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The setting: Automata and languages as functors

An automaton A accepts a language L when the next diagram
commutes

in out O C

in states out I

.w/ : w∈A∗ L

.

a

/

A

For every language L : O → C we consider
a category AutoL of automata accepting L.

O can be seen as an “observation” subcategory of I .

Much of the ensuing theory can be developed independently on the
precise shape of I .
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A useful lemma

An adjunction F a U : C → D lifts to an adjunction between functor
categories [I, C] and [I,D].

We can re�ne this for any objects X in C
and Y in D to a lifting:

F

States States
U

F

U

such that, furthermore, the lifted functors preserve the ac-
cepted languages up to isomorphism
(since C(X,UY) ∼= D(FX, Y)).
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An instance: Determinization

The powerset construction is a right adjoint to the inclusion functor
of deterministic automata into non-deterministic automata.

Recall the adjunction between Set and Rel. We have
UP(1) = P(1) = 2 and FP(1) = 1.

(Set, 1, 2)-automata ⊥ (Rel, 1, 1)-automata

Set ⊥ Rel

FP

States StatesUPpowerset construction

FP

UP

The same language L can be seen a Set-valued functor LSet, and
equivalently, as a Rel-valued functor LRel.
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Minimization via adjunctions

ReachL ⊥ AutoL ⊥ ObsL .

Obs

Reach
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Brzozowski’s minimization algorithm

min(A) = determinize(transpose(determinize(transpose(A)))),

where

• determinize applies a powerset construction to a
non-deterministic automaton, and restricts to the reachable
states, yielding a deterministic automaton, and

• transpose reverses all the edges of a non-deterministic
automaton, and swaps the role of initial and �nal states (it
accepts the mirrored language).
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Brzozowski’s minimization algorithm

min(A) = determinize(codeterminize(A)),

Reach(LSet)⊥ Auto(LSet) ⊥ Auto(LRel) ⊥Auto(LSetop)⊥ Obs(LSetop)

incl FP

Reach UP

UopP

FopP

Obs

incl
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Syntactic Monoids



Syntactic Monoid

Let L be a regular language over some �nite alphabet A.

The synatctic monoid of L is the minimal monoid recognizing L.

The syntactic monoids via duality

Let B(L) denote the Boolean subalgebra of P(A∗) generated by the
quotients of L, i.e. by the sets

w−1Lv−1 = {u ∈ A∗ | wuv ∈ L}

Theorem
The syntactic monoid of L is the dual of B(L).
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Monoid and biaction recognizers

We are interested in

Monoid recognizers
A monoid morphism φ : A∗ → M and F ⊆ M.

However, we can easily work with unary contexts, so in fact we will
represent as functors:

A∗-biaction recognizers
A biaction morphism φ : A∗ → X and F ⊆ X.

A monoid recognizer induces an A∗-biaction recognizer. Conversely ...

Lemma
Surjective A∗-biactions recognizers are in one-to-one
correspondence with surjective monoid recognizers.
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We change the input category

We will represent A∗-biaction recognizers as Set-valued functors
from a di�erent input category IMon

IMon : in states outw

w′

u2v

u′2v′

A functor
A : IMon → Set

is just an A∗-biaction recognizer.
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The three ingredients for minimization

• initial automaton
• �nal automaton
• factorization system

• exists because Set is cocomplete
we can compute it as a colimit

• exists because Set is complete
we can compute it as a limit

• lift the factorization system from Set
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The syntactic monoid

Fact
The syntactic A∗-biaction recognizer
is exactly the syntactic monoid of a given language L.

∐
u∈A∗

1

1 Min(L) 2

∏
(u,v)∈A∗×A∗

2

L(u−v)?

L(−w−)

w

i f

(u,v)?
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