
A categorical approach to automata learning and
minimization – part 1

Daniela Petrişan

Université Paris Cité, IRIF, France

TACL’24, Barcelona, 24-28 June 2024



TANCL’07 in Oxford

• the �rst conference I
attended

• organized by Mai Gehrke and
Hilary Priestley

• some wonderful talks
Samson Abramsky, Alexander
Kurz, Jean-Éric Pin, etc.

• in particular, Jean-Éric Pin
taked about automata,
semigroups and duality ...

• my �rst slide at TACL’2019,
organized by Mai Gehrke in
Nice !

2 / 31



TANCL’07 in Oxford

• the �rst conference I
attended

• organized by Mai Gehrke and
Hilary Priestley

• some wonderful talks
Samson Abramsky, Alexander
Kurz, Jean-Éric Pin, etc.

• in particular, Jean-Éric Pin
taked about automata,
semigroups and duality ...

• my �rst slide at TACL’2019,
organized by Mai Gehrke in
Nice !

2 / 31



References for Lecture 1

T. Colcombet and D. Petrişan. Automata minimization: a functorial
approach. Log. Methods Comput. Sci., 16(1), 2020

J. E. Pin (Ed.) Handbook of Automata Theory, EMS Press, 2021

3 / 31



This tutorial is about ...

the interplay between category theory and automata theory.

In particular, we will see how the category-theoretic approach

• provides a unifying framework for modelling various forms of
automata,

• for obtaining generic algorithms for learning algorithms,
• highlights the link between automata learning and
minimization.

4 / 31



This tutorial is about ...

the interplay between category theory and automata theory.

In particular, we will see how the category-theoretic approach

• provides a unifying framework for modelling various forms of
automata,

• for obtaining generic algorithms for learning algorithms,

• highlights the link between automata learning and
minimization.

4 / 31



This tutorial is about ...

the interplay between category theory and automata theory.

In particular, we will see how the category-theoretic approach

• provides a unifying framework for modelling various forms of
automata,

• for obtaining generic algorithms for learning algorithms,
• highlights the link between automata learning and
minimization.

4 / 31



Automata – the basics

A complete deterministic �nite automaton over some �nite
alphabet A is a tuple A = (Q,q0, F, (δa)a∈A) where

• Q is a �nite set of states
• q0 is an element of Q, called initial state
• F ⊆ Q is a subset of accepting states
• for every letter a ∈ A, δa∶Q→ Q is a transition function

0 1
a

b

ab

For each word w = a1 . . .an ∈ A∗, we
put δw = δan ○ . . . ○ δa1 and δε = idQ.

A word w ∈ A∗ is accepted by A
when δw(q0) ∈ F.
The language of A is the set L(A)
of words over A∗ accepted by A.

5 / 31



Automata – the basics

A complete deterministic �nite automaton over some �nite
alphabet A is a tuple A = (Q,q0, F, (δa)a∈A) where

• Q is a �nite set of states
• q0 is an element of Q, called initial state
• F ⊆ Q is a subset of accepting states
• for every letter a ∈ A, δa∶Q→ Q is a transition function

0 1
a

b

ab

For each word w = a1 . . .an ∈ A∗, we
put δw = δan ○ . . . ○ δa1 and δε = idQ.
A word w ∈ A∗ is accepted by A
when δw(q0) ∈ F.

The language of A is the set L(A)
of words over A∗ accepted by A.

5 / 31



Automata – the basics

A complete deterministic �nite automaton over some �nite
alphabet A is a tuple A = (Q,q0, F, (δa)a∈A) where

• Q is a �nite set of states
• q0 is an element of Q, called initial state
• F ⊆ Q is a subset of accepting states
• for every letter a ∈ A, δa∶Q→ Q is a transition function

0 1
a

b

ab

For each word w = a1 . . .an ∈ A∗, we
put δw = δan ○ . . . ○ δa1 and δε = idQ.
A word w ∈ A∗ is accepted by A
when δw(q0) ∈ F.
The language of A is the set L(A)
of words over A∗ accepted by A.

5 / 31



Regular languages

... form a very robust class – described in a multitude of ways.
Example: “Last letter is a.”

(a + b)∗a
the language of a
regular expression
(Kleene theorem)

φ∶A∗ → {1,a,b}
the preimage of

a monoid morphism

1 a b
1 1 a b
a a a b
b b a b

∃x. ¬(∃y. x < y) ∧ Qax
de�nable in MSO

(Büchi-Elgot-Trakhtenbrot)

recognised by a DFA or an NFA

regular languages

p q

a
b

b

a

6 / 31



Regular languages

... form a very robust class – described in a multitude of ways.
Example: “Last letter is a.”

(a + b)∗a
the language of a
regular expression
(Kleene theorem)

φ∶A∗ → {1,a,b}
the preimage of

a monoid morphism

1 a b
1 1 a b
a a a b
b b a b

∃x. ¬(∃y. x < y) ∧ Qax
de�nable in MSO

(Büchi-Elgot-Trakhtenbrot)

recognised by a DFA or an NFA

regular languages

p q

a
b

b

a

6 / 31



Regular languages

... form a very robust class – described in a multitude of ways.
Example: “Last letter is a.”

(a + b)∗a
the language of a
regular expression
(Kleene theorem)

φ∶A∗ → {1,a,b}
the preimage of

a monoid morphism

1 a b
1 1 a b
a a a b
b b a b

∃x. ¬(∃y. x < y) ∧ Qax
de�nable in MSO

(Büchi-Elgot-Trakhtenbrot)

recognised by a DFA or an NFA

regular languages

p q

a
b

b

a

6 / 31



Minimization

Given a language L ⊆ A∗ and a word u ∈ A∗ the left quotient u−1L is
the set

{v ∈ A∗ ∣ uv ∈ L}

The Myhill-Nerode equivalence is de�ned by

u ≅L v i� u−1L = v−1L

Theorem (Myhill-Nerode). A language L is regular i� it has only
�nitely many left quotients i� ≅L has �nite index.

Proof. ⇒ If an automaton A = (Q,q0, F, (δa)a∈A) accepts a language L,
then the automaton (Q, δu(q0), F, (δa)a∈A) accepts u−1L.

⇐ Consider the Nerode automaton of L, that is (Q,q0, F, (δa)a∈A),
where
• Q = {u−1L ∣ u ∈ A∗},
• q0 = L

• F = {u−1L ∣ u ∈ L} and
• δa(u−1L) = (ua)−1L.

7 / 31



Minimization

Given a language L ⊆ A∗ and a word u ∈ A∗ the left quotient u−1L is
the set

{v ∈ A∗ ∣ uv ∈ L}

The Myhill-Nerode equivalence is de�ned by

u ≅L v i� u−1L = v−1L

Theorem (Myhill-Nerode). A language L is regular i� it has only
�nitely many left quotients i� ≅L has �nite index.

Proof. ⇒ If an automaton A = (Q,q0, F, (δa)a∈A) accepts a language L,
then the automaton (Q, δu(q0), F, (δa)a∈A) accepts u−1L.

⇐ Consider the Nerode automaton of L, that is (Q,q0, F, (δa)a∈A),
where
• Q = {u−1L ∣ u ∈ A∗},
• q0 = L

• F = {u−1L ∣ u ∈ L} and
• δa(u−1L) = (ua)−1L.

7 / 31



Minimization

Given a language L ⊆ A∗ and a word u ∈ A∗ the left quotient u−1L is
the set

{v ∈ A∗ ∣ uv ∈ L}

The Myhill-Nerode equivalence is de�ned by

u ≅L v i� u−1L = v−1L

Theorem (Myhill-Nerode). A language L is regular i� it has only
�nitely many left quotients i� ≅L has �nite index.

Proof. ⇒ If an automaton A = (Q,q0, F, (δa)a∈A) accepts a language L,
then the automaton (Q, δu(q0), F, (δa)a∈A) accepts u−1L.

⇐ Consider the Nerode automaton of L, that is (Q,q0, F, (δa)a∈A),
where
• Q = {u−1L ∣ u ∈ A∗},
• q0 = L

• F = {u−1L ∣ u ∈ L} and
• δa(u−1L) = (ua)−1L.

7 / 31



Minimization

Given a language L ⊆ A∗ and a word u ∈ A∗ the left quotient u−1L is
the set

{v ∈ A∗ ∣ uv ∈ L}

The Myhill-Nerode equivalence is de�ned by

u ≅L v i� u−1L = v−1L

Theorem (Myhill-Nerode). A language L is regular i� it has only
�nitely many left quotients i� ≅L has �nite index.

Proof. ⇒ If an automaton A = (Q,q0, F, (δa)a∈A) accepts a language L,
then the automaton (Q, δu(q0), F, (δa)a∈A) accepts u−1L.

⇐ Consider the Nerode automaton of L, that is (Q,q0, F, (δa)a∈A),
where
• Q = {u−1L ∣ u ∈ A∗},
• q0 = L

• F = {u−1L ∣ u ∈ L} and
• δa(u−1L) = (ua)−1L. 7 / 31



Minimization

How do we minimize an automaton A?

• remove all states that are not accessible from the initial state.
We obtain the reachable sub-automaton Reach(A).

• Merge all states that accept the same language, we obtain the
observable quotient Obs(Reach(A)).

There are several algorithms for minimizing automata:
Moore, Hopcroft, Brzozowski.

8 / 31



Minimization

How do we minimize an automaton A?

• remove all states that are not accessible from the initial state.
We obtain the reachable sub-automaton Reach(A).

• Merge all states that accept the same language, we obtain the
observable quotient Obs(Reach(A)).

There are several algorithms for minimizing automata:
Moore, Hopcroft, Brzozowski.

8 / 31



Non-deterministic automata

A non-deterministic �nite automaton over some �nite alphabet A is
a tuple A = (Q, I, F, δ) where

• Q is a �nite set of states
• I ⊆ Q is a subset of initial states
• F ⊆ Q is a subset of accepting states
• δ ⊆ Q × A ×Q is set of transitions

0 1
a

b

ba
A word w ∈ A∗ is accepted by A
when there is a path labelled by
w starting from an initial state and
�nishing in an accepting state.

Proposition. Every NFA is equiva-
lent to a DFA.

9 / 31



Non-deterministic automata

A non-deterministic �nite automaton over some �nite alphabet A is
a tuple A = (Q, I, F, δ) where

• Q is a �nite set of states
• I ⊆ Q is a subset of initial states
• F ⊆ Q is a subset of accepting states
• δ ⊆ Q × A ×Q is set of transitions

0 1
a

b

ba
A word w ∈ A∗ is accepted by A
when there is a path labelled by
w starting from an initial state and
�nishing in an accepting state.
Proposition. Every NFA is equiva-
lent to a DFA.

9 / 31



Weighted automata over a semiring

Given a semiring S, an S-weighted automaton over some �nite
alphabet Ais a tuple A = (Q, i, f , δ) where

• Q is a �nite set of states
• i∶Q→ S assigns an initial value to each state
• f ∶Q→ S is a subset a �nal value to each state
• δ∶Q × A ×Q→ S assigns to each transition a value in S

x yb

2a

2b

a

b

• Let w ∈ A∗. For an accepting
path labelled by w compute
its weight using the
multiplication of the
semiring.

• We add the weights of all
accepting pathes labelled by
w to obtain L(A)(w).

10 / 31



Sequential transducers

A sequential transducer with input alphabet A and output alphabet
B consists of:

• a �nite set of states Q
• an initial state with an initial output in B∗, or an unde�ned
initial state

• for each a ∈ A a transition function Q→ B∗ ×Q + 1
• for each state in Q, either an output word in B∗ or unde�ned.

0 1

23

ε

a

ba

a∣ab

a∣bab

a∣abb

a∣ab
b∣b

b∣ba

b∣bb∣ab

11 / 31



Sequential transducers

A sequential transducer with input alphabet A and output alphabet
B consists of:

• a �nite set of states Q
• an initial state with an initial output in B∗, or an unde�ned
initial state

• for each a ∈ A a transition function Q→ B∗ ×Q + 1

• for each state in Q, either an output word in B∗ or unde�ned.

0 1

23

ε

a

ba

a∣ab

a∣bab

a∣abb

a∣ab
b∣b

b∣ba

b∣bb∣ab

11 / 31



Sequential transducers

A sequential transducer with input alphabet A and output alphabet
B consists of:

• a �nite set of states Q
• an initial state with an initial output in B∗, or an unde�ned
initial state

• for each a ∈ A a transition function Q→ B∗ ×Q + 1
• for each state in Q, either an output word in B∗ or unde�ned.

0 1

23

ε

a

ba

a∣ab

a∣bab

a∣abb

a∣ab
b∣b

b∣ba

b∣bb∣ab

11 / 31



A unifying framework for automata
minimization



Very basic notions of category theory

De�nition. A category C consists of the following data:

• a class of objects A,B, . . .

• for every pair of objects (A,B) a set C(A,B) of morphisms or
arrows
We write f ∶A→ B or A Bf for f ∈ C(A,B)

• for every object A, an identity morphism 1A∶A→ A
• a partial composition ○ ∶ C(A,B) × C(B,C)→ C(A,C)

A B Cf

g○f

g

Additionally the composition should satisfy unit and associativity
axioms.

12 / 31



Very basic notions of category theory

De�nition. A category C consists of the following data:

• a class of objects A,B, . . .
• for every pair of objects (A,B) a set C(A,B) of morphisms or
arrows
We write f ∶A→ B or A Bf for f ∈ C(A,B)

• for every object A, an identity morphism 1A∶A→ A

• a partial composition ○ ∶ C(A,B) × C(B,C)→ C(A,C)

A B Cf

g○f

g

Additionally the composition should satisfy unit and associativity
axioms.

12 / 31



Very basic notions of category theory

De�nition. A category C consists of the following data:

• a class of objects A,B, . . .
• for every pair of objects (A,B) a set C(A,B) of morphisms or
arrows
We write f ∶A→ B or A Bf for f ∈ C(A,B)

• for every object A, an identity morphism 1A∶A→ A
• a partial composition ○ ∶ C(A,B) × C(B,C)→ C(A,C)

A B Cf

g○f

g

Additionally the composition should satisfy unit and associativity
axioms.

12 / 31



Examples of categories

To get the gist of the remaining slides, we basically need to
understand 4-5 examples of categories :

• Set – the category of sets and functions

• Rel – the category of sets and relations
• Vec – the category of vector spaces and linear transformations
• T – the category of free partial actions of some free monoid B∗

and their morphisms
• the free category on a graph, in particular

in states out▷

a (a∈A)

◁

Many more, that you have surely encountered: (semi)groups,
monoids, topological spaces, etc.

13 / 31



Examples of categories

To get the gist of the remaining slides, we basically need to
understand 4-5 examples of categories :

• Set – the category of sets and functions
• Rel – the category of sets and relations

• Vec – the category of vector spaces and linear transformations
• T – the category of free partial actions of some free monoid B∗

and their morphisms
• the free category on a graph, in particular

in states out▷

a (a∈A)

◁

Many more, that you have surely encountered: (semi)groups,
monoids, topological spaces, etc.

13 / 31



Examples of categories

To get the gist of the remaining slides, we basically need to
understand 4-5 examples of categories :

• Set – the category of sets and functions
• Rel – the category of sets and relations
• Vec – the category of vector spaces and linear transformations

• T – the category of free partial actions of some free monoid B∗

and their morphisms
• the free category on a graph, in particular

in states out▷

a (a∈A)

◁

Many more, that you have surely encountered: (semi)groups,
monoids, topological spaces, etc.

13 / 31



Examples of categories

To get the gist of the remaining slides, we basically need to
understand 4-5 examples of categories :

• Set – the category of sets and functions
• Rel – the category of sets and relations
• Vec – the category of vector spaces and linear transformations
• T – the category of free partial actions of some free monoid B∗

and their morphisms

• the free category on a graph, in particular

in states out▷

a (a∈A)

◁

Many more, that you have surely encountered: (semi)groups,
monoids, topological spaces, etc.

13 / 31



Examples of categories

To get the gist of the remaining slides, we basically need to
understand 4-5 examples of categories :

• Set – the category of sets and functions
• Rel – the category of sets and relations
• Vec – the category of vector spaces and linear transformations
• T – the category of free partial actions of some free monoid B∗

and their morphisms
• the free category on a graph, in particular

in states out▷

a (a∈A)

◁

Many more, that you have surely encountered: (semi)groups,
monoids, topological spaces, etc.

13 / 31



Word automata

deterministic automata 1 Q 2 in Set

non-deterministic automata in VecK

weighted automata in VecK

Seq. transducers in T

a

a

a

a

14 / 31



Word automata

deterministic automata 1 Q 2 in Set

non-deterministic automata 1 Q 1 in Rel

weighted automata in VecK

Seq. transducers in T

a

a

a

a

14 / 31



Word automata

deterministic automata 1 Q 2 in Set

non-deterministic automata 1 Q 1 in Rel

weighted automata K Q K in VecK

Seq. transducers in T

a

a

a

a

14 / 31



Word automata

deterministic automata 1 Q 2 in Set

non-deterministic automata 1 Q 1 in Rel

weighted automata K Q K in VecK

Seq. transducers 1 Q 1 in T

a

a

a

a

14 / 31



The output category for subsequential transducers

We consider partial actions for the free monoid B∗.

We consider a category T with

• objects: sets X,Y,Z, . . .
• arrows: f ∶X ↛ Y, where f ∶X → B∗ × Y + 1 is a function

Composition of arrows in T is de�ned using the monoid
multiplication in B∗.

If f ∶X ↛ Y and g∶Y ↛ Z then g ○ f ∶X ↛ Z (i.e. g ○ f ∶X → B∗ × Z + 1) is

given by g ○ f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(uv, z) if f(x) = (u, y) and g(y) = (v, z)
� otherwise.

This is the Kleisli category for the monad T∶Set→ Set given by
T(X) = B∗ × X + 1, which associates to each set X the free partial
action of B∗ on X.

15 / 31



The output category for subsequential transducers

We consider partial actions for the free monoid B∗.

We consider a category T with

• objects: sets X,Y,Z, . . .
• arrows: f ∶X ↛ Y, where f ∶X → B∗ × Y + 1 is a function

Composition of arrows in T is de�ned using the monoid
multiplication in B∗.

If f ∶X ↛ Y and g∶Y ↛ Z then g ○ f ∶X ↛ Z (i.e. g ○ f ∶X → B∗ × Z + 1) is

given by g ○ f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(uv, z) if f(x) = (u, y) and g(y) = (v, z)
� otherwise.

This is the Kleisli category for the monad T∶Set→ Set given by
T(X) = B∗ × X + 1, which associates to each set X the free partial
action of B∗ on X.

15 / 31



The output category for subsequential transducers

We consider partial actions for the free monoid B∗.

We consider a category T with

• objects: sets X,Y,Z, . . .
• arrows: f ∶X ↛ Y, where f ∶X → B∗ × Y + 1 is a function

Composition of arrows in T is de�ned using the monoid
multiplication in B∗.

If f ∶X ↛ Y and g∶Y ↛ Z then g ○ f ∶X ↛ Z (i.e. g ○ f ∶X → B∗ × Z + 1) is

given by g ○ f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(uv, z) if f(x) = (u, y) and g(y) = (v, z)
� otherwise.

This is the Kleisli category for the monad T∶Set→ Set given by
T(X) = B∗ × X + 1, which associates to each set X the free partial
action of B∗ on X.

15 / 31



The output category for subsequential transducers

We consider partial actions for the free monoid B∗.

We consider a category T with

• objects: sets X,Y,Z, . . .
• arrows: f ∶X ↛ Y, where f ∶X → B∗ × Y + 1 is a function

Composition of arrows in T is de�ned using the monoid
multiplication in B∗.

If f ∶X ↛ Y and g∶Y ↛ Z then g ○ f ∶X ↛ Z (i.e. g ○ f ∶X → B∗ × Z + 1) is

given by g ○ f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(uv, z) if f(x) = (u, y) and g(y) = (v, z)
� otherwise.

This is the Kleisli category for the monad T∶Set→ Set given by
T(X) = B∗ × X + 1, which associates to each set X the free partial
action of B∗ on X.

15 / 31



The output category for subsequential transducers

Interpretting the arrows

1 Q 1 in Ti

δa

f

ammounts to give

• a function i∶ 1→ B∗ ×Q + 1, i.e. an initial state with an initial
output in B∗, or an unde�ned initial state

• for each a ∈ A a function δa∶Q→ B∗ ×Q + 1
• a �nal map f ∶Q→ B∗ × 1 + 1, i.e. for each state in Q either an
output word in B∗ or unde�ned.

16 / 31



The output category for subsequential transducers

Interpretting the arrows

1 Q 1 in Ti

δa

f

ammounts to give

• a function i∶ 1→ B∗ ×Q + 1, i.e. an initial state with an initial
output in B∗, or an unde�ned initial state

• for each a ∈ A a function δa∶Q→ B∗ ×Q + 1
• a �nal map f ∶Q→ B∗ × 1 + 1, i.e. for each state in Q either an
output word in B∗ or unde�ned.

16 / 31



The output category for subsequential transducers

Interpretting the arrows

1 Q 1 in Ti

δa

f

ammounts to give

• a function i∶ 1→ B∗ ×Q + 1, i.e. an initial state with an initial
output in B∗, or an unde�ned initial state

• for each a ∈ A a function δa∶Q→ B∗ ×Q + 1

• a �nal map f ∶Q→ B∗ × 1 + 1, i.e. for each state in Q either an
output word in B∗ or unde�ned.

16 / 31



The output category for subsequential transducers

Interpretting the arrows

1 Q 1 in Ti

δa

f

ammounts to give

• a function i∶ 1→ B∗ ×Q + 1, i.e. an initial state with an initial
output in B∗, or an unde�ned initial state

• for each a ∈ A a function δa∶Q→ B∗ ×Q + 1
• a �nal map f ∶Q→ B∗ × 1 + 1, i.e. for each state in Q either an
output word in B∗ or unde�ned.

16 / 31



What does “interpretting” mean?

“Interpretting” means moving from one category to another.
It’s all about functors – which are to categories what functions are to
sets !!

De�nition. Given categories C and D, a functor F∶C → D consists of
the following data:

• for each object A of C, an object FA of D
• for each arrow f ∶A→ B in C, an arrow Ff ∶ FA→ FB in D

such that identities and composition are preserved:
F(1A) = 1FA and Ff ○ Fg = F(f ○ g) when f ○ g is de�ned.

17 / 31



What does “interpretting” mean?

“Interpretting” means moving from one category to another.
It’s all about functors – which are to categories what functions are to
sets !!

De�nition. Given categories C and D, a functor F∶C → D consists of
the following data:

• for each object A of C, an object FA of D
• for each arrow f ∶A→ B in C, an arrow Ff ∶ FA→ FB in D

such that identities and composition are preserved:
F(1A) = 1FA and Ff ○ Fg = F(f ○ g) when f ○ g is de�ned.

17 / 31



Word automata as functors

Word automata on A∗ are functors A∶I → C , where the input
category I is freely generated by

in states out▷

a (a∈A)

◁

The data given by the functor A is a tuple ⟨Q, i, f , (δa)a∈A⟩, where

• Q is an object of C.
• i∶ I→ Q is the «initial» arrow, for some object I of C
• f ∶Q→ F is the «�nal» arrow, for some object F of C
• δa∶Q→ Q is the «transition» arrow for each a ∈ A

The language accepted by A is a map LA∶A∗ → C(I, F) that associates
to a word w = a1 . . .an the composite morphism

i δa1 δa2 δan f
18 / 31



Word automata as functors

Word automata on A∗ are functors A∶I → C , where the input
category I is freely generated by

in states out▷

a (a∈A)

◁

The data given by the functor A is a tuple ⟨Q, i, f , (δa)a∈A⟩, where

• Q is an object of C.
• i∶ I→ Q is the «initial» arrow, for some object I of C
• f ∶Q→ F is the «�nal» arrow, for some object F of C
• δa∶Q→ Q is the «transition» arrow for each a ∈ A

The language accepted by A is a map LA∶A∗ → C(I, F) that associates
to a word w = a1 . . .an the composite morphism

I Q Q . . . Q Fi δa1 δa2 δan f
18 / 31



Automata and languages as functors

An automaton A accepts a language L when the next diagram
commutes

in out O C

in states out I

▷w◁ ∶ w∈A∗ L

▷

a

◁

A

For every language L∶O → C we consider
a category AutoL of automata accepting L.

O can be seen as an “observation” subcategory of I .

Much of the ensuing theory can be developed independently on the
precise shape of I .

19 / 31



Automata and languages as functors

An automaton A accepts a language L when the next diagram
commutes

in out O C

in states out I

▷w◁ ∶ w∈A∗ L

▷

a

◁

A

For every language L∶O → C we consider
a category AutoL of automata accepting L.

O can be seen as an “observation” subcategory of I .

Much of the ensuing theory can be developed independently on the
precise shape of I . 19 / 31



Automata in a category:
minimization



Minimzation of C-automata

• What does it mean for a C-automaton to be minimal?
• What are su�cient conditions on C so that a minimal
automaton for a language exists?

• Can we compute the minimal automaton e�ectively?

A DFA is minimal when it divides any other automaton accepting the
same language. Here divides = «is a quotient of a sub-automaton
of»

Thus we need a notion of «quotient» (surjection for sets) and
«sub-object» (injection for sets), i.e. a factorization system.

20 / 31



Minimzation of C-automata

• What does it mean for a C-automaton to be minimal?
• What are su�cient conditions on C so that a minimal
automaton for a language exists?

• Can we compute the minimal automaton e�ectively?

A DFA is minimal when it divides any other automaton accepting the
same language.

Here divides = «is a quotient of a sub-automaton
of»

Thus we need a notion of «quotient» (surjection for sets) and
«sub-object» (injection for sets), i.e. a factorization system.

20 / 31



Minimzation of C-automata

• What does it mean for a C-automaton to be minimal?
• What are su�cient conditions on C so that a minimal
automaton for a language exists?

• Can we compute the minimal automaton e�ectively?

A DFA is minimal when it divides any other automaton accepting the
same language. Here divides = «is a quotient of a sub-automaton
of»

Thus we need a notion of «quotient» (surjection for sets) and
«sub-object» (injection for sets), i.e. a factorization system.

20 / 31



Minimzation of C-automata

• What does it mean for a C-automaton to be minimal?
• What are su�cient conditions on C so that a minimal
automaton for a language exists?

• Can we compute the minimal automaton e�ectively?

A DFA is minimal when it divides any other automaton accepting the
same language. Here divides = «is a quotient of a sub-automaton
of»

Thus we need a notion of «quotient» (surjection for sets) and
«sub-object» (injection for sets), i.e. a factorization system.

20 / 31



Three more category-theoretic notions

• An initial object in a category C is an object X such that for any
object A of C there is a unique morphism !∶X → A.
Question: what is the initial object in Set? And in Rel?

• A �nal object in a category C is an object Y such that for any
object A of C there is a unique morphism !∶A→ Y.

Question: what is the �nal object in Set? And in Rel?

• A factorization system provides the category-theoretic
generalizations for the notions of “quotients” and “subobjects”,
de�nition on next slide...

21 / 31



Three more category-theoretic notions

• An initial object in a category C is an object X such that for any
object A of C there is a unique morphism !∶X → A.
Question: what is the initial object in Set? And in Rel?

• A �nal object in a category C is an object Y such that for any
object A of C there is a unique morphism !∶A→ Y.
Question: what is the �nal object in Set? And in Rel?

• A factorization system provides the category-theoretic
generalizations for the notions of “quotients” and “subobjects”,
de�nition on next slide...

21 / 31



Three more category-theoretic notions

• An initial object in a category C is an object X such that for any
object A of C there is a unique morphism !∶X → A.
Question: what is the initial object in Set? And in Rel?

• A �nal object in a category C is an object Y such that for any
object A of C there is a unique morphism !∶A→ Y.
Question: what is the �nal object in Set? And in Rel?

• A factorization system provides the category-theoretic
generalizations for the notions of “quotients” and “subobjects”,
de�nition on next slide...

21 / 31



The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

left Kan ext?

O C

right Kan extension?

I

L

Min(L)?Min(L)

Ainit(L)

Afinal(L)

If the category of automata accepting L has

• an initial object Ainit(L), when C has copowers
• a �nal object Afinal(L), and, when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .

22 / 31



The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

left Kan ext? O C

right Kan extension?

I

L

Min(L)?Min(L)

Ainit(L)

Afinal(L)

If the category of automata accepting L has

• an initial object Ainit(L),

when C has copowers
• a �nal object Afinal(L), and, when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .

22 / 31



The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

left Kan ext?

O C right Kan extension?

I

L

Min(L)?Min(L)

Ainit(L)

Afinal(L)

If the category of automata accepting L has

• an initial object Ainit(L),

when C has copowers

• a �nal object Afinal(L), and,

when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .

22 / 31



The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

left Kan ext?

O C

right Kan extension?

I

L

Min(L)?Min(L)

Ainit(L)

Afinal(L)

If the category of automata accepting L has

• an initial object Ainit(L),

when C has copowers

• a �nal object Afinal(L), and,

when C has powers

• a factorization system

when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .
22 / 31



The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

left Kan ext?

O C

right Kan extension?

I

L

Min(L)?Min(L)

Ainit(L)

Afinal(L)

If the category of automata accepting L has

• an initial object Ainit(L), when C has copowers
• a �nal object Afinal(L), and, when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .
22 / 31



Factorization systems

Factorization systems are a generalization of the next situation:
Every function f ∶X → Y can we written as a composite

X Z Ye m

with e a surjection and m and injection, and, moreover, such a
decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

• E and M contain the isomorphisms and are closed under
composition;

• every morphism f ∶X → Y can we written as a composite e ○m
with e ∈ E and m ∈ M;

• the decomposition is functorial, i.e. any two decompositions
are isomorphic

23 / 31



Factorization systems

Factorization systems are a generalization of the next situation:
Every function f ∶X → Y can we written as a composite

X Z Ye m

with e a surjection and m and injection, and, moreover, such a
decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

• E and M contain the isomorphisms and are closed under
composition;

• every morphism f ∶X → Y can we written as a composite e ○m
with e ∈ E and m ∈ M;

• the decomposition is functorial, i.e. any two decompositions
are isomorphic

23 / 31



Factorization systems

Factorization systems are a generalization of the next situation:
Every function f ∶X → Y can we written as a composite

X Z Ye m

with e a surjection and m and injection, and, moreover, such a
decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

• E and M contain the isomorphisms and are closed under
composition;

• every morphism f ∶X → Y can we written as a composite e ○m
with e ∈ E and m ∈ M;

• the decomposition is functorial, i.e. any two decompositions
are isomorphic

23 / 31



Factorization systems

Factorization systems are a generalization of the next situation:
Every function f ∶X → Y can we written as a composite

X Z Ye m

with e a surjection and m and injection, and, moreover, such a
decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

• E and M contain the isomorphisms and are closed under
composition;

• every morphism f ∶X → Y can we written as a composite e ○m
with e ∈ E and m ∈ M;

• the decomposition is functorial, i.e. any two decompositions
are isomorphic

23 / 31



Factorization systems

Factorization systems are a generalization of the next situation:
Every function f ∶X → Y can we written as a composite

X Z Ye m

with e a surjection and m and injection, and, moreover, such a
decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

• E and M contain the isomorphisms and are closed under
composition;

• every morphism f ∶X → Y can we written as a composite e ○m
with e ∈ E and m ∈ M;

• the decomposition is functorial, i.e. any two decompositions
are isomorphic

23 / 31



The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

If the category of automata accepting L has

• an initial object Ainit(L), when C has copowers
• a �nal object Afinal(L), and, when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .

24 / 31



The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

If the category of automata accepting L has

• an initial object Ainit(L),

when C has copowers
• a �nal object Afinal(L), and, when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .

24 / 31



The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

If the category of automata accepting L has

• an initial object Ainit(L),

when C has copowers

• a �nal object Afinal(L), and,

when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .

24 / 31



The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

If the category of automata accepting L has

• an initial object Ainit(L),

when C has copowers

• a �nal object Afinal(L), and,

when C has powers

• a factorization system

when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .

24 / 31



The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

If the category of automata accepting L has

• an initial object Ainit(L), when C has copowers
• a �nal object Afinal(L), and, when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L)↠ Min(L)↣ Afinal(L) .

24 / 31



Trivial example: minimizing DFAs

The initial automaton Ainit for Set-automata accepting a language L
is the following :

1 A∗ 2ε

w↦wa

L?

The �nal automaton Afinal for Set-automata accepting a language L
is the following :

1 2A∗ 2L

K↦a−1K

ε?

25 / 31



Trivial example: minimizing DFAs

The initial automaton Ainit for Set-automata accepting a language L
is the following :

1 A∗ 2ε

w↦wa

L?

The �nal automaton Afinal for Set-automata accepting a language L
is the following :

1 2A∗ 2L

K↦a−1K

ε?

25 / 31



Trivial example: minimizing DFAs accepting L

The unique map from the initial to the �nal automaton is given by
!∶A∗ → 2A∗ , de�ned by w ↦ w−1L.

A∗

1 Q 2

2A∗

L?

reachedState

L

ε

i f

acceptedLanguage

ε?

26 / 31



Trivial example: minimizing DFAs accepting L

The unique map from the initial to the �nal automaton is given by
!∶A∗ → 2A∗ , de�ned by w ↦ w−1L.

A∗

1 Min(L) 2

2A∗

L?

reachedState

L

ε

i f

acceptedLanguage

ε?

26 / 31



Another trivial example

R-weighted automata, i.e. (Vec,R,R)-automata
accepting a (Vec,R,R)-language

⊕
u∈A∗

R

R Q R

∏
u∈A∗

R

L?

reachedState

L

ε

i F

acceptedLanguage

ε?

27 / 31



Another trivial example

R-weighted automata, i.e. (Vec,R,R)-automata
accepting a (Vec,R,R)-language

⊕
u∈A∗

R

R Min(L) R

∏
u∈A∗

R

L?

reachedState

L

ε

i F

acceptedLanguage

ε?

27 / 31



The minimal transducer in a picture

We obtain Min(L) – the minimal subsequential transducer as
obtained by Cho�rut!

In fact it also works if we replace B∗ by a trace
monoid.

A∗

1 Min(L) 1

Irr(A∗,B∗)

L?

L

ε

i f

ε?

28 / 31



The minimal transducer in a picture

We obtain Min(L) – the minimal subsequential transducer as
obtained by Cho�rut! In fact it also works if we replace B∗ by a trace
monoid.

A∗

1 Min(L) 1

Irr(A∗,B∗)

L?

L

ε

i f

ε?

28 / 31



Minimial Automaton Min(L) for a Language

The automaton Min(L) divides any other automaton accepting L.

A

Ainit(L) reach(A) obs(reach(A)) Afinal(L)

Min(L)

Thus far we identi�ed simple su�cient conditions on C so that
minimization of C-automata is guaranteed!

29 / 31



Minimial Automaton Min(L) for a Language

The automaton Min(L) divides any other automaton accepting L.

A

Ainit(L) reach(A) obs(reach(A)) Afinal(L)

Min(L)

Thus far we identi�ed simple su�cient conditions on C so that
minimization of C-automata is guaranteed!

29 / 31



Minimial Automaton Min(L) for a Language

The automaton Min(L) divides any other automaton accepting L.

A

Ainit(L) reach(A) obs(reach(A)) Afinal(L)

Min(L)

Thus far we identi�ed simple su�cient conditions on C so that
minimization of C-automata is guaranteed!

29 / 31



Minimial Automaton Min(L) for a Language

The automaton Min(L) divides any other automaton accepting L.

A

Ainit(L) reach(A) obs(reach(A)) Afinal(L)

Min(L)

Thus far we identi�ed simple su�cient conditions on C so that
minimization of C-automata is guaranteed!

29 / 31



Minimial Automaton Min(L) for a Language

The automaton Min(L) divides any other automaton accepting L.

A

Ainit(L) reach(A) obs(reach(A)) Afinal(L)

Min(L)

Thus far we identi�ed simple su�cient conditions on C so that
minimization of C-automata is guaranteed!

29 / 31



Minimial Automaton Min(L) for a Language

The automaton Min(L) divides any other automaton accepting L.

A

Ainit(L) reach(A) obs(reach(A)) Afinal(L)

Min(L)

Thus far we identi�ed simple su�cient conditions on C so that
minimization of C-automata is guaranteed!

29 / 31



Lifting adjunctions between output
categories to automata



Lifting adjunctions

Suppose we have the ‘same’ language interpretted in two di�erent
categories related by an adjunction F ⊣ U :

LC∶A∗ → C(X,UY) and LD∶A∗ → D(FX,Y).

Auto(LC) � Auto(LD)

C � D

States States
F

U

30 / 31



Lifting adjunctions – determinization

Suppose we have the ‘same’ regular language interpretted in two
di�erent categories (Set and Rel) related by an adjunction F ⊣ U :

LSet∶A∗ → Set(1,U1) and LRel∶A∗ → Rel(F1, 1).

Auto(LSet) � Auto(LRel)

Set � Rel

States States
F

U

Corollary 1. The determinization of NFA is a right adjoint to
inclusions of DFA in NFA.

Corollary 2. Initial automata for free in Kleisli valued automata.

31 / 31



Lifting adjunctions – determinization

Suppose we have the ‘same’ regular language interpretted in two
di�erent categories (Set and Rel) related by an adjunction F ⊣ U :

LSet∶A∗ → Set(1,U1) and LRel∶A∗ → Rel(F1, 1).

Auto(LSet) � Auto(LRel)

Set � Rel

States States
F

U

Corollary 1. The determinization of NFA is a right adjoint to
inclusions of DFA in NFA.

Corollary 2. Initial automata for free in Kleisli valued automata. 31 / 31


	A unifying framework for automata minimization
	Automata in a category: minimization
	Lifting adjunctions between output categories to automata

