, R, \ell)$ such that

- R is ω -sensible
- ℓ is **honest:** Respects \forall .

EXAMPLE: Falsify $\forall (\neg p \lor \Diamond p) \rightarrow (\Diamond p \lor \neg \Diamond p)$ in a quasimodel.

FROM DYNAMICAL SYSTEMS TO QUASIMODELS

THEOREM A formula $\varphi \in \mathcal{L}_{\Diamond \forall}$ is valid over the class of dynamical systems iff it is valid over the class of quasimodels

Proof.

(⇒) Define a natural topology and transition function on the set of **realizing paths**

(\Leftarrow) Fix a finite set of formulas Σ closed under subformulas

Construct a universal weak quasimodel \mathbb{M}_{Σ}

Prove that if φ is falsifiable, then it is falsifiable on some quasimodel $\mathcal{Q} \sqsubseteq \mathbb{M}_{\Sigma}$

QUASIMODELS BY SIMULATION

A simulation *E* between a weak quasimodel $Q = (W, \preccurlyeq, R, \ell)$ and a dynamic topological model $\mathcal{M} = (X, S, \llbracket \cdot \rrbracket)$ is a binary relation

 $E \subseteq W \times X$

such that

- 1. *E* preserves types
- 2. *E* is continuous (preimages of opens are open)
- 3. *E* is **dynamic:** it is **backward** confluent for *R*.

EXTRACTING QUASIMODELS

Let $Q = (W, \preccurlyeq, R, \ell)$ be a weak quasimodel, $\mathcal{M} = (X, S, \llbracket \cdot \rrbracket)$ a dynamic topological model.

LEMMA (EXERCISE) If $E \subseteq W \times X$ is a dynamic simulation, then the domain of E is a quasimodel.

Our strategy will be to construct a weak quasimodel which surjectively simulates any dynamic topological model.

Moments

We define $\mathbb{M}_{\Sigma} = (M_{\Sigma}, \preccurlyeq, R, \ell)$ by

- ► M_∑ is the set of all moments: finite, rooted, tree-like labeled posets
- $\mathfrak{v} \preccurlyeq \mathfrak{w}$ if \mathfrak{v} is an open substructure of \mathfrak{w}
- v R w if there is a sensible, root-preserving relation between v and w

Fact: \mathbb{M}_{Σ} is a weak quasimodel, but not necessarily a quasimodel.

STRATEGY FOR EXTRACTING QUASIMODELS

The structure $\mathbb{M}_{\Sigma} = (M_{\Sigma}, \preccurlyeq, R, \ell)$ amalgamates all finite weak quasimodels but is 'too large':

- ► It is infinite, despite individual moments being finite.
- It is in general not ω -sensible.

Given a model $\mathfrak{X} = (X, \mathcal{T}, S, \llbracket \cdot \rrbracket)$, we can identify those elements of M_{Σ} which **simulate** points in *X*.

- Given any model with domain *X*, there is a surjective, dynamic simulation $E^* \subseteq M_{\Sigma} \times X$.
- ► The domain of *E*^{*} will give us our desired quasimodel.

THE PROBLEM WITH INFINITY

The fact that \mathbb{M}_{Σ} is infinite has two disadvantages:

 Our proof techniques require moments to be uniformly bounded.

► We can prove that ITL is decidable if every falsifiable formula were falsified in a **finite** quasimodel.

Thus we will identify a **finite** substructure \mathbb{I}_{Σ} of \mathbb{M}_{Σ} which is still universal.

Denote moments by $\mathfrak{m} = (|\mathfrak{m}|, \preccurlyeq_{\mathfrak{m}}, \ell_{\mathfrak{m}}).$

DEFINITION

- $\blacktriangleright \ \mathfrak{w} \sqsubseteq \mathfrak{v} \text{ if } |\mathfrak{w}| \subseteq |\mathfrak{v}|, \preccurlyeq_{\mathfrak{w}} = \preccurlyeq_{\mathfrak{v}} \restriction |\mathfrak{w}|, \text{ and } \ell_{\mathfrak{w}} = \ell_{\mathfrak{v}} \restriction |\mathfrak{w}|$
- $\mathfrak{w} \leq \mathfrak{v}$ if $\mathfrak{w} \sqsubseteq \mathfrak{v}$ and there is a continuous, surjective function $\pi : |\mathfrak{v}| \to |\mathfrak{w}|$ such that $\ell_{\mathfrak{v}}(v) = \ell_{\mathfrak{w}}(\pi(v))$ for all $v \in |\mathfrak{v}|$ and $\pi^2 = \pi$.

We say that \mathfrak{w} is a *reduct* of \mathfrak{v} and π is a *reduction*

DEFINITION

A moment \mathfrak{w} is **irreducible** if $\mathfrak{n} \leq \mathfrak{m}$ implies $\mathfrak{n} = \mathfrak{m}$. We denote the set of irreducible moments by I_{Σ} and the restriction of \mathbb{M}_{Σ} to I_{Σ} by \mathbb{I}_{Σ} .

SURJECTIVITY OF SIMULATIONS

LEMMA If \mathfrak{m} is a moment there is $\mathfrak{n} \leq \mathfrak{m}$ which is irreducible and effectively bounded.

PROPOSITION *The relation* $\trianglelefteq \subseteq I_{\Sigma} \times M_{\Sigma}$ *is a surjective, dynamic simulation.*

PROPOSITION Let \mathfrak{X} be any dynamic topological model with domain X and $E^* \subseteq M_{\Sigma} \times X$ be the **maximal simulation**. Let $E_0^* \subseteq I_{\Sigma} \times X$ be the restriction to I_{Σ} . Then, both E_0^* and E^* are surjective, dynamic simulations.

DECIDABILITY

THEOREM *A formula of* $\mathcal{L}_{\diamond\forall}$ *is falsifiable in a dynamic topological model iff it is falsifiable on an effectively bounded quasimodel.*

PROOF.

Let $E_0^* \subseteq I_{\Sigma} \times X$ be the maximal simulation, which is a surjective, dynamic simulation. Then, \mathbb{I}_{Σ} restricted to the domain of E_0^* is a finite quasimodel falsifying any formula falsified by \mathfrak{X} .

COROLLARY

The set of $\mathcal{L}_{\Diamond\forall}$ *formulas valid over the class of dynamical systems (with a continuous function) is decidable.*

The classical DTL is undecidable for the same class of models.

Recall: Over Alexandroff/poset models, \Box can be evaluated 'classically'.

THEOREM (BOUDOU ET AL.)

The set of $\mathcal{L}_{\Diamond\Box}$ *formulas valid over the class of Alexandroff dynamical systems is decidable.*

PROOF SKETCH.

Very similar to the topological case, except that $\mathfrak{m} R \mathfrak{n}$ is witnessed by a sensible **function**.

LOGICS WITH INTERIOR MAPS

These techniques do not seem to work for logics with interior maps because reductions only preserve forward **or** backward confluence.

Preservation of both seems to require **full** bisimulation.

The decidability of ITL with interior maps is open with \diamond and/or \Box .

DTL over this class of models is non-axiomatisable.

DECIDABILITY OF GDTL

PROPOSITION *Every* Σ *-labelled linear moment is bisimilar to one with* $\#\Sigma + 1$ *elements.*

THEOREM GDTL *is decidable*.

The proof works almost verbatim except that

- moments should be linear
- m R n if there is a **fully confluent** sensible relation between them
- the topological unwinding requires a step-by-step method to maintain linearity.

DTL over this class of models is still non-axiomatisable!

REFERENCES

 Artemov, S., Davoren, J., and Nerode, A.: Modal Logics and Topological Semantics for Hybrid Systems. Technical Report MSI 97-05, Cornell University (1997).

 Aguilera, J.P., Diéguez, M., F-D, McLean, B.: Time and Gödel: Fuzzy Temporal Reasoning in PSPACE. WoLLIC 2022: 18-35

 Balbiani, P., Boudou, J., Diéguez, M., F-D: Intuitionistic Linear Temporal Logics. ACM Trans. Comput. Log. 21(2): 14:1-14:32 (2020).

REFERENCES

 Konev, B., Kontchakov, R., Wolter, F., Zakharyaschev, M.: On Dynamic Topological and Metric Logics. Stud Logica 84(1): 129-160 (2006)

 Konev, B., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Dynamic topological logics over spaces with continuous functions. Advances in Modal Logic 2006: 299-318

 Kremer, P., Mints, G.: Dynamic topological logic. Ann. Pure Appl. Log. 131(1-3): 133-158 (2005).