
A categorical approach to automata learning and
minimization – part 3

Daniela Petrişan

Université Paris Cité, IRIF, France

TACL’24, Barcelona, 24-28 June 2024

Automata Learning

Automata Learning

• A classical subject with a wide range of applications:
adaptive model checking, veri�cation, learning network
invariants and interface speci�cations.
(see, e.g., Martin Leucker. Learning meets veri�cation, 2007)

• The most famous learning algorithm for automata is the
L∗-algorithm of Dana Angluin.
D. Angluin, Learning Regular Sets from Queries and
Counterexamples, Information and Computation, 1978

2 / 15

Automata Learning

• A classical subject with a wide range of applications:
adaptive model checking, veri�cation, learning network
invariants and interface speci�cations.
(see, e.g., Martin Leucker. Learning meets veri�cation, 2007)

• The most famous learning algorithm for automata is the
L∗-algorithm of Dana Angluin.
D. Angluin, Learning Regular Sets from Queries and
Counterexamples, Information and Computation, 1978

2 / 15

The L∗-algorithm

• Goal: learn a regular language of words L.

• The algorithm interacts with a teacher who knows L by asking
two types of queries:

1. Membership queries: Does a word belong to the language ?
2. Equivalence queries: It gives the teacher a hypothesis automaton
and asks whether it accepts the language L.

If no, the teacher
provides a counter-example.

• The algorithm stops when the teacher agrees that the
hypothesis automaton accepts the language L.

3 / 15

The L∗-algorithm

• Goal: learn a regular language of words L.
• The algorithm interacts with a teacher who knows L by asking
two types of queries:

1. Membership queries: Does a word belong to the language ?
2. Equivalence queries: It gives the teacher a hypothesis automaton
and asks whether it accepts the language L.

If no, the teacher
provides a counter-example.

• The algorithm stops when the teacher agrees that the
hypothesis automaton accepts the language L.

3 / 15

The L∗-algorithm

• Goal: learn a regular language of words L.
• The algorithm interacts with a teacher who knows L by asking
two types of queries:
1. Membership queries: Does a word belong to the language ?

2. Equivalence queries: It gives the teacher a hypothesis automaton
and asks whether it accepts the language L.

If no, the teacher
provides a counter-example.

• The algorithm stops when the teacher agrees that the
hypothesis automaton accepts the language L.

3 / 15

The L∗-algorithm

• Goal: learn a regular language of words L.
• The algorithm interacts with a teacher who knows L by asking
two types of queries:
1. Membership queries: Does a word belong to the language ?
2. Equivalence queries: It gives the teacher a hypothesis automaton
and asks whether it accepts the language L.

If no, the teacher
provides a counter-example.

• The algorithm stops when the teacher agrees that the
hypothesis automaton accepts the language L.

3 / 15

The L∗-algorithm

• Goal: learn a regular language of words L.
• The algorithm interacts with a teacher who knows L by asking
two types of queries:
1. Membership queries: Does a word belong to the language ?
2. Equivalence queries: It gives the teacher a hypothesis automaton
and asks whether it accepts the language L. If no, the teacher
provides a counter-example.

• The algorithm stops when the teacher agrees that the
hypothesis automaton accepts the language L.

3 / 15

The L∗-algorithm

• Goal: learn a regular language of words L.
• The algorithm interacts with a teacher who knows L by asking
two types of queries:
1. Membership queries: Does a word belong to the language ?
2. Equivalence queries: It gives the teacher a hypothesis automaton
and asks whether it accepts the language L. If no, the teacher
provides a counter-example.

• The algorithm stops when the teacher agrees that the
hypothesis automaton accepts the language L.

3 / 15

The L∗-algorithm: some de�nitions

• At each step, we maintain a pair of sets of words (Q, T), starting
with ({ε}, {ε}).
• Q —> potential states for the hypothesis automaton
• T —> test words used to de�ne an equivalence relation coarser
than the Myhill-Nerode equivalence.

• the T-equivalence relation: w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
• closedness : ∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa.
• consistency : ∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a
• When (Q, T) is closed and consistent it is possible to build a
hypothesis automaton H(Q, T)

4 / 15

The L∗-algorithm: some de�nitions

• At each step, we maintain a pair of sets of words (Q, T), starting
with ({ε}, {ε}).
• Q —> potential states for the hypothesis automaton
• T —> test words used to de�ne an equivalence relation coarser
than the Myhill-Nerode equivalence.

• the T-equivalence relation: w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L

• closedness : ∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa.
• consistency : ∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a
• When (Q, T) is closed and consistent it is possible to build a
hypothesis automaton H(Q, T)

4 / 15

The L∗-algorithm: some de�nitions

• At each step, we maintain a pair of sets of words (Q, T), starting
with ({ε}, {ε}).
• Q —> potential states for the hypothesis automaton
• T —> test words used to de�ne an equivalence relation coarser
than the Myhill-Nerode equivalence.

• the T-equivalence relation: w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
• closedness : ∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa.

• consistency : ∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a
• When (Q, T) is closed and consistent it is possible to build a
hypothesis automaton H(Q, T)

4 / 15

The L∗-algorithm: some de�nitions

• At each step, we maintain a pair of sets of words (Q, T), starting
with ({ε}, {ε}).
• Q —> potential states for the hypothesis automaton
• T —> test words used to de�ne an equivalence relation coarser
than the Myhill-Nerode equivalence.

• the T-equivalence relation: w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
• closedness : ∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa.
• consistency : ∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a

• When (Q, T) is closed and consistent it is possible to build a
hypothesis automaton H(Q, T)

4 / 15

The L∗-algorithm: some de�nitions

• At each step, we maintain a pair of sets of words (Q, T), starting
with ({ε}, {ε}).
• Q —> potential states for the hypothesis automaton
• T —> test words used to de�ne an equivalence relation coarser
than the Myhill-Nerode equivalence.

• the T-equivalence relation: w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
• closedness : ∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa.
• consistency : ∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a
• When (Q, T) is closed and consistent it is possible to build a
hypothesis automaton H(Q, T)

4 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T

H({ε,a}, {ε})

ε

a

a

Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T)

ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T

H({ε,a}, {ε})

ε

a

a

Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T)

ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε}a,aa,aaa {ε}

H({ε,a}, {ε})

ε

a

a

Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T)

ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε}a,aa,aaa {ε}

H({ε,a}, {ε})

ε

a

a

Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T)

ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε}a,aa,aaa {ε}

H({ε,a}, {ε})

ε ?

a

a

Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T)

ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε,a},aa,aaa {ε}

H({ε,a}, {ε})

ε a
a

a

Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T)

ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε,a},aa,aaa {ε}

H({ε,a}, {ε})

ε a
a

a

Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T)

ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε,a},aa,aaa {ε}

H({ε,a}, {ε})

ε a
a

a

Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T)

ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε,a},aa,aaa {ε}

H({ε,a}, {ε}) ε a
a

a

Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T)

ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε,a},aa,aaa {ε}

H({ε,a}, {ε}) ε a
a

a
Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T)

ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε,a},aa,aaa {ε}

H({ε,a}, {ε}) ε a
a

a
Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T)

ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε,a,aa,aaa} {ε}

H({ε,a}, {ε}) ε a
a

a
Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T)

ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε,a,aa,aaa} {ε}

H({ε,a}, {ε}) ε a
a

a
Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T)

ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε,a,aa,aaa} {ε}

H({ε,a}, {ε}) ε a
a

a
Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T)

ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε,a,aa,aaa} {ε}

H({ε,a}, {ε}) ε a
a

a
Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T)

ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε,a,aa,aaa} {ε,a}

H({ε,a}, {ε}) ε a
a

a
Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T)

ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε,a,aa,aaa} {ε,a}

H({ε,a}, {ε}) ε a
a

a
Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T)

ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε,a,aa,aaa} {ε,a}

H({ε,a}, {ε}) ε a
a

a
Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T) ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε,a,aa,aaa} {ε,a}

H({ε,a}, {ε}) ε a
a

a
Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T) ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε,a,aa,aaa} {ε,a}

H({ε,a}, {ε}) ε a
a

a
Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T) ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Example: Learning the language

{a} over the alphabet {a}.

Q T
{ε,a,aa,aaa} {ε,a}

H({ε,a}, {ε}) ε a
a

a
Teacher: “No! aaa is a counterex.”

ε ∼{ε} aa, but a 6∼{ε} aaa

H(Q, T) ε a aaa a

a

Teacher: “Yes!”

return H(Q, T)

5 / 15

The L∗-algorithm: Variations

The L∗-algorithm has been extended to various other forms of
automata

• weighted automata over �elds (Bergadano and Varricchio, 1996)
• subsequential transducers (Vilar, 1996)
• nominal automata (van Heerd et al., 2017)
• symbolic automata (Drews et al., 2017)
• non-deterministic automata (Bollig et al., 2009)
• alternating automata (Angluin et al., 2015)

“The need for a unifying framework collecting various types of
learning techniques is, thus, beyond all questions.” Bollig et al., 2010

Other category theoretic generalizations (van Heerd et al., 2017;
Urbat and Schröder, 2019)

6 / 15

The L∗-algorithm: Variations

The L∗-algorithm has been extended to various other forms of
automata

• weighted automata over �elds (Bergadano and Varricchio, 1996)
• subsequential transducers (Vilar, 1996)
• nominal automata (van Heerd et al., 2017)
• symbolic automata (Drews et al., 2017)
• non-deterministic automata (Bollig et al., 2009)
• alternating automata (Angluin et al., 2015)

“The need for a unifying framework collecting various types of
learning techniques is, thus, beyond all questions.” Bollig et al., 2010

Other category theoretic generalizations (van Heerd et al., 2017;
Urbat and Schröder, 2019)

6 / 15

The L∗-algorithm: Variations

The L∗-algorithm has been extended to various other forms of
automata

• weighted automata over �elds (Bergadano and Varricchio, 1996)
• subsequential transducers (Vilar, 1996)
• nominal automata (van Heerd et al., 2017)
• symbolic automata (Drews et al., 2017)
• non-deterministic automata (Bollig et al., 2009)
• alternating automata (Angluin et al., 2015)

“The need for a unifying framework collecting various types of
learning techniques is, thus, beyond all questions.” Bollig et al., 2010

Other category theoretic generalizations (van Heerd et al., 2017;
Urbat and Schröder, 2019)

6 / 15

Back to learning...
automata, not categories!

L∗ algorithm categorically??

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Thomas Colcombet, Daniela Petrisan, Riccardo Stabile: Learning Automata
and Transducers: A Categorical Approach. CSL 2021

7 / 15

L∗ algorithm categorically??

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

Thomas Colcombet, Daniela Petrisan, Riccardo Stabile: Learning Automata
and Transducers: A Categorical Approach. CSL 2021

7 / 15

L∗-revisited

• At the (Q, T) stage of the algorithm the learner only has access
to a fragment of the language:

LQ,T : QAT ∪ QT A∗ 2L

• This can be represented by a notion of (Q, T)-biautomaton

1 Q1 Q2 2.q
(q∈Q)

a (a∈A)

ε

t/
(t∈T)

such that the following coherence diagrams commute
Q1 Q2

1 Q2 Q1 2
Q1 Q2

a t/.q

.qa

a

εε at/

8 / 15

L∗-revisited

• At the (Q, T) stage of the algorithm the learner only has access
to a fragment of the language:

LQ,T : QAT ∪ QT A∗ 2L

• This can be represented by a notion of (Q, T)-biautomaton

1 Q1 Q2 2.q
(q∈Q)

a (a∈A)

ε

t/
(t∈T)

such that the following coherence diagrams commute
Q1 Q2

1 Q2 Q1 2
Q1 Q2

a t/.q

.qa

a

εε at/

8 / 15

Minimal (Q, T)-biautomaton and the hypothesis automaton

We can compute the minimal (Q, T)-biautomaton in an arbitrary
category∗ using o�-the-shelf results from (Colcombet,P., 2017).

1 Q/∼T∪AT (Q ∪ QA)/∼T 2.qmin
amin

εmin

t/min

Recall w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L

. qmin(∗) = [q]∼T∪AT amin([q]∼T∪AT) = [qa]∼T t /min ([q]∼T) = LQ,T(qt)
εmin([q]∼T∪AT) = [q]∼T t /min ([qa]∼T) = LQ,T(qat)

• εmin is surjective i� (Q, T) is closed
• εmin is injective i� (Q, T) is consistent
• If εmin is an isomorphism we merge the
two states of the (Q, T)-biautomaton
and obtain H(Q, T).

* under mild assumptions

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

9 / 15

Minimal (Q, T)-biautomaton and the hypothesis automaton

We can compute the minimal (Q, T)-biautomaton in an arbitrary
category∗ using o�-the-shelf results from (Colcombet,P., 2017).

1 Q/∼T∪AT (Q ∪ QA)/∼T 2.qmin
amin

εmin

t/min

Recall w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
. qmin(∗) = [q]∼T∪AT

amin([q]∼T∪AT) = [qa]∼T t /min ([q]∼T) = LQ,T(qt)
εmin([q]∼T∪AT) = [q]∼T t /min ([qa]∼T) = LQ,T(qat)

• εmin is surjective i� (Q, T) is closed
• εmin is injective i� (Q, T) is consistent
• If εmin is an isomorphism we merge the
two states of the (Q, T)-biautomaton
and obtain H(Q, T).

* under mild assumptions

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

9 / 15

Minimal (Q, T)-biautomaton and the hypothesis automaton

We can compute the minimal (Q, T)-biautomaton in an arbitrary
category∗ using o�-the-shelf results from (Colcombet,P., 2017).

1 Q/∼T∪AT (Q ∪ QA)/∼T 2.qmin
amin

εmin

t/min

Recall w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
. qmin(∗) = [q]∼T∪AT amin([q]∼T∪AT) = [qa]∼T

t /min ([q]∼T) = LQ,T(qt)

εmin([q]∼T∪AT) = [q]∼T

t /min ([qa]∼T) = LQ,T(qat)

• εmin is surjective i� (Q, T) is closed
• εmin is injective i� (Q, T) is consistent
• If εmin is an isomorphism we merge the
two states of the (Q, T)-biautomaton
and obtain H(Q, T).

* under mild assumptions

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

9 / 15

Minimal (Q, T)-biautomaton and the hypothesis automaton

We can compute the minimal (Q, T)-biautomaton in an arbitrary
category∗ using o�-the-shelf results from (Colcombet,P., 2017).

1 Q/∼T∪AT (Q ∪ QA)/∼T 2.qmin
amin

εmin

t/min

Recall w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
. qmin(∗) = [q]∼T∪AT amin([q]∼T∪AT) = [qa]∼T t /min ([q]∼T) = LQ,T(qt)

εmin([q]∼T∪AT) = [q]∼T t /min ([qa]∼T) = LQ,T(qat)

• εmin is surjective i� (Q, T) is closed
• εmin is injective i� (Q, T) is consistent
• If εmin is an isomorphism we merge the
two states of the (Q, T)-biautomaton
and obtain H(Q, T).

* under mild assumptions

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

9 / 15

Minimal (Q, T)-biautomaton and the hypothesis automaton

We can compute the minimal (Q, T)-biautomaton in an arbitrary
category∗ using o�-the-shelf results from (Colcombet,P., 2017).

1 Q/∼T∪AT (Q ∪ QA)/∼T 2.qmin
amin

εmin

t/min

Recall w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
. qmin(∗) = [q]∼T∪AT amin([q]∼T∪AT) = [qa]∼T t /min ([q]∼T) = LQ,T(qt)

εmin([q]∼T∪AT) = [q]∼T t /min ([qa]∼T) = LQ,T(qat)

• εmin is surjective i� (Q, T) is closed
• εmin is injective i� (Q, T) is consistent
• If εmin is an isomorphism we merge the
two states of the (Q, T)-biautomaton
and obtain H(Q, T).

* under mild assumptions

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

9 / 15

Minimal (Q, T)-biautomaton and the hypothesis automaton

We can compute the minimal (Q, T)-biautomaton in an arbitrary
category∗ using o�-the-shelf results from (Colcombet,P., 2017).

1 Q/∼T∪AT (Q ∪ QA)/∼T 2.qmin
amin

εmin

t/min

Recall w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
. qmin(∗) = [q]∼T∪AT amin([q]∼T∪AT) = [qa]∼T t /min ([q]∼T) = LQ,T(qt)

εmin([q]∼T∪AT) = [q]∼T t /min ([qa]∼T) = LQ,T(qat)

• εmin is surjective i� (Q, T) is closed
• εmin is injective i� (Q, T) is consistent

• If εmin is an isomorphism we merge the
two states of the (Q, T)-biautomaton
and obtain H(Q, T).

* under mild assumptions

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

9 / 15

Minimal (Q, T)-biautomaton and the hypothesis automaton

We can compute the minimal (Q, T)-biautomaton in an arbitrary
category∗ using o�-the-shelf results from (Colcombet,P., 2017).

1 Q/∼T∪AT (Q ∪ QA)/∼T 2.qmin
amin

εmin

t/min

Recall w ∼T v i� ∀u ∈ T. wu ∈ L⇔ vu ∈ L
. qmin(∗) = [q]∼T∪AT amin([q]∼T∪AT) = [qa]∼T t /min ([q]∼T) = LQ,T(qt)

εmin([q]∼T∪AT) = [q]∼T t /min ([qa]∼T) = LQ,T(qat)

• εmin is surjective i� (Q, T) is closed
• εmin is injective i� (Q, T) is consistent
• If εmin is an isomorphism we merge the
two states of the (Q, T)-biautomaton
and obtain H(Q, T).

* under mild assumptions

Q = T := {ε}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(∀q ∈ Q .∀a ∈ A .∃p ∈ Q . p ∼T qa)

if (Q, T) is not consistent enlarge T
(∀q,q′ ∈ Q .∀a ∈ A . q ∼T q′ ⇒ qa ∼T q′a)

ask an equivalence query for H(Q, T)
if the answer is no then
add the counterexample and its
pre�xes to Q

until the answer is yes
return H(Q, T)

9 / 15

The FunL∗-algorithm

The FunL∗-algorithm

input: teacher of the target language L in a catgeory C
output: Min(L)
Q := T := {ε}
repeat
while εmin is not an isomorphism do Iso = E ∩M
if εmin 6∈ E then (E,M) fact. system
add QA to Q

if εmin 6∈ M then
add AT to T

ask an equivalence query for the hypothesis automaton H(Q, T)
if the answer is no then
add the counterexample and all its pre�xes to Q

until the answer is yes
return H(Q, T)

10 / 15

Correction and termination of the algorithm

Theorem. Assume C is a category with a factorization system (E,M),
having countable copowers and countable powers.

We consider a target language L in the catgeory C such that the state
space of the minimal automaton for L is (E,M)-noetherian∗

(generalization of �nite).

Then the FunL∗-algorithm terminates, eventually producing the
minimal automaton Min(L) accepting L.

∗(E,M)-noetherianity means no in�nite chains of E-quotients or of M-subobjects.

11 / 15

Perspectives

Minimization/learning for free ?

What is special about certain monads? And why it works in some
cases and not in others?

Are there some conditions on a monad T so that Kl(T) has all the
required properties required for the existence of
minimization/learning of Kl(T)-automata ?

Some advancement in this direction
Quentin Aristote:
Active Learning of Deterministic Transducers with Outputs in
Arbitrary Monoids. CSL 2024.

And what can be done when we know that Kl(T) is not good enough?

12 / 15

Minimization/learning for free ?

What is special about certain monads? And why it works in some
cases and not in others?

Are there some conditions on a monad T so that Kl(T) has all the
required properties required for the existence of
minimization/learning of Kl(T)-automata ?

Some advancement in this direction
Quentin Aristote:
Active Learning of Deterministic Transducers with Outputs in
Arbitrary Monoids. CSL 2024.

And what can be done when we know that Kl(T) is not good enough?

12 / 15

Minimization/learning for free ?

What is special about certain monads? And why it works in some
cases and not in others?

Are there some conditions on a monad T so that Kl(T) has all the
required properties required for the existence of
minimization/learning of Kl(T)-automata ?

Some advancement in this direction
Quentin Aristote:
Active Learning of Deterministic Transducers with Outputs in
Arbitrary Monoids. CSL 2024.

And what can be done when we know that Kl(T) is not good enough?

12 / 15

Minimization/learning for free ?

What is special about certain monads? And why it works in some
cases and not in others?

Are there some conditions on a monad T so that Kl(T) has all the
required properties required for the existence of
minimization/learning of Kl(T)-automata ?

Some advancement in this direction
Quentin Aristote:
Active Learning of Deterministic Transducers with Outputs in
Arbitrary Monoids. CSL 2024.

And what can be done when we know that Kl(T) is not good enough?

12 / 15

Minimizing NFAs

The category Rel ' Kl(P) does not have a good factorization system.

Move to Eilenberg-Moore algebras, that is, to the category of join
sup-semilattices !

We see a Rel-valued automaton as a JSL-valued automaton.

In JSL we have all the three ingredients for minimization ! Do we
retrieve a JSL-automaton that comes from an actual NFA?

It turns out yes! The canonical RFSA introduced in
François Denis, Aurélien Lemay, Alain Terlutte:
Residual Finite State Automata. Fundam. Informaticae 51(4): 339-368
(2002)

Understand this through a lax functor from JSL to Rel... Ongoing
work with Quentin Schroeder and Quentin Aristote.

13 / 15

Minimizing NFAs

The category Rel ' Kl(P) does not have a good factorization system.

Move to Eilenberg-Moore algebras, that is, to the category of join
sup-semilattices !

We see a Rel-valued automaton as a JSL-valued automaton.

In JSL we have all the three ingredients for minimization ! Do we
retrieve a JSL-automaton that comes from an actual NFA?

It turns out yes! The canonical RFSA introduced in
François Denis, Aurélien Lemay, Alain Terlutte:
Residual Finite State Automata. Fundam. Informaticae 51(4): 339-368
(2002)

Understand this through a lax functor from JSL to Rel... Ongoing
work with Quentin Schroeder and Quentin Aristote.

13 / 15

Minimizing NFAs

The category Rel ' Kl(P) does not have a good factorization system.

Move to Eilenberg-Moore algebras, that is, to the category of join
sup-semilattices !

We see a Rel-valued automaton as a JSL-valued automaton.

In JSL we have all the three ingredients for minimization ! Do we
retrieve a JSL-automaton that comes from an actual NFA?

It turns out yes! The canonical RFSA introduced in
François Denis, Aurélien Lemay, Alain Terlutte:
Residual Finite State Automata. Fundam. Informaticae 51(4): 339-368
(2002)

Understand this through a lax functor from JSL to Rel... Ongoing
work with Quentin Schroeder and Quentin Aristote.

13 / 15

Minimizing NFAs

The category Rel ' Kl(P) does not have a good factorization system.

Move to Eilenberg-Moore algebras, that is, to the category of join
sup-semilattices !

We see a Rel-valued automaton as a JSL-valued automaton.

In JSL we have all the three ingredients for minimization ! Do we
retrieve a JSL-automaton that comes from an actual NFA?

It turns out yes! The canonical RFSA introduced in
François Denis, Aurélien Lemay, Alain Terlutte:
Residual Finite State Automata. Fundam. Informaticae 51(4): 339-368
(2002)

Understand this through a lax functor from JSL to Rel... Ongoing
work with Quentin Schroeder and Quentin Aristote.

13 / 15

Minimizing NFAs

The category Rel ' Kl(P) does not have a good factorization system.

Move to Eilenberg-Moore algebras, that is, to the category of join
sup-semilattices !

We see a Rel-valued automaton as a JSL-valued automaton.

In JSL we have all the three ingredients for minimization ! Do we
retrieve a JSL-automaton that comes from an actual NFA?

It turns out yes! The canonical RFSA introduced in
François Denis, Aurélien Lemay, Alain Terlutte:
Residual Finite State Automata. Fundam. Informaticae 51(4): 339-368
(2002)

Understand this through a lax functor from JSL to Rel... Ongoing
work with Quentin Schroeder and Quentin Aristote.

13 / 15

Further extensions

• Extension to tree automata
• Weighted automata over semirings ...
• What about other forms of learning, e.g., nominal automata? We
can build on Victor Iwaniack’s work on automata in toposes.

14 / 15

And even more importantly ...

https://tcs4f.org/

What we can do : keep a CO2
budget, choose more sustainable
means of transport, spread the
word, sign the TCS4F manifesto...
An estimation of the emissions per
person for a return trip Paris -
Barcelone
• by train : approx. 6 kg CO2
• by plane : approx. 680 kg CO2

15 / 15

https://tcs4f.org/

And even more importantly ...

https://tcs4f.org/

What we can do : keep a CO2
budget, choose more sustainable
means of transport, spread the
word, sign the TCS4F manifesto...

An estimation of the emissions per
person for a return trip Paris -
Barcelone
• by train : approx. 6 kg CO2
• by plane : approx. 680 kg CO2

15 / 15

https://tcs4f.org/

And even more importantly ...

https://tcs4f.org/

What we can do : keep a CO2
budget, choose more sustainable
means of transport, spread the
word, sign the TCS4F manifesto...
An estimation of the emissions per
person for a return trip Paris -
Barcelone
• by train : approx. 6 kg CO2
• by plane : approx. 680 kg CO2

15 / 15

https://tcs4f.org/

	Automata Learning
	Back to learning... automata, not categories!
	The FunL*-algorithm
	Perspectives

