A categorical approach to automata learning and minimization – part 1

Daniela Petrişan

Université Paris Cité, IRIF, France

TACL'24, Barcelona, 24-28 June 2024

INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

TANCL'07 in Oxford

- the first conference I attended
- organized by Mai Gehrke and Hilary Priestley
- some wonderful talks
 Samson Abramsky, Alexander
 Kurz, Jean-Éric Pin, etc.
- in particular, Jean-Éric Pin taked about automata, semigroups and duality ...

TANCL'07 in Oxford

- the first conference I attended
- organized by Mai Gehrke and Hilary Priestley
- some wonderful talks
 Samson Abramsky, Alexander
 Kurz, Jean-Éric Pin, etc.
- in particular, Jean-Éric Pin taked about automata, semigroups and duality ...
- my first slide at TACL'2019, organized by Mai Gehrke in Nice !

References for Lecture 1

- T. Colcombet and D. Petrişan. *Automata minimization: a functorial approach*. Log. Methods Comput. Sci., 16(1), 2020
- J. E. Pin (Ed.) Handbook of Automata Theory, EMS Press, 2021

This tutorial is about ...

the interplay between category theory and automata theory.

This tutorial is about ...

the interplay between category theory and automata theory. In particular, we will see how the category-theoretic approach

- provides a unifying framework for modelling various forms of automata,
- for obtaining generic algorithms for learning algorithms,

This tutorial is about ...

the interplay between category theory and automata theory. In particular, we will see how the category-theoretic approach

- provides a unifying framework for modelling various forms of automata,
- for obtaining generic algorithms for learning algorithms,
- highlights the link between automata learning and minimization.

Automata – the basics

A complete deterministic finite automaton over some finite alphabet A is a tuple $\mathcal{A} = (Q, q_0, F, (\delta_a)_{a \in A})$ where

- Q is a finite set of states
- q_0 is an element of Q, called initial state
- *F* ⊆ *Q* is a subset of accepting states
- for every letter $a \in A$, $\delta_a: Q \to Q$ is a transition function

For each word
$$w = a_1 \dots a_n \in A^*$$
, we put $\delta_w = \delta_{a_n} \circ \dots \circ \delta_{a_1}$ and $\delta_{\varepsilon} = id_Q$.

Automata – the basics

A complete deterministic finite automaton over some finite alphabet A is a tuple $\mathcal{A} = (Q, q_0, F, (\delta_a)_{a \in A})$ where

- Q is a finite set of states
- q_0 is an element of Q, called initial state
- *F* ⊆ *Q* is a subset of accepting states
- for every letter $a \in A$, $\delta_a: Q \to Q$ is a transition function

For each word $w = a_1 \dots a_n \in A^*$, we put $\delta_w = \delta_{a_n} \circ \dots \circ \delta_{a_1}$ and $\delta_\varepsilon = id_Q$. A word $w \in A^*$ is accepted by \mathcal{A} when $\delta_w(q_0) \in F$.

Automata – the basics

A complete deterministic finite automaton over some finite alphabet A is a tuple $\mathcal{A} = (Q, q_0, F, (\delta_a)_{a \in A})$ where

- Q is a finite set of states
- q_0 is an element of Q, called initial state
- *F* ⊆ *Q* is a subset of accepting states
- for every letter $a \in A$, $\delta_a: Q \to Q$ is a transition function

For each word $w = a_1 \dots a_n \in A^*$, we put $\delta_w = \delta_{a_n} \circ \dots \circ \delta_{a_1}$ and $\delta_\varepsilon = id_Q$. A word $w \in A^*$ is accepted by \mathcal{A} when $\delta_w(q_0) \in F$. The language of \mathcal{A} is the set $\mathcal{L}(\mathcal{A})$ of words over A^* accepted by \mathcal{A} .

Regular languages

... form a very robust class – described in a multitude of ways. Example: "Last letter is *a*."

> $(a + b)^*a$ the language of a regular expression (Kleene theorem)

regular languages

Regular languages

... form a very robust class – described in a multitude of ways. Example: "Last letter is *a*."

> $(a + b)^*a$ the language of a regular expression (Kleene theorem)

regular languages

 $\phi: \mathbf{A}^* \rightarrow \{\mathbf{1}, \mathbf{a}, \mathbf{b}\}$ the preimage of $\frac{|\mathbf{1} | \mathbf{a} | \mathbf{b}|}{|\mathbf{1} | | | | | \mathbf{a} | \mathbf{b}|}$ a monoid morphism

Regular languages

... form a very robust class – described in a multitude of ways. Example: "Last letter is *a*."

> $(a + b)^*a$ the language of a regular expression (Kleene theorem)

regular languages

 $\phi: A^* \rightarrow \{1, a, b\}$ the preimage of $\frac{1}{1}$ $\frac{1}{1}$ $\frac{a}{a}$ $\frac{b}{b}$ a monoid morphism $\frac{a}{b}$ $\frac{a}{b}$ $\frac{a}{b}$ $\frac{a}{b}$

 $\exists x. \neg (\exists y. x < y) \land Q_a x$ definable in MSO (Büchi-Elgot-Trakhtenbrot)

Given a language $L \subseteq A^*$ and a word $u \in A^*$ the left quotient $u^{-1}L$ is the set

 $\{v \in A^* \mid uv \in L\}$

The Myhill-Nerode equivalence is defined by

 $u \cong_L v \text{ iff } u^{-1}L = v^{-1}L$

Given a language $L \subseteq A^*$ and a word $u \in A^*$ the left quotient $u^{-1}L$ is the set

 $\left\{ v \in A^* \mid uv \in L \right\}$

The Myhill-Nerode equivalence is defined by

 $u \cong_L v \text{ iff } u^{-1}L = v^{-1}L$

Theorem (Myhill-Nerode). A language *L* is regular iff it has only finitely many left quotients iff \cong_L has finite index.

Given a language $L \subseteq A^*$ and a word $u \in A^*$ the left quotient $u^{-1}L$ is the set

 $\{v \in A^* \mid uv \in L\}$

The Myhill-Nerode equivalence is defined by

 $u \cong_L v$ iff $u^{-1}L = v^{-1}L$

Theorem (Myhill-Nerode). A language *L* is regular iff it has only finitely many left quotients iff \cong_L has finite index.

Proof. \Rightarrow If an automaton $\mathcal{A} = (Q, q_0, F, (\delta_a)_{a \in A})$ accepts a language *L*, then the automaton $(Q, \delta_u(q_0), F, (\delta_a)_{a \in A})$ accepts $u^{-1}L$.

Given a language $L \subseteq A^*$ and a word $u \in A^*$ the left quotient $u^{-1}L$ is the set

 $\{v \in A^* \mid uv \in L\}$

The Myhill-Nerode equivalence is defined by

 $u \cong_L v \text{ iff } u^{-1}L = v^{-1}L$

Theorem (Myhill-Nerode). A language *L* is regular iff it has only finitely many left quotients iff \cong_L has finite index.

Proof. \Rightarrow If an automaton $\mathcal{A} = (Q, q_0, F, (\delta_a)_{a \in A})$ accepts a language *L*, then the automaton $(Q, \delta_u(q_0), F, (\delta_a)_{a \in A})$ accepts $u^{-1}L$.

 \leftarrow Consider the Nerode automaton of *L*, that is $(Q, q_0, F, (\delta_a)_{a \in A})$, where

• $Q = \{u^{-1}L \mid u \in A^*\},$ • $F = \{u^{-1}L \mid u \in L\}$ and

•
$$q_0 = L$$
 • $\delta_a(u^{-1}L) = (ua)^{-1}L.$

How do we minimize an automaton \mathcal{A} ?

- remove all states that are not accessible from the initial state.
 We obtain the reachable sub-automaton Reach(A).
- Merge all states that accept the same language, we obtain the observable quotient Obs(Reach(A)).

How do we minimize an automaton A?

- remove all states that are not accessible from the initial state.
 We obtain the reachable sub-automaton Reach(A).
- Merge all states that accept the same language, we obtain the observable quotient Obs(Reach(A)).

There are several algorithms for minimizing automata: Moore, Hopcroft, Brzozowski.

Non-deterministic automata

A non-deterministic finite automaton over some finite alphabet A is a tuple $A = (Q, I, F, \delta)$ where

- Q is a finite set of states
- *I* ⊆ *Q* is a subset of initial states
- $F \subseteq Q$ is a subset of accepting states
- $\delta \subseteq \mathbf{Q} \times \mathbf{A} \times \mathbf{Q}$ is set of transitions

A word $w \in A^*$ is accepted by \mathcal{A} when there is a path labelled by w starting from an initial state and finishing in an accepting state.

Non-deterministic automata

A non-deterministic finite automaton over some finite alphabet A is a tuple $A = (Q, I, F, \delta)$ where

- Q is a finite set of states
- $I \subseteq Q$ is a subset of initial states
- $F \subseteq Q$ is a subset of accepting states
- $\delta \subseteq \mathbf{Q} \times \mathbf{A} \times \mathbf{Q}$ is set of transitions

A word $w \in A^*$ is accepted by \mathcal{A} when there is a path labelled by w starting from an initial state and finishing in an accepting state. **Proposition.** Every NFA is equivalent to a DFA.

Weighted automata over a semiring

Given a semiring S, an S-weighted automaton over some finite alphabet Ais a tuple $A = (Q, i, f, \delta)$ where

- Q is a finite set of states
- $i: Q \rightarrow S$ assigns an initial value to each state
- $f: Q \rightarrow S$ is a subset a final value to each state
- * $\delta: Q \times A \times Q \rightarrow S$ assigns to each transition a value in S

- Let w ∈ A*. For an accepting path labelled by w compute its weight using the multiplication of the semiring.
- We add the weights of all accepting pathes labelled by w to obtain L(A)(w).

Sequential transducers

A sequential transducer with input alphabet A and output alphabet B consists of:

- a finite set of states Q
- an initial state with an initial output in *B**, or an undefined initial state

Sequential transducers

A sequential transducer with input alphabet A and output alphabet B consists of:

- a finite set of states Q
- an initial state with an initial output in B^* , or an undefined initial state
- for each $a \in A$ a transition function $Q \rightarrow B^* \times Q + 1$

Sequential transducers

A sequential transducer with input alphabet A and output alphabet B consists of:

- a finite set of states Q
- an initial state with an initial output in *B**, or an undefined initial state
- for each $a \in A$ a transition function $Q \rightarrow B^* \times Q + 1$
- for each state in Q, either an output word in B^* or undefined.

A unifying framework for automata minimization

Very basic notions of category theory

Definition. A category \mathcal{C} consists of the following data:

• a class of objects A, B, ...

Very basic notions of category theory

Definition. A category C consists of the following data:

- a class of objects A, B, . . .
- for every pair of objects (A, B) a set C(A, B) of morphisms or arrows

We write $f: A \to B$ or $A \xrightarrow{f} B$ for $f \in \mathcal{C}(A, B)$

- for every object A, an identity morphism $1_A : A \to A$

Very basic notions of category theory

Definition. A category C consists of the following data:

- a class of objects A, B, . . .
- for every pair of objects (A, B) a set C(A, B) of morphisms or arrows

We write $f: A \to B$ or $A \xrightarrow{f} B$ for $f \in \mathcal{C}(A, B)$

- for every object A, an identity morphism $1_A : A \to A$
- a partial composition $\circ : \mathcal{C}(A, B) \times \mathcal{C}(B, C) \rightarrow \mathcal{C}(A, C)$

Additionally the composition should satisfy unit and associativity axioms.

To get the gist of the remaining slides, we basically need to understand 4-5 examples of categories :

• Set - the category of sets and functions

To get the gist of the remaining slides, we basically need to understand 4-5 examples of categories :

- Set the category of sets and functions
- Rel the category of sets and relations

To get the gist of the remaining slides, we basically need to understand 4-5 examples of categories :

- Set the category of sets and functions
- Rel the category of sets and relations
- Vec the category of vector spaces and linear transformations

To get the gist of the remaining slides, we basically need to understand 4-5 examples of categories :

- Set the category of sets and functions
- Rel the category of sets and relations
- Vec the category of vector spaces and linear transformations
- \mathcal{T} the category of free partial actions of some free monoid B^* and their morphisms

To get the gist of the remaining slides, we basically need to understand 4-5 examples of categories :

- Set the category of sets and functions
- Rel the category of sets and relations
- Vec the category of vector spaces and linear transformations
- \mathcal{T} the category of free partial actions of some free monoid B^* and their morphisms
- the free category on a graph, in particular

Many more, that you have surely encountered: (semi)groups, monoids, topological spaces, etc.

Word automata

deterministic automata

Word automata

non-deterministic automata
Word automata

Word automata

We consider partial actions for the free monoid B^* .

We consider partial actions for the free monoid B^* .

We consider a category ${\mathcal T}$ with

- objects: sets X, Y, Z, ...
- arrows: $f: X \rightarrow Y$, where $f: X \rightarrow B^* \times Y + 1$ is a function

We consider partial actions for the free monoid B^* .

We consider a category ${\mathcal T}$ with

- objects: sets X, Y, Z, ...
- arrows: $f: X \rightarrow Y$, where $f: X \rightarrow B^* \times Y + 1$ is a function

Composition of arrows in T is defined using the monoid multiplication in B^* .

If $f: X \nleftrightarrow Y$ and $g: Y \nleftrightarrow Z$ then $g \circ f: X \nrightarrow Z$ (i.e. $g \circ f: X \to B^* \times Z + 1$) is given by $g \circ f(x) = \begin{cases} (uv, z) & \text{if } f(x) = (u, y) \text{ and } g(y) = (v, z) \\ \bot & \text{otherwise.} \end{cases}$

We consider partial actions for the free monoid B^* .

We consider a category ${\mathcal T}$ with

- objects: sets X, Y, Z, ...
- arrows: $f: X \rightarrow Y$, where $f: X \rightarrow B^* \times Y + 1$ is a function

Composition of arrows in T is defined using the monoid multiplication in B^* .

If $f: X \nleftrightarrow Y$ and $g: Y \nleftrightarrow Z$ then $g \circ f: X \nrightarrow Z$ (i.e. $g \circ f: X \to B^* \times Z + 1$) is given by $g \circ f(x) = \begin{cases} (uv, z) & \text{if } f(x) = (u, y) \text{ and } g(y) = (v, z) \\ \bot & \text{otherwise.} \end{cases}$

This is the Kleisli category for the monad $T: Set \rightarrow Set$ given by $T(X) = B^* \times X + 1$, which associates to each set X the free partial action of B^* on X.

Interpretting the arrows

ammounts to give

Interpretting the arrows

$$1 \xrightarrow{i} Q \xrightarrow{f} 1 \qquad \text{in } \mathcal{T}$$

ammounts to give

• a function $i: 1 \rightarrow B^* \times Q + 1$, i.e. an initial state with an initial output in B^* , or an undefined initial state

Interpretting the arrows

$$1 \xrightarrow{i} Q \xrightarrow{f} 1 \qquad \text{in } \mathcal{T}$$

ammounts to give

- a function $i: 1 \rightarrow B^* \times Q + 1$, i.e. an initial state with an initial output in B^* , or an undefined initial state
- for each $a \in A$ a function $\delta_a: Q \to B^* \times Q + 1$

Interpretting the arrows

$$1 \xrightarrow{i} Q \xrightarrow{f} 1 \qquad \text{in } \mathcal{T}$$

ammounts to give

- a function $i: 1 \rightarrow B^* \times Q + 1$, i.e. an initial state with an initial output in B^* , or an undefined initial state
- for each $a \in A$ a function $\delta_a: Q \to B^* \times Q + 1$
- a final map $f: Q \rightarrow B^* \times 1 + 1$, i.e. for each state in Q either an output word in B^* or undefined.

What does "interpretting" mean?

"Interpretting" means moving from one category to another. It's all about functors – which are to categories what functions are to sets !!

What does "interpretting" mean?

"Interpretting" means moving from one category to another. It's all about functors – which are to categories what functions are to sets !!

Definition. Given categories C and D, a functor $F: C \to D$ consists of the following data:

- for each object A of $\mathcal C$, an object FA of $\mathcal D$
- for each arrow $f: A \rightarrow B$ in C, an arrow $Ff: FA \rightarrow FB$ in D

such that identities and composition are preserved: $F(1_A) = 1_{FA}$ and $Ff \circ Fg = F(f \circ g)$ when $f \circ g$ is defined.

Word automata as functors

Word automata on A^* are **functors** $\mathcal{A}: \mathcal{I} \to \mathcal{C}$, where the input category \mathcal{I} is freely generated by

The data given by the functor A is a tuple $\langle Q, i, f, (\delta_a)_{a \in A} \rangle$, where

- Q is an object of \mathcal{C} .
- $i{:}\,I \to Q$ is the «initial» arrow, for some object I of $\mathcal C$
- $f: Q \to F$ is the «final» arrow, for some object F of \mathcal{C}
- $\delta_a: Q \rightarrow Q$ is the «transition» arrow for each $a \in A$

Word automata as functors

Word automata on A^* are **functors** $\mathcal{A}: \mathcal{I} \to \mathcal{C}$, where the input category \mathcal{I} is freely generated by

The data given by the functor A is a tuple $\langle Q, i, f, (\delta_a)_{a \in A} \rangle$, where

- Q is an object of \mathcal{C} .
- $i{:}\,I \to Q$ is the «initial» arrow, for some object I of $\mathcal C$
- $f: Q \rightarrow F$ is the «final» arrow, for some object F of C
- $\delta_a: Q \rightarrow Q$ is the «transition» arrow for each $a \in A$

The language accepted by \mathcal{A} is a map $L_{\mathcal{A}}: \mathcal{A}^* \to \mathcal{C}(I, F)$ that associates to a word $w = a_1 \dots a_n$ the composite morphism

$$I \xrightarrow{i} Q \xrightarrow{\delta_{a_1}} Q \xrightarrow{\delta_{a_2}} \dots \xrightarrow{\delta_{a_n}} Q \xrightarrow{f} F$$
18/3

Automata and languages as functors

An automaton $\mathcal A$ accepts a language $\mathcal L$ when the next diagram commutes

Automata and languages as functors

An automaton $\mathcal A$ accepts a language $\mathcal L$ when the next diagram commutes

For every language $\mathcal{L}: \mathcal{O} \to \mathcal{C}$ we consider a category $Auto_{\mathcal{L}}$ of automata accepting \mathcal{L} .

 ${\mathcal O}$ can be seen as an "observation" subcategory of ${\mathcal I}.$

Much of the ensuing theory can be developed independently on the precise shape of \mathcal{I} .

Automata in a category: minimization

- What does it mean for a *C*-automaton to be minimal?
- What are sufficient conditions on *C* so that a minimal automaton for a language exists?
- · Can we compute the minimal automaton effectively?

- What does it mean for a *C*-automaton to be minimal?
- What are sufficient conditions on *C* so that a minimal automaton for a language exists?
- Can we compute the minimal automaton effectively?

A DFA is minimal when it divides any other automaton accepting the same language.

- What does it mean for a *C*-automaton to be minimal?
- What are sufficient conditions on *C* so that a minimal automaton for a language exists?
- Can we compute the minimal automaton effectively?

A DFA is minimal when it divides any other automaton accepting the same language. Here divides = «is a quotient of a sub-automaton of»

- What does it mean for a *C*-automaton to be minimal?
- What are sufficient conditions on *C* so that a minimal automaton for a language exists?
- Can we compute the minimal automaton effectively?

A DFA is minimal when it divides any other automaton accepting the same language. Here divides = «is a quotient of a sub-automaton of»

Thus we need a notion of «quotient» (surjection for sets) and «sub-object» (injection for sets), i.e. a factorization system.

Three more category-theoretic notions

An initial object in a category C is an object X such that for any object A of C there is a unique morphism !: X → A.
 Question: what is the initial object in Set? And in Rel?

Three more category-theoretic notions

- An initial object in a category C is an object X such that for any object A of C there is a unique morphism !: X → A.
 Question: what is the initial object in Set? And in Rel?
- A final object in a category C is an object Y such that for any object A of C there is a unique morphism !: A → Y.
 Question: what is the final object in Set? And in Rel?

Three more category-theoretic notions

- An initial object in a category C is an object X such that for any object A of C there is a unique morphism !: X → A.
 Question: what is the initial object in Set? And in Rel?
- A final object in a category C is an object Y such that for any object A of C there is a unique morphism !: A → Y.
 Question: what is the final object in Set? And in Rel?
- A factorization system provides the category-theoretic generalizations for the notions of "quotients" and "subobjects", definition on next slide...

When does a 'minimal' automaton accepting a language \mathcal{L} exist?

When does a 'minimal' automaton accepting a language \mathcal{L} exist?

left Kan ext?

$$\begin{array}{c} \mathcal{O} \xrightarrow{\mathcal{L}} \mathcal{C} \\ & \swarrow \mathcal{A}_{\text{init}}(\mathcal{L}) \\ & \swarrow \mathcal{I} \end{array}$$

If the category of automata accepting $\ensuremath{\mathcal{L}}$ has

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})\text{,}$

When does a 'minimal' automaton accepting a language \mathcal{L} exist?

right Kan extension?

If the category of automata accepting $\ensuremath{\mathcal{L}}$ has

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})$,
- a final object $\mathcal{A}_{\texttt{final}}(\mathcal{L}),$ and,

When does a 'minimal' automaton accepting a language \mathcal{L} exist?

If the category of automata accepting $\ensuremath{\mathcal{L}}$ has

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})\text{,}$
- a final object $\mathcal{A}_{\texttt{final}}(\mathcal{L})\text{, and,}$
- a factorization system

then $\mathtt{Min}(\mathcal{L})$ is obtained as the factorization

 $\mathcal{A}_{\text{init}}(\mathcal{L}) \twoheadrightarrow \operatorname{Min}(\mathcal{L}) \mapsto \mathcal{A}_{\text{final}}(\mathcal{L}).$

When does a 'minimal' automaton accepting a language \mathcal{L} exist?

 $\mathcal{O} \xrightarrow{\mathcal{L}} \mathcal{C}$ $\bigwedge^{\text{Min}(\mathcal{L})} \xrightarrow{\mathcal{A}_{\text{final}}(\mathcal{L})}$

If the category of automata accepting $\ensuremath{\mathcal{L}}$ has

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})\text{,}$
- a final object $\mathcal{A}_{\texttt{final}}(\mathcal{L})\text{, and,}$
- a factorization system

then $\mathtt{Min}(\mathcal{L})$ is obtained as the factorization

 $\mathcal{A}_{\text{init}}(\mathcal{L}) \twoheadrightarrow \text{Min}(\mathcal{L}) \rightarrowtail \mathcal{A}_{\text{final}}(\mathcal{L}) \, .$

✓ when C has copowers ✓ when C has powers ✓ when C has one

Factorization systems are a generalization of the next situation: Every function $f: X \rightarrow Y$ can we written as a composite

$$X \xrightarrow{e} Z \xrightarrow{m} Y$$

with *e* a surjection and *m* and injection, and, moreover, such a decomposition is unique up-to isomorphism.

Factorization systems are a generalization of the next situation: Every function $f: X \rightarrow Y$ can we written as a composite

$$X \xrightarrow{e} Z \xrightarrow{m} Y$$

with *e* a surjection and *m* and injection, and, moreover, such a decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of morphisms, E and M, so that:

Factorization systems are a generalization of the next situation: Every function $f: X \rightarrow Y$ can we written as a composite

$$X \xrightarrow{e} Z \xrightarrow{m} Y$$

with *e* a surjection and *m* and injection, and, moreover, such a decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of morphisms, E and M, so that:

• *E* and *M* contain the isomorphisms and are closed under composition;

Factorization systems are a generalization of the next situation: Every function $f: X \rightarrow Y$ can we written as a composite

$$X \xrightarrow{e} Z \xrightarrow{m} Y$$

with *e* a surjection and *m* and injection, and, moreover, such a decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of morphisms, E and M, so that:

- *E* and *M* contain the isomorphisms and are closed under composition;
- every morphism $f: X \rightarrow Y$ can we written as a composite $e \circ m$ with $e \in E$ and $m \in M$;

Factorization systems are a generalization of the next situation: Every function $f: X \rightarrow Y$ can we written as a composite

$$X \xrightarrow{e} Z \xrightarrow{m} Y$$

with *e* a surjection and *m* and injection, and, moreover, such a decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of morphisms, E and M, so that:

- *E* and *M* contain the isomorphisms and are closed under composition;
- every morphism $f: X \rightarrow Y$ can we written as a composite $e \circ m$ with $e \in E$ and $m \in M$;
- the decomposition is functorial, i.e. any two decompositions are isomorphic

When does a 'minimal' automaton accepting a language $\mathcal L$ exist?

When does a 'minimal' automaton accepting a language \mathcal{L} exist? If the category of automata accepting \mathcal{L} has

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})\text{,}$
The three ingredients for minimization

When does a 'minimal' automaton accepting a language \mathcal{L} exist? If the category of automata accepting \mathcal{L} has

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})\text{,}$
- a final object $\mathcal{A}_{\texttt{final}}(\mathcal{L})\text{, and,}$

The three ingredients for minimization

When does a 'minimal' automaton accepting a language \mathcal{L} exist? If the category of automata accepting \mathcal{L} has

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})\text{,}$
- a final object $\mathcal{A}_{\texttt{final}}(\mathcal{L})\text{, and,}$
- a factorization system

then $\mathtt{Min}(\mathcal{L})$ is obtained as the factorization

$$\mathcal{A}_{\text{init}}(\mathcal{L}) \twoheadrightarrow \operatorname{Min}(\mathcal{L}) \mapsto \mathcal{A}_{\text{final}}(\mathcal{L}).$$

The three ingredients for minimization

When does a 'minimal' automaton accepting a language \mathcal{L} exist? If the category of automata accepting \mathcal{L} has

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})\text{,}$
- a final object $\mathcal{A}_{\texttt{final}}(\mathcal{L})$, and,
- a factorization system

✓ when C has copowers
✓ when C has powers
✓ when C has one

then $\mathtt{Min}(\mathcal{L})$ is obtained as the factorization

 $\mathcal{A}_{\text{init}}(\mathcal{L}) \twoheadrightarrow \operatorname{Min}(\mathcal{L}) \mapsto \mathcal{A}_{\text{final}}(\mathcal{L})$.

Trivial example: minimizing DFAs

The initial automaton $\mathcal{A}_{\text{init}}$ for Set-automata accepting a language L is the following :

Trivial example: minimizing DFAs

The initial automaton A_{init} for Set-automata accepting a language L is the following :

The final automaton A_{final} for Set-automata accepting a language L is the following :

Trivial example: minimizing DFAs accepting L

The unique map from the initial to the final automaton is given by $!:A^* \rightarrow 2^{A^*}$, defined by $w \mapsto w^{-1}L$.

Trivial example: minimizing DFAs accepting L

The unique map from the initial to the final automaton is given by $!:A^* \rightarrow 2^{A^*}$, defined by $w \mapsto w^{-1}L$.

Another trivial example

 \mathbb{R} -weighted automata, i.e. (Vec, \mathbb{R} , \mathbb{R})-automata accepting a (Vec, \mathbb{R} , \mathbb{R})-language

Another trivial example

 \mathbb{R} -weighted automata, i.e. (Vec, \mathbb{R} , \mathbb{R})-automata accepting a (Vec, \mathbb{R} , \mathbb{R})-language

The minimal transducer in a picture

We obtain $\mathtt{Min}(\mathcal{L})$ – the minimal subsequential transducer as obtained by Choffrut!

The minimal transducer in a picture

We obtain $Min(\mathcal{L})$ – the minimal subsequential transducer as obtained by Choffrut! In fact it also works if we replace B^* by a trace monoid.

 $\mathcal{A}_{\text{final}}(L)$ $\mathcal{A}_{\text{init}}(L)$

The automaton $Min(\mathcal{L})$ divides any other automaton accepting \mathcal{L} .

Thus far we identified simple sufficient conditions on C so that minimization of C-automata is guaranteed!

Lifting adjunctions between output categories to automata

Lifting adjunctions

Suppose we have the 'same' language interpretted in two different categories related by an adjunction $F \rightarrow U$:

$$L_C: A^* \to C(X, UY)$$
 and $L_D: A^* \to D(FX, Y)$.

Lifting adjunctions – determinization

Suppose we have the 'same' regular language interpretted in two different categories (Set and Rel) related by an adjunction $F \dashv U$:

 $L_{\text{Set}}: A^* \to \text{Set}(1, U1) \text{ and } L_{\text{Rel}}: A^* \to \text{Rel}(F1, 1).$

Corollary 1. The determinization of NFA is a right adjoint to inclusions of DFA in NFA.

Lifting adjunctions – determinization

Suppose we have the 'same' regular language interpretted in two different categories (Set and Rel) related by an adjunction $F \dashv U$:

 $L_{\text{Set}}: A^* \rightarrow \text{Set}(1, U1) \text{ and } L_{\text{Rel}}: A^* \rightarrow \text{Rel}(F1, 1).$

Corollary 1. The determinization of NFA is a right adjoint to inclusions of DFA in NFA.

Corollary 2. Initial automata for free in Kleisli valued automata.