A categorical approach to automata learning and
minimization - part 1

Daniela Petrisan
Université Paris Cité, IRIF, France
TACL'24, Barcelona, 24-28 June 2024
l I' I I: INSTITUT

DE RECHERCHE

EN INFORMATIQUE
FONDAMENTALE

TANCL 07 in Oxford

the first conference |
attended

organized by Mai Gehrke and
Hilary Priestley

some wonderful talks
Samson Abramsky, Alexander
Kurz, Jean-Eric Pin, etc.

in particular, Jean-Eric Pin
taked about automata,
semigroups and duality ...

2/31

TANCL 07 in Oxford

the first conference |
attended

organized by Mai Gehrke and
Hilary Priestley

some wonderful talks
Samson Abramsky, Alexander
Kurz, Jean-Eric Pin, etc.

in particular, Jean-Eric Pin
taked about automata,
semigroups and duality ...

my first slide at TACL'2019,
organized by Mai Gehrke in
Nice!

2/31

References for Lecture 1

T. Colcombet and D. Petrisan. Automata minimization: a functorial
approach. Log. Methods Comput. Sci., 16(1), 2020

J. E. Pin (Ed.) Handbook of Automata Theory, EMS Press, 2021

3/3

This tutorial is about ...

the interplay between category theory and automata theory.

4/ 3

This tutorial is about ...

the interplay between category theory and automata theory.

In particular, we will see how the category-theoretic approach

« provides a unifying framework for modelling various forms of
automata,

- for obtaining generic algorithms for learning algorithms,

4/ 3

This tutorial is about ...

the interplay between category theory and automata theory.
In particular, we will see how the category-theoretic approach
« provides a unifying framework for modelling various forms of
automata,

- for obtaining generic algorithms for learning algorithms,

« highlights the link between automata learning and
minimization.

4/ 3

Automata - the basics

A complete deterministic finite automaton over some finite
alphabet A is a tuple A = (Q, o, F, (da)aca) Where

« Qs a finite set of states

* go is an element of Q, called initial state

« Fc Qis asubset of accepting states

- for every letter a € A, 5,:Q — Q is a transition function

Foreachwordw=a1...a, € A", we
b a put5W=5anO...0501 al’ld (Sszido.

S OSOS

b

5/31

Automata - the basics

A complete deterministic finite automaton over some finite
alphabet A is a tuple A = (Q, o, F, (da)aca) Where

« Qs a finite set of states

* go is an element of Q, called initial state

« Fc Qis asubset of accepting states

- for every letter a € A, 5,:Q — Q is a transition function

Foreachwordw=a1...a, € A", we

b a put5W=5anO...0501 al’ld (Sszido.
a A word w € A* is accepted by A
— when 0w (qo) € F.
b

5/31

Automata - the basics

A complete deterministic finite automaton over some finite
alphabet A is a tuple A = (Q, o, F, (da)aca) Where

« Qs a finite set of states

* go is an element of Q, called initial state

« Fc Qis asubset of accepting states

- for every letter a € A, 5,:Q — Q is a transition function

Foreachwordw=a1...a, € A", we

b a put oy = dg, © ... 0 dq, and & = idq.
a A word w € A* is accepted by A
— when 0w (qo) € F.
b The language of A is the set £(A)

of words over A* accepted by A.
5/31

Regular languages

... form a very robust class - described in a multitude of ways.
Example: “Last letter is a.”

b

a
(a+b)a (3 9
the language of a ° o
regular expression b
(Kleene theorem) recognised by a DFA or an NFA

regular languages

6/31

Regular languages

... form a very robust class - described in a multitude of ways.
Example: “Last letter is a.”

b

a
(a+b)a (3 9
the language of a ° o
regular expression b
(Kleene theorem) recognised by a DFA or an NFA

regular languages

¢»:A* - {1,a,b}
the preimage of
a monoid morphism

oo oo

1 a
101 a
ala a
b|(b a

6/31

Regular languages

... form a very robust class - described in a multitude of ways.
Example: “Last letter is a.”

b

a
(a+b)a (3 9
the language of a ° o
regular expression b
(Kleene theorem) recognised by a DFA or an NFA

regular languages

¢»:A* - {1,a,b}
the preimage of
a monoid morphism

- Ix. =(Fy. X < y) A Qgx
i definable in MSO
: 0 (Biichi-Elgot-Trakhtenbrot)

6/31

Minimization
Given a language L c A* and a word u € A* the left quotient u™"L is

the set
{veA" |uvel}

The Myhill-Nerode equivalence is defined by

uxviffu'll=vL

7131

Minimization
Given a language L c A* and a word u € A* the left quotient u™"L is

the set
{veA" |uvel}

The Myhill-Nerode equivalence is defined by

uxviffu'll=vL

Theorem (Myhill-Nerode). A language L is regular iff it has only
finitely many left quotients iff ; has finite index.

7131

Minimization
Given a language L c A* and a word u € A* the left quotient u™"L is

the set
{veA" |uvel}

The Myhill-Nerode equivalence is defined by

uxviffu'll=vL

Theorem (Myhill-Nerode). A language L is regular iff it has only
finitely many left quotients iff ; has finite index.

Proof. = If an automaton A = (Q, qo, F, (0a)aca) accepts a language L,
then the automaton (Q,64(qo), F, (a)aca) accepts u~"L.

7131

Minimization
Given a language L c A* and a word u € A* the left quotient u™"L is

the set
{veA" |uvel}

The Myhill-Nerode equivalence is defined by
uxviffu'll=vL

Theorem (Myhill-Nerode). A language L is regular iff it has only
finitely many left quotients iff ; has finite index.

Proof. = If an automaton A = (Q, qo, F, (0a)aca) accepts a language L,
then the automaton (Q,64(qo), F, (a)aca) accepts u~"L.

<« Consider the Nerode automaton of L, that is (Q, go, F, (da)aca),
where
« Q={u'L|ueA*}, « F={u'L|uel}and

—_ O -1 _ =7
go=1L da(u™'L) = (ua)~'L. e

Minimization

How do we minimize an automaton A4?

« remove all states that are not accessible from the initial state.
We obtain the reachable sub-automaton Reach(A).

 Merge all states that accept the same language, we obtain the
observable quotient Obs(Reach(A)).

8/31

Minimization

How do we minimize an automaton A4?

« remove all states that are not accessible from the initial state.
We obtain the reachable sub-automaton Reach(A).

 Merge all states that accept the same language, we obtain the
observable quotient Obs(Reach(A)).

There are several algorithms for minimizing automata:
Moore, Hopcroft, Brzozowski.

8/31

Non-deterministic automata

A non-deterministic finite automaton over some finite alphabet A is
atuple A =(Q,l,F,d) where

* Qs a finite set of states

« 1 cQis asubset of initial states

« Fc Qis asubset of accepting states

+ 0 €QxAxQis set of transitions

A word w € A" is accepted by A
a b when there is a path labelled by

a w starting from an initial state and
- finishing in an accepting state.
b

9/31

Non-deterministic automata

A non-deterministic finite automaton over some finite alphabet A is
atuple A =(Q,l,F,d) where

* Qs a finite set of states

« 1 cQis asubset of initial states

« Fc Qis asubset of accepting states

+ 0 €QxAxQis set of transitions

A word w € A" is accepted by A

a b when there is a path labelled by
a w starting from an initial state and

- finishing in an accepting state.
b Proposition. Every NFA is equiva-

lent to a DFA.

9/31

Weighted automata over a semiring

Given a semiring S, an S-weighted automaton over some finite
alphabet Ais a tuple A = (Q,i,f,d) where

« Qs afinite set of states

* i:Q - S assigns an initial value to each state

- f:Q - Sis a subset a final value to each state

« 0:Q xAxQ — S assigns to each transition a value in S

« Let we A”. For an accepting
path labelled by w compute

a 2a its weight using the
b multiplication of the
7 semiring.
b b « We add the weights of all

accepting pathes labelled by
w to obtain L(A)(w).

10/ 31

Sequential transducers

A sequential transducer with input alphabet A and output alphabet
B consists of:

- a finite set of states Q
« an initial state with an initial output in B*, or an undefined
initial state

11/ 31

Sequential transducers

A sequential transducer with input alphabet A and output alphabet
B consists of:

- a finite set of states Q

« an initial state with an initial output in B*, or an undefined
initial state

- for each a € A a transition function Q - B* x Q +1

11/ 31

Sequential transducers

A sequential transducer with input alphabet A and output alphabet
B consists of:

- a finite set of states Q

« an initial state with an initial output in B*, or an undefined
initial state

- for each a € A a transition function Q - B* x Q +1

- for each state in Q, either an output word in B* or undefined.

blba

11/ 31

A unifying framework for automata
minimization

Very basic notions of category theory

Definition. A category C consists of the following data:

+ aclass of objects A, B, ...

12/ 31

Very basic notions of category theory

Definition. A category C consists of the following data:

+ aclass of objects A, B, ...

- for every pair of objects (A, B) a set C(A, B) of morphisms or
arrows

We write f:A—>Bor A L> B forfeC(A,B)
- for every object A, an identity morphism 14:A - A

12/ 31

Very basic notions of category theory

Definition. A category C consists of the following data:

+ aclass of objects A, B, ...
- for every pair of objects (A, B) a set C(A, B) of morphisms or
arrows
We write f:A - Bor A —— B forfeC(A,B)
- for every object A, an identity morphism 14:A - A
+ a partial composition o : C(A,B) x C(B,C) - C(A,C)
gof

~F o

A—>BL>C

Additionally the composition should satisfy unit and associativity
axioms.

12/ 31

Examples of categories

To get the gist of the remaining slides, we basically need to
understand 4-5 examples of categories :

« Set - the category of sets and functions

13 /31

Examples of categories

To get the gist of the remaining slides, we basically need to
understand 4-5 examples of categories :

« Set - the category of sets and functions
« Rel - the category of sets and relations

13 /31

Examples of categories

To get the gist of the remaining slides, we basically need to
understand 4-5 examples of categories :

« Set - the category of sets and functions
« Rel - the category of sets and relations
« Vec - the category of vector spaces and linear transformations

13 /31

Examples of categories

To get the gist of the remaining slides, we basically need to
understand 4-5 examples of categories :

« Set - the category of sets and functions
« Rel - the category of sets and relations
« Vec - the category of vector spaces and linear transformations

« T -the category of free partial actions of some free monoid B*
and their morphisms

13 /31

Examples of categories

To get the gist of the remaining slides, we basically need to
understand 4-5 examples of categories :

« Set - the category of sets and functions

« Rel - the category of sets and relations

« Vec - the category of vector spaces and linear transformations
T - the category of free partial actions of some free monoid B*
and their morphisms

- the free category on a graph, in particular
a (aeh)

. > <
In —— states —— out

Many more, that you have surely encountered: (semi)groups,

monoids, topological spaces, etc.
13 /31

Word automata

a

C)

deterministic automata 17— Q — 2 in Set

14/ 31

Word automata

deterministic automata 1—Q — 2 in Set
a
non-deterministic automata 17— Q — 1 in Rel

14/ 31

Word automata

deterministic automata 1—Q — 2 in Set
a
non-deterministic automata 17— Q — 1 in Rel
a
weighted automata K —Q— K in Veck

14/ 31

Word automata

deterministic automata 1—Q — 2 in Set
a
non-deterministic automata 17— Q — 1 in Rel
a
weighted automata K —Q— K in Veck
a
Seq. transducers 1—Q — 1 inT

14/ 31

The output category for subsequential transducers

We consider partial actions for the free monoid B*.

15/ 31

The output category for subsequential transducers

We consider partial actions for the free monoid B*.

We consider a category 7 with

 objects: sets X,V,Z, ...
- arrows: f:X - Y, where f:X — B* x Y + 1is a function

15/ 31

The output category for subsequential transducers

We consider partial actions for the free monoid B*.
We consider a category 7 with

 objects: sets X,V,Z, ...
- arrows: f:X - Y, where f:X — B* x Y + 1is a function

Composition of arrows in 7 is defined using the monoid
multiplication in B*.

Iff:X»Yand g:Y »Zthengof:X»Z(i.e.gof:X—>B*xZ+1)is
(uv,z) iff(x)=(u,y)and g(y) = (v,2)

given by gof(x) = .
otherwise.

15/ 31

The output category for subsequential transducers

We consider partial actions for the free monoid B*.

We consider a category 7 with

 objects: sets X,V,Z, ...
- arrows: f:X - Y, where f:X — B* x Y + 1is a function

Composition of arrows in 7 is defined using the monoid
multiplication in B*.

Iff:X»Yand g:Y »Zthengof:X»Z(i.e.gof:X—>B*xZ+1)is

(uv,2) iff(x) = (u,y) and g(y) = (v,2)

given by gof(x) = .
otherwise.

This is the Kleisli category for the monad T:Set — Set given by
T(X) = B* x X + 1, which associates to each set X the free partial
action of B* on X.

15/ 31

The output category for subsequential transducers

Interpretting the arrows

ba

C)

1—'.>QL>1 inT

ammounts to give

16 /31

The output category for subsequential transducers

Interpretting the arrows

ba

C)

1—'.>QL>1 inT

ammounts to give

« afunction i:1— B* x Q +1, i.e. an initial state with an initial
output in B*, or an undefined initial state

16 /31

The output category for subsequential transducers

Interpretting the arrows

ba

C)

1—'.>QL>1 inT

ammounts to give

« afunction i:1— B* x Q +1, i.e. an initial state with an initial
output in B*, or an undefined initial state

+ for each a € A a function 6:Q - B* xQ +1

16 /31

The output category for subsequential transducers

Interpretting the arrows

ba

C)

1—'.>QL>1 inT

ammounts to give

« afunction i:1— B* x Q +1, i.e. an initial state with an initial
output in B*, or an undefined initial state

+ for each a € A a function 6:Q - B* xQ +1

- afinal map f:Q - B* x1+1, i.e. for each state in Q either an
output word in B* or undefined.

16 /31

What does “interpretting” mean?

“Interpretting” means moving from one category to another.
It's all about functors — which are to categories what functions are to
sets !!

17/ 31

What does “interpretting” mean?

“Interpretting” means moving from one category to another.
It's all about functors — which are to categories what functions are to

sets !!

Definition. Given categories C and D, a functor F:C — D consists of
the following data:

- for each object A of C, an object FA of D
- for each arrow f:A - Bin C, an arrow Ff:FA - FB in D

such that identities and composition are preserved:
F(1a) =1ga and Ff o Fg = F(f o g) when f o g is defined.

17/ 31

Word automata as functors

Word automata on A* are functors A:7 — C, where the input
category 7 is freely generated by

a (ach)

C)

in —= states —— out
The data given by the functor A is a tuple (Q,i,f, (da)gea), Where

 Qis an object of C.

« i:] - Q is the «initial» arrow, for some object | of C
f:Q — F is the «final» arrow, for some object F of C
* 5q:Q — Q is the «transition» arrow for each a ¢ A

18 /31

Word automata as functors

Word automata on A* are functors A:7 — C, where the input
category 7 is freely generated by

a (ach)

C)

in —= states —— out
The data given by the functor A is a tuple (Q,i,f, (da)gea), Where

 Qis an object of C.

« i:] - Q is the «initial» arrow, for some object | of C
* f:Q — F is the «final» arrow, for some object F of C
*+ 0g:Q — Q is the «transition» arrow for each ac A

The language accepted by A isa map L4:A* — C(I,F) that associates
to aword w = a,...a, the composite morphism

I —"sq 601>Q b, L P R

18 /31

Automata and languages as functors

An automaton A accepts a language £ when the next diagram
commutes

. DW<C : WweA* L
n > out

. > <
In —— states —— out

19/31

Automata and languages as functors

An automaton A accepts a language £ when the next diagram
commutes

. DW<C : WweA*
n > out

. A

. > <
In —— states —— out

For every language £: O — C we consider
a category Auto, of automata accepting L.

O can be seen as an “observation” subcategory of Z.

Much of the ensuing theory can be developed independently on the
precise shape of 7. 19/ 31

Automata in a category:
minimization

Minimzation of C-automata

« What does it mean for a C-automaton to be minimal?

« What are sufficient conditions on C so that a minimal
automaton for a language exists?

« Can we compute the minimal automaton effectively?

20/ 31

Minimzation of C-automata

« What does it mean for a C-automaton to be minimal?

+ What are sufficient conditions on C so that a minimal
automaton for a language exists?

« Can we compute the minimal automaton effectively?

A DFA is minimal when it divides any other automaton accepting the
same language.

20/ 31

Minimzation of C-automata

« What does it mean for a C-automaton to be minimal?

+ What are sufficient conditions on C so that a minimal
automaton for a language exists?

« Can we compute the minimal automaton effectively?

A DFA is minimal when it divides any other automaton accepting the
same language. Here divides = «is a quotient of a sub-automaton
of»

20/ 31

Minimzation of C-automata

« What does it mean for a C-automaton to be minimal?

+ What are sufficient conditions on C so that a minimal
automaton for a language exists?

« Can we compute the minimal automaton effectively?

A DFA is minimal when it divides any other automaton accepting the
same language. Here divides = «is a quotient of a sub-automaton
of»

Thus we need a notion of «quotient» (surjection for sets) and
«sub-object» (injection for sets), i.e. a factorization system.

20/ 31

Three more category-theoretic notions

« An initial object in a category C is an object X such that for any
object A of C there is a unique morphism : X — A.
Question: what is the initial object in Set? And in Rel?

21/ 31

Three more category-theoretic notions

« An initial object in a category C is an object X such that for any
object A of C there is a unique morphism : X — A.
Question: what is the initial object in Set? And in Rel?

« Afinal object in a category C is an object Y such that for any
object A of C there is a unique morphism :A - Y.
Question: what is the final object in Set? And in Rel?

21/ 31

Three more category-theoretic notions

« An initial object in a category C is an object X such that for any
object A of C there is a unique morphism : X — A.
Question: what is the initial object in Set? And in Rel?

« Afinal object in a category C is an object Y such that for any
object A of C there is a unique morphism :A - Y.
Question: what is the final object in Set? And in Rel?

« Afactorization system provides the category-theoretic

generalizations for the notions of “quotients” and “subobjects”,
definition on next slide...

21/ 31

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?

22/ 31

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?

left Kan ext? @ 4'6/; C

Ainit (L)
T

If the category of automata accepting £ has

- an initial object A;,;i¢ (L),

22/ 31

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?

@) 4'6/; C right Kan extension?

Ainit (L) /

Asina1(£)
7—

If the category of automata accepting £ has

- an initial object A;,;i¢ (L),
« afinal object Afina1(£), and,

22/ 31

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?
c
@) 4/§ C
n
Ainit(ﬁ) ///
Min(L) /
/// Asina1(£)
7=
If the category of automata accepting £ has

- an initial object A;,;i¢ (L),
« afinal object Afina1(£), and,
- a factorization system

then Min(£) is obtained as the factorization

Ainit (L) > Min(L) = Asina1 (L) .

22/ 31

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?
c
@) 4/§ C
1

Ainit (E) ////
/ Min(L)

) ~ Asina1(£)

7"
If the category of automata accepting £ has
« an initial object A;nit (L), v when C has copowers
- afinal object A¢ina1(£), and, v'when C has powers
- a factorization system v“when C has one

then Min(£) is obtained as the factorization

Ainit (L) > Min(L) = Asina1 (L) .

22/ 31

Factorization systems

Factorization systems are a generalization of the next situation:

Every function f:X — Y can we written as a composite
X—25z2y"sy

with e a surjection and m and injection, and, moreover, such a

decomposition is unique up-to isomorphism.

23/ 31

Factorization systems
Factorization systems are a generalization of the next situation:
Every function f:X — Y can we written as a composite
X—25z2y"sy
with e a surjection and m and injection, and, moreover, such a

decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

23/ 31

Factorization systems
Factorization systems are a generalization of the next situation:
Every function f:X — Y can we written as a composite
X—25z2y"sy
with e a surjection and m and injection, and, moreover, such a

decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

« E and M contain the isomorphisms and are closed under
composition;

23/ 31

Factorization systems
Factorization systems are a generalization of the next situation:
Every function f:X — Y can we written as a composite
X—25z2y"sy
with e a surjection and m and injection, and, moreover, such a

decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

« E and M contain the isomorphisms and are closed under
composition;

« every morphism f:X — Y can we written as a composite eom
withecEand me M;

23/ 31

Factorization systems

Factorization systems are a generalization of the next situation:
Every function f:X — Y can we written as a composite

X—S5zy"sy
with e a surjection and m and injection, and, moreover, such a
decomposition is unique up-to isomorphism.

In a category C, a factorization system consists of two classes of
morphisms, E and M, so that:

« E and M contain the isomorphisms and are closed under
composition;

« every morphism f:X — Y can we written as a composite eom
withecEand me M;

« the decomposition is functorial, i.e. any two decompositions

are isomorphic
23/ 31

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?

24 [31

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?

If the category of automata accepting £ has

- an initial object A;,i¢ (L),

24 [31

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?

If the category of automata accepting £ has

- an initial object A;,i¢ (L),
« afinal object Afina1(£), and,

24 [31

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?

If the category of automata accepting £ has

- an initial object A;,i¢ (L),
« afinal object Afina1(£), and,
- a factorization system

then Min(£) is obtained as the factorization

Asnic (L) > Min(L) = Asina1 (L)

24 [31

The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language £ exist?

If the category of automata accepting £ has

« an initial object A;nit (L), v“when C has copowers
- afinal object Asina1 (£), and, v“when C has powers
- a factorization system v“when C has one

then Min(£) is obtained as the factorization

Asnic(L£) > Min(L) = Asina1 (L)

24 [31

Trivial example: minimizing DFAs

The initial automaton A;,;, for Set-automata accepting a language L
is the following :

25/ 31

Trivial example: minimizing DFAs

The initial automaton A;,;, for Set-automata accepting a language L
is the following :

The final automaton As;,.1 for Set-automata accepting a language L
is the following :
K—a 'K

1A o

25/ 31

Trivial example: minimizing DFAs accepting L

The unique map from the initial to the final automaton is given by
1:A* - 2%, defined by w — w'L.

A>(—
15 L?
reachedState
1 i > Q ! > 2
acceptedLanguage
E N 67
2A

26/ 31

Trivial example: minimizing DFAs accepting L

The unique map from the initial to the final automaton is given by
1:A* - 2%, defined by w — w'L.

A>(—

26/ 31

Another trivial example

R-weighted automata, i.e. (Vec,R,R)-automata
accepting a (Vec, R,R)-language

ueA*
reachedState
acceptedLanguage
L

|
IR

UeA*

(1]

— D

27/ 3

Another trivial example
R-weighted automata, i.e. (Vec,R,R)-automata

accepting a (Vec, R,R)-language

PR

ueA*

UeA*

27/ 3

The minimal transducer in a picture

We obtain Min(£) - the minimal subsequential transducer as
obtained by Choffrut!

Irr(A*,B*)

28 /31

The minimal transducer in a picture

We obtain Min(£) - the minimal subsequential transducer as
obtained by Choffrut! In fact it also works if we replace B* by a trace
monoid.

AX—

Irr(A*,B*)

28 /31

Minimial Automaton Min(£) for a Language
The automaton Min(£) divides any other automaton accepting L.

/_)A\

Ainit (L) Afinal(l-)

29 /31

Minimial Automaton Min(£) for a Language
The automaton Min(£) divides any other automaton accepting L.

/?A\

Ainit(’-) —> reach(A) Afinal(l-)

29 /31

Minimial Automaton Min(£) for a Language
The automaton Min(£) divides any other automaton accepting L.

/?A\

Ainit(L) —» reach(A) —» obs(reach(A)) > Asina1(L)

29 /31

Minimial Automaton Min(£) for a Language

The automaton Min(£) divides any other automaton accepting L.

/—> A
e \
Ainit(L) —>» reach(A) —» obs(reach(A)) > Asina1(L)

\% Min(L) /

29 /31

Minimial Automaton Min(£) for a Language

The automaton Min(£) divides any other automaton accepting L.

/—> A
e \
Ainit(L) —>» reach(A) —» obs(reach(A)) > Asina1(L)

\% Min(L)/;/

29 /31

Minimial Automaton Min(£) for a Language

The automaton Min(£) divides any other automaton accepting L.

/—> A
e \
Ainit(L) —>» reach(A) —» obs(reach(A)) > Asina1(L)

\% Min(L)/;/

Thus far we identified simple sufficient conditions on C so that
minimization of C-automata is guaranteed!

29 /31

Lifting adjunctions between output
categories to automata

Lifting adjunctions

Suppose we have the ‘same’ language interpretted in two different
categories related by an adjunction F+ U :

Le:A* > C(X,UY) and Lp:A* > D(FX, Y).

— T
Auto(L¢) 1L Auto(Lp)

_/
| |
States States
I
C \i// D

u

30/31

Lifting adjunctions - determinization

Suppose we have the ‘same’ regular language interpretted in two
different categories (Set and Rel) related by an adjunction F -4 U :

Lset:A* — Set(1,U1) and Lge:A™ — Rel(F1,1).

— ==
Auto(Lset) 1 Auto(Lget)
\—/
| |

States States
I
Set \i/ Rel

u

Corollary 1. The determinization of NFA is a right adjoint to
inclusions of DFA in NFA.

31/31

Lifting adjunctions - determinization

Suppose we have the ‘same’ regular language interpretted in two
different categories (Set and Rel) related by an adjunction F -4 U :

Lset:A* — Set(1,U1) and Lge:A™ — Rel(F1,1).

— ==
Auto(Lset) 1 Auto(Lget)
\—/
| |

States States
I
Set \i/ Rel

u

Corollary 1. The determinization of NFA is a right adjoint to
inclusions of DFA in NFA.

Corollary 2. Initial automata for free in Kleisli valued automata.

31/31

	A unifying framework for automata minimization
	Automata in a category: minimization
	Lifting adjunctions between output categories to automata

