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This tutorial is about ...

the interplay between category theory and automata theory.
In particular, we will see how the category-theoretic approach
« provides a unifying framework for modelling various forms of
automata,

- for obtaining generic algorithms for learning algorithms,

« highlights the link between automata learning and
minimization.

4/ 3



Automata - the basics

A complete deterministic finite automaton over some finite
alphabet A is a tuple A = (Q, o, F, (da)aca) Where

« Qs a finite set of states

* go is an element of Q, called initial state

« Fc Qis asubset of accepting states

- for every letter a € A, 5,:Q — Q is a transition function

Foreachwordw=a1...a, € A", we
b a put5W=5anO...0501 al’ld (Sszido.

S OSOS

b
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Automata - the basics

A complete deterministic finite automaton over some finite
alphabet A is a tuple A = (Q, o, F, (da)aca) Where

« Qs a finite set of states

* go is an element of Q, called initial state

« Fc Qis asubset of accepting states

- for every letter a € A, 5,:Q — Q is a transition function

Foreachwordw=a1...a, € A", we

b a put oy = dg, © ... 0 dq, and & = idq.
a A word w € A* is accepted by A
— when 0w (qo) € F.
b The language of A is the set £(A)

of words over A* accepted by A.
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Regular languages

... form a very robust class - described in a multitude of ways.
Example: “Last letter is a.”

b

a
(a+b)a (3 9
the language of a ° o
regular expression b
(Kleene theorem) recognised by a DFA or an NFA

regular languages
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... form a very robust class - described in a multitude of ways.
Example: “Last letter is a.”

b

a
(a+b)a (3 9
the language of a ° o
regular expression b
(Kleene theorem) recognised by a DFA or an NFA

regular languages

¢»:A* - {1,a,b}
the preimage of
a monoid morphism

- Ix. =(Fy. X < y) A Qgx
i definable in MSO
: 0 (Biichi-Elgot-Trakhtenbrot)
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Minimization
Given a language L c A* and a word u € A* the left quotient u™"L is

the set
{veA" |uvel}

The Myhill-Nerode equivalence is defined by

uxviffu'll=vL
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Minimization
Given a language L c A* and a word u € A* the left quotient u™"L is

the set
{veA" |uvel}

The Myhill-Nerode equivalence is defined by
uxviffu'll=vL

Theorem (Myhill-Nerode). A language L is regular iff it has only
finitely many left quotients iff ; has finite index.

Proof. = If an automaton A = (Q, qo, F, (0a)aca) accepts a language L,
then the automaton (Q,64(qo), F, (a)aca) accepts u~"L.

<« Consider the Nerode automaton of L, that is (Q, go, F, (da)aca),
where
« Q={u'L|ueA*}, « F={u'L|uel}and

—_ O -1 _ =7
go=1L da(u™'L) = (ua)~'L. e



Minimization

How do we minimize an automaton A4?

« remove all states that are not accessible from the initial state.
We obtain the reachable sub-automaton Reach(A).

 Merge all states that accept the same language, we obtain the
observable quotient Obs(Reach(A)).
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Minimization

How do we minimize an automaton A4?

« remove all states that are not accessible from the initial state.
We obtain the reachable sub-automaton Reach(A).

 Merge all states that accept the same language, we obtain the
observable quotient Obs(Reach(A)).

There are several algorithms for minimizing automata:
Moore, Hopcroft, Brzozowski.
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Non-deterministic automata

A non-deterministic finite automaton over some finite alphabet A is
atuple A =(Q,l,F,d) where

* Qs a finite set of states

« 1 cQis asubset of initial states

« Fc Qis asubset of accepting states

+ 0 €QxAxQis set of transitions

A word w € A" is accepted by A
a b when there is a path labelled by

a w starting from an initial state and
- finishing in an accepting state.
b
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A non-deterministic finite automaton over some finite alphabet A is
atuple A =(Q,l,F,d) where

* Qs a finite set of states

« 1 cQis asubset of initial states

« Fc Qis asubset of accepting states

+ 0 €QxAxQis set of transitions

A word w € A" is accepted by A

a b when there is a path labelled by
a w starting from an initial state and

- finishing in an accepting state.
b Proposition. Every NFA is equiva-

lent to a DFA.
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Weighted automata over a semiring

Given a semiring S, an S-weighted automaton over some finite
alphabet Ais a tuple A = (Q,i,f,d) where

« Qs afinite set of states

* i:Q - S assigns an initial value to each state

- f:Q - Sis a subset a final value to each state

« 0:Q xAxQ — S assigns to each transition a value in S

« Let we A”. For an accepting
path labelled by w compute

a 2a its weight using the
b multiplication of the
7 semiring.
b b « We add the weights of all

accepting pathes labelled by
w to obtain L(A)(w).
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Sequential transducers

A sequential transducer with input alphabet A and output alphabet
B consists of:

- a finite set of states Q
« an initial state with an initial output in B*, or an undefined
initial state

11/ 31



Sequential transducers

A sequential transducer with input alphabet A and output alphabet
B consists of:

- a finite set of states Q

« an initial state with an initial output in B*, or an undefined
initial state

- for each a € A a transition function Q - B* x Q +1

11/ 31



Sequential transducers

A sequential transducer with input alphabet A and output alphabet
B consists of:

- a finite set of states Q

« an initial state with an initial output in B*, or an undefined
initial state

- for each a € A a transition function Q - B* x Q +1

- for each state in Q, either an output word in B* or undefined.

blba
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A unifying framework for automata
minimization




Very basic notions of category theory

Definition. A category C consists of the following data:

+ aclass of objects A, B, ...
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Very basic notions of category theory

Definition. A category C consists of the following data:

+ aclass of objects A, B, ...
- for every pair of objects (A, B) a set C(A, B) of morphisms or
arrows
We write f:A - Bor A —— B forfeC(A,B)
- for every object A, an identity morphism 14:A - A
+ a partial composition o : C(A,B) x C(B,C) - C(A,C)
gof

~F o

A—>BL>C

Additionally the composition should satisfy unit and associativity
axioms.

12/ 31



Examples of categories

To get the gist of the remaining slides, we basically need to
understand 4-5 examples of categories :

« Set - the category of sets and functions
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Examples of categories

To get the gist of the remaining slides, we basically need to
understand 4-5 examples of categories :

« Set - the category of sets and functions

« Rel - the category of sets and relations

« Vec - the category of vector spaces and linear transformations
T - the category of free partial actions of some free monoid B*
and their morphisms

- the free category on a graph, in particular
a (aeh)

. > <
In —— states —— out

Many more, that you have surely encountered: (semi)groups,

monoids, topological spaces, etc.
13 /31



Word automata

a

C )

deterministic automata 17— Q — 2 in Set
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The output category for subsequential transducers

We consider partial actions for the free monoid B*.
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We consider partial actions for the free monoid B*.
We consider a category 7 with

 objects: sets X,V,Z, ...
- arrows: f:X - Y, where f:X — B* x Y + 1is a function

Composition of arrows in 7 is defined using the monoid
multiplication in B*.

Iff:X»Yand g:Y »Zthengof:X»Z(i.e.gof:X—>B*xZ+1)is
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The output category for subsequential transducers

We consider partial actions for the free monoid B*.

We consider a category 7 with

 objects: sets X,V,Z, ...
- arrows: f:X - Y, where f:X — B* x Y + 1is a function

Composition of arrows in 7 is defined using the monoid
multiplication in B*.

Iff:X»Yand g:Y »Zthengof:X»Z(i.e.gof:X—>B*xZ+1)is

(uv,2) iff(x) = (u,y) and g(y) = (v,2)

given by gof(x) = .
otherwise.

This is the Kleisli category for the monad T:Set — Set given by
T(X) = B* x X + 1, which associates to each set X the free partial
action of B* on X.

15/ 31



The output category for subsequential transducers

Interpretting the arrows

ba

C )

1—'.>QL>1 inT

ammounts to give
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The output category for subsequential transducers

Interpretting the arrows

ba

C )

1—'.>QL>1 inT

ammounts to give

« afunction i:1— B* x Q +1, i.e. an initial state with an initial
output in B*, or an undefined initial state

+ for each a € A a function 6:Q - B* xQ +1

- afinal map f:Q - B* x1+1, i.e. for each state in Q either an
output word in B* or undefined.

16 /31



What does “interpretting” mean?

“Interpretting” means moving from one category to another.
It's all about functors — which are to categories what functions are to
sets !!
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What does “interpretting” mean?

“Interpretting” means moving from one category to another.
It's all about functors — which are to categories what functions are to

sets !!

Definition. Given categories C and D, a functor F:C — D consists of
the following data:

- for each object A of C, an object FA of D
- for each arrow f:A - Bin C, an arrow Ff:FA - FB in D

such that identities and composition are preserved:
F(1a) =1ga and Ff o Fg = F(f o g) when f o g is defined.
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Word automata as functors

Word automata on A* are functors A:7 — C, where the input
category 7 is freely generated by

a (ach)

C )

in —= states —— out
The data given by the functor A is a tuple (Q,i,f, (da)gea), Where

 Qis an object of C.

« i:] - Q is the «initial» arrow, for some object | of C
f:Q — F is the «final» arrow, for some object F of C
* 5q:Q — Q is the «transition» arrow for each a ¢ A
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Word automata as functors

Word automata on A* are functors A:7 — C, where the input
category 7 is freely generated by

a (ach)

C )

in —= states —— out
The data given by the functor A is a tuple (Q,i,f, (da)gea), Where

 Qis an object of C.

« i:] - Q is the «initial» arrow, for some object | of C
* f:Q — F is the «final» arrow, for some object F of C
*+ 0g:Q — Q is the «transition» arrow for each ac A

The language accepted by A isa map L4:A* — C(I,F) that associates
to aword w = a,...a, the composite morphism

I —"sq 601>Q b, L P R
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Automata and languages as functors

An automaton A accepts a language £ when the next diagram
commutes

. DW<C : WweA* L
n > out

. > <
In —— states —— out
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Automata and languages as functors

An automaton A accepts a language £ when the next diagram
commutes

. DW<C : WweA*
n > out

. A

. > <
In —— states —— out

For every language £: O — C we consider
a category Auto, of automata accepting L.

O can be seen as an “observation” subcategory of Z.

Much of the ensuing theory can be developed independently on the
precise shape of 7. 19/ 31



Automata in a category:
minimization




Minimzation of C-automata

« What does it mean for a C-automaton to be minimal?

« What are sufficient conditions on C so that a minimal
automaton for a language exists?

« Can we compute the minimal automaton effectively?

20/ 31



Minimzation of C-automata

« What does it mean for a C-automaton to be minimal?

+ What are sufficient conditions on C so that a minimal
automaton for a language exists?

« Can we compute the minimal automaton effectively?

A DFA is minimal when it divides any other automaton accepting the
same language.

20/ 31



Minimzation of C-automata

« What does it mean for a C-automaton to be minimal?

+ What are sufficient conditions on C so that a minimal
automaton for a language exists?

« Can we compute the minimal automaton effectively?

A DFA is minimal when it divides any other automaton accepting the
same language. Here divides = «is a quotient of a sub-automaton
of»

20/ 31



Minimzation of C-automata

« What does it mean for a C-automaton to be minimal?

+ What are sufficient conditions on C so that a minimal
automaton for a language exists?

« Can we compute the minimal automaton effectively?

A DFA is minimal when it divides any other automaton accepting the
same language. Here divides = «is a quotient of a sub-automaton
of»

Thus we need a notion of «quotient» (surjection for sets) and
«sub-object» (injection for sets), i.e. a factorization system.
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Three more category-theoretic notions

« An initial object in a category C is an object X such that for any
object A of C there is a unique morphism : X — A.
Question: what is the initial object in Set? And in Rel?
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Three more category-theoretic notions

« An initial object in a category C is an object X such that for any
object A of C there is a unique morphism : X — A.
Question: what is the initial object in Set? And in Rel?

« Afinal object in a category C is an object Y such that for any
object A of C there is a unique morphism :A - Y.
Question: what is the final object in Set? And in Rel?

« Afactorization system provides the category-theoretic

generalizations for the notions of “quotients” and “subobjects”,
definition on next slide...
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The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?
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The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?
c
@) 4/§ C
n
Ainit(ﬁ) ///
Min(L) /
/// Asina1(£)
7=
If the category of automata accepting £ has

- an initial object A;,;i¢ (L),
« afinal object Afina1(£), and,
- a factorization system

then Min(£) is obtained as the factorization

Ainit (L) > Min(L) = Asina1 (L) .
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The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?
c
@) 4/§ C
1

Ainit (E) ////
/ Min(L)

) ~ Asina1(£)

7"
If the category of automata accepting £ has
« an initial object A;nit (L), v when C has copowers
- afinal object A¢ina1(£), and, v'when C has powers
- a factorization system v“when C has one

then Min(£) is obtained as the factorization

Ainit (L) > Min(L) = Asina1 (L) .
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Factorization systems

Factorization systems are a generalization of the next situation:

Every function f:X — Y can we written as a composite
X—25z2y"sy

with e a surjection and m and injection, and, moreover, such a

decomposition is unique up-to isomorphism.

23/ 31



Factorization systems
Factorization systems are a generalization of the next situation:
Every function f:X — Y can we written as a composite
X—25z2y"sy
with e a surjection and m and injection, and, moreover, such a

decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

23/ 31



Factorization systems
Factorization systems are a generalization of the next situation:
Every function f:X — Y can we written as a composite
X—25z2y"sy
with e a surjection and m and injection, and, moreover, such a

decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

« E and M contain the isomorphisms and are closed under
composition;

23/ 31



Factorization systems
Factorization systems are a generalization of the next situation:
Every function f:X — Y can we written as a composite
X—25z2y"sy
with e a surjection and m and injection, and, moreover, such a

decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

« E and M contain the isomorphisms and are closed under
composition;

« every morphism f:X — Y can we written as a composite eom
withecEand me M;

23/ 31



Factorization systems

Factorization systems are a generalization of the next situation:
Every function f:X — Y can we written as a composite

X—S5zy"sy
with e a surjection and m and injection, and, moreover, such a
decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

« E and M contain the isomorphisms and are closed under
composition;

« every morphism f:X — Y can we written as a composite eom
withecEand me M;

« the decomposition is functorial, i.e. any two decompositions

are isomorphic
23/ 31
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- a factorization system
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The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?

If the category of automata accepting £ has

« an initial object A;nit (L), v“when C has copowers
- afinal object Asina1 (£), and, v“when C has powers
- a factorization system v“when C has one

then Min(£) is obtained as the factorization

Asnic(L£) > Min(L) = Asina1 (L)
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Trivial example: minimizing DFAs

The initial automaton A;,;, for Set-automata accepting a language L
is the following :
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Trivial example: minimizing DFAs

The initial automaton A;,;, for Set-automata accepting a language L
is the following :

The final automaton As;,.1 for Set-automata accepting a language L
is the following :
K—a 'K

1A o
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Trivial example: minimizing DFAs accepting L

The unique map from the initial to the final automaton is given by
1:A* - 2%, defined by w — w'L.

A>(—
15 L?
reachedState
1 i > Q ! > 2
acceptedLanguage
E N 67
2A
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Trivial example: minimizing DFAs accepting L

The unique map from the initial to the final automaton is given by
1:A* - 2%, defined by w — w'L.

A>(—
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Another trivial example

R-weighted automata, i.e. (Vec,R,R)-automata
accepting a (Vec, R,R)-language

ueA*
reachedState
acceptedLanguage
L

|
IR

UeA*

(1]

— D
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Another trivial example
R-weighted automata, i.e. (Vec,R,R)-automata

accepting a (Vec, R,R)-language

PR

ueA*

UeA*
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The minimal transducer in a picture

We obtain Min(£) - the minimal subsequential transducer as
obtained by Choffrut!

Irr(A*,B*)
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The minimal transducer in a picture

We obtain Min(£) - the minimal subsequential transducer as
obtained by Choffrut! In fact it also works if we replace B* by a trace
monoid.

AX—

Irr(A*,B*)
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Minimial Automaton Min(£) for a Language
The automaton Min(£) divides any other automaton accepting L.

/_)A\

Ainit (L) Afinal(l-)
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Minimial Automaton Min(£) for a Language

The automaton Min(£) divides any other automaton accepting L.

/—> A
e \
Ainit(L) —>» reach(A) —» obs(reach(A)) > Asina1(L)

\% Min(L)/;/

Thus far we identified simple sufficient conditions on C so that
minimization of C-automata is guaranteed!
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Lifting adjunctions between output
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Lifting adjunctions

Suppose we have the ‘same’ language interpretted in two different
categories related by an adjunction F+ U :

Le:A* > C(X,UY) and Lp:A* > D(FX, Y).

— T
Auto(L¢) 1L Auto(Lp)

\_/
| |
States States
I
C \i// D

u
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Lifting adjunctions - determinization

Suppose we have the ‘same’ regular language interpretted in two
different categories (Set and Rel) related by an adjunction F -4 U :

Lset:A* — Set(1,U1) and Lge:A™ — Rel(F1,1).

— ==
Auto(Lset) 1 Auto(Lget)
\—/
| |

States States
I
Set \i/ Rel

u

Corollary 1. The determinization of NFA is a right adjoint to
inclusions of DFA in NFA.
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Corollary 1. The determinization of NFA is a right adjoint to
inclusions of DFA in NFA.

Corollary 2. Initial automata for free in Kleisli valued automata.
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