A categorical approach to automata learning and minimization - part 2

Daniela Petrişan

Université Paris Cité, IRIF, France
TACL'24, Barcelona, 24-28 June 2024

The setting: Automata and languages as functors

An automaton \mathcal{A} accepts a language \mathcal{L} when the next diagram commutes

The setting: Automata and languages as functors

An automaton \mathcal{A} accepts a language \mathcal{L} when the next diagram commutes

For every language $\mathcal{L}: \mathcal{O} \rightarrow \mathcal{C}$ we consider a category $\mathrm{Auto}_{\mathcal{L}}$ of automata accepting \mathcal{L}.
\mathcal{O} can be seen as an "observation" subcategory of \mathcal{I}.
Much of the ensuing theory can be developed independently on the precise shape of \mathcal{I}.

A useful lemma

An adjunction $F \dashv U: \mathcal{C} \rightarrow \mathcal{D}$ lifts to an adjunction between functor categories $[\mathcal{I}, \mathcal{C}]$ and $[\mathcal{I}, \mathcal{D}]$.

A useful lemma

An adjunction $F \dashv U: \mathcal{C} \rightarrow \mathcal{D}$ lifts to an adjunction between functor categories $[\mathcal{I}, \mathcal{C}]$ and $[\mathcal{I}, \mathcal{D}]$. We can refine this for any objects X in \mathcal{C} and Y in \mathcal{D} to a lifting:

A useful lemma

An adjunction $F \dashv U: \mathcal{C} \rightarrow \mathcal{D}$ lifts to an adjunction between functor categories $[\mathcal{I}, \mathcal{C}]$ and $[\mathcal{I}, \mathcal{D}]$. We can refine this for any objects X in \mathcal{C} and Y in \mathcal{D} to a lifting:

such that, furthermore, the lifted functors preserve the accepted languages up to isomorphism (since $\mathcal{C}(X, U Y) \cong \mathcal{D}(F X, Y)$).

An instance: Determinization

The powerset construction is a right adjoint to the inclusion functor of deterministic automata into non-deterministic automata.

Recall the adjunction between Set and Rel. We have
$U_{\mathcal{P}}(1)=\mathcal{P}(1)=2$ and $F_{\mathcal{P}}(1)=1$.

An instance: Determinization

The powerset construction is a right adjoint to the inclusion functor of deterministic automata into non-deterministic automata.

Recall the adjunction between Set and Rel. We have
$U_{\mathcal{P}}(1)=\mathcal{P}(1)=2$ and $F_{\mathcal{P}}(1)=1$.

The same language L can be seen a Set-valued functor $\mathcal{L}_{\text {set }}$, and equivalently, as a Rel-valued functor $\mathcal{L}_{\text {Rel }}$.

An instance: Determinization

The powerset construction is a right adjoint to the inclusion functor of deterministic automata into non-deterministic automata.

Recall the adjunction between Set and Rel. We have
$U_{\mathcal{P}}(1)=\mathcal{P}(1)=2$ and $F_{\mathcal{P}}(1)=1$.

The same language L can be seen a Set-valued functor $\mathcal{L}_{\text {set }}$, and equivalently, as a Rel-valued functor $\mathcal{L}_{\text {Rel }}$.

Minimization via adjunctions

Brzozowski's minimization algorithm

$\min (\mathcal{A})=$ determinize $($ transpose $($ determinize $(\operatorname{transpose}(\mathcal{A}))))$,
where

- determinize applies a powerset construction to a non-deterministic automaton, and restricts to the reachable states, yielding a deterministic automaton, and
- transpose reverses all the edges of a non-deterministic automaton, and swaps the role of initial and final states (it accepts the mirrored language).

Brzozowski's minimization algorithm

$$
\min (\mathcal{A})=\operatorname{determinize}(\operatorname{codeterminize}(\mathcal{A}))
$$

Syntactic Monoids

Syntactic Monoid

Let L be a regular language over some finite alphabet A.
The synatctic monoid of L is the minimal monoid recognizing L.

Syntactic Monoid

Let L be a regular language over some finite alphabet A.
The synatctic monoid of L is the minimal monoid recognizing L.
The syntactic monoids via duality
Let $\mathcal{B}(L)$ denote the Boolean subalgebra of $\mathcal{P}\left(A^{*}\right)$ generated by the quotients of L, i.e. by the sets

$$
w^{-1} L v^{-1}=\left\{u \in A^{*} \mid w u v \in L\right\}
$$

Theorem
The syntactic monoid of L is the dual of $\mathcal{B}(L)$.

Monoid and biaction recognizers

We are interested in

Monoid recognizers
 A monoid morphism $\phi: A^{*} \rightarrow M$ and $F \subseteq M$.

Monoid and biaction recognizers

We are interested in

Monoid recognizers
 A monoid morphism $\phi: A^{*} \rightarrow M$ and $F \subseteq M$.

However, we can easily work with unary contexts, so in fact we will represent as functors:
A^{*}-biaction recognizers
A biaction morphism $\phi: A^{*} \rightarrow X$ and $F \subseteq X$.

Monoid and biaction recognizers

We are interested in

Monoid recognizers

A monoid morphism $\phi: A^{*} \rightarrow M$ and $F \subseteq M$.
However, we can easily work with unary contexts, so in fact we will represent as functors:
A^{*}-biaction recognizers
A biaction morphism $\phi: A^{*} \rightarrow X$ and $F \subseteq X$.
A monoid recognizer induces an A^{*}-biaction recognizer. Conversely ...

Lemma

Surjective A^{*}-biactions recognizers are in one-to-one correspondence with surjective monoid recognizers.

We change the input category

We will represent A^{*}-biaction recognizers as Set-valued functors from a different input category $\mathcal{I}_{\text {Mon }}$

A functor

$$
\mathcal{A}: \mathcal{I}_{\text {Mon }} \rightarrow \text { Set }
$$

is just an A^{*}-biaction recognizer.

The three ingredients for minimization

- initial automaton
- final automaton
- factorization system

The three ingredients for minimization

- initial automaton
- final automaton
- factorization system
- exists because Set is cocomplete we can compute it as a colimit

The three ingredients for minimization

- initial automaton
- final automaton
- factorization system
- exists because Set is cocomplete we can compute it as a colimit
- exists because Set is complete we can compute it as a limit

The three ingredients for minimization

- initial automaton
- final automaton
- factorization system \checkmark
- exists because Set is cocomplete we can compute it as a colimit
- exists because Set is complete we can compute it as a limit
- lift the factorization system from Set

The syntactic monoid

Fact
The syntactic A^{*}-biaction recognizer
is exactly the syntactic monoid of a given language \mathcal{L}.

The syntactic monoid

Fact
The syntactic A^{*}-biaction recognizer
is exactly the syntactic monoid of a given language \mathcal{L}.

