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ARTICLE INFO ABSTRACT

Communicated by J. Fontanari This paper is a follow-up of one of the most-cited articles published in the first 20 years of the

X s existence of Physics of Life Reviews. The specific topic is “ant colony optimization”, which is a
awores: R metaheuristic for solving challenging optimization problems. Due to its inspiration from natural

Ant colony optimization . . 1. . . S .

Optimization ant colonies’ shortest path-finding behavior, this optimization technique forms part of a larger

Swarm intelligence field known as swarm intelligence. After a short introduction to ant colony optimization, we

Bibliometric study first provide a chronology focusing on algorithmic developments rather than applications. The

main part of the paper deals with a bibliometric study of the ant colony optimization literature.
Interesting trends concerning, for example, the geographic origin of publications and the change
in research focus over time, can be learned from the presented graphs and numbers.

1. Introduction

Ant colony optimization (ACO) is a nature-inspired metaheuristic for solving hard optimization problems. In particular, ACO was
inspired by the ability of natural ant colonies to find short paths between their nest and food sources. In nature, ants use pheromones,
which are chemical substances they deposit on the ground, to communicate with one another. As ants move, they leave pheromone
trails, and other ants tend to follow these trails, with a higher probability of choosing paths with stronger pheromone concentrations.
Over time, shorter paths get reinforced more quickly because ants traveling on shorter paths complete their trips faster, which leads
to a faster accumulation of pheromones on shorter paths. This, in turn, leads to more ants following shorter paths. This process leads
to the collective discovery of short—even though not necessarily optimal—paths.

The natural inspiration described above was utilized by Marco Dorigo in his doctoral dissertation titled “Optimization, Learning,
and Natural Algorithms”, completed in 1991 at the Politecnico di Milano, Italy [1]. In particular, Dorigo’s thesis introduced the first
ACO variant called Ant System (AS), which was published, for example, in [2,3]. AS was the first instance of what would later evolve
into the broader ACO framework as described, for example, in [4]. The work on AS is nowadays widely recognized as fundamental
to the development of ACO. It formalized the algorithm and demonstrated its application to the Traveling Salesman Problem (TSP),
showcasing its potential in solving combinatorial optimization problems.

This paper is a follow-up paper of [5]. However, instead of simply extending the previous paper with the research from the
last 20 years, we decided to provide a critical reflection of these 20 years in terms of a bibliometric review. Another reason for this
decision was that we noticed a lack of bibliometric information on ACO in the literature. The latest bibliometric review concerning the
complete ACO literature can be found in [6]. However, this paper only considers the literature up to 2010. Otherwise, the literature
only offers a bibliometric study of ACO publications from the specific field of dynamic optimization [7].
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Table 1

Ant Colony Optimization Chronology.
1991 - -+ Doctoral thesis of Dorigo (published in 1992) [1].
1991 - - The first ACO variant called “Ant System” (AS) is introduced [2].
1995 - - Development of the first algorithm variant for continuous optimization [8].
1996 --- - Introduction of “Ant Colony System” (ACS) [9].
1997 - - Hybridization of ACO with local search [10].
1998 - - Study of parallel implementations of ACO [11].
1999 - -+ First use of negative learning in ACO [12].
1999 . - Proposal of the “Rank Based Ant System” variant [13].
2000 - - First journal special issue dedicated to ACO [14].
2000 - - Introduction of the “Max-Min Ant System” (MMAS) [15].
2000 - - First convergence proof for a simple ACO variant [16].
2001 - -+ Study of first multi-objective ACO variants [17].
2001 - - Proposal of an ACO variant for dynamic optimization [18].
2002 - - Introduction of an ACO variant for stochastic optimziation [19].
2002 - -+ Study of the relation to Stochastic Gradient Descent (SGD) [20].
2002 - - First presentation of population-based ACO [21].
2004 - - Dorigo and Stitzle publish the first book on ACO [4].
2004 - - Introduction of the “Hyper-Cube Framework” (HCF) for ACO [22].
2004 - --- Hybridization between ACO and Constraint Programming (CP) [23].
2005 --- - First Combination of ACO with Dynamic Programming (DP) [24].
2005 - - Introduction of Beam-ACO, a hybrid of ACO and beam search [25].
2007 --- - Implementation of ACO for GPUs [26].
2008 - - Hybridization of ACO with Lagrangian Relaxation (LR) [27].
2009 - - First ACO for mixed integer non-linear optimization problems [28].
2010 - - Use of linear programming relaxation for guiding ACO [29].
2014 - - Interactive ACO for problems requiring human ratings [30].
2015 - -+ Study of ACO variants under a heavily limited computational budget [31].
2017 - -+ Assisting feasibility in ACO using integer programming [32].
2021 - -+ Learning ACO’s heuristic function with Reinforcement Learning [33].
2022 - - Machine learning for producing heuristic guidance within ACO [34].

The remainder of the paper is organized as follows. Section 2 provides a concise chronology of important algorithmic developments
in ACO research. Next, Section 3 presents a bibliometric study of the ACO literature. Finally, Section 4 offers conclusions and an
outlook to the future.

2. Chronology of developments concerning ACO research

Table 1 shows the main developments since the beginning of research on ACO. However, note that this is a publication-based
chronology focusing on the development of ACO variants, both generally applicable variants and algorithm variants for important
families of optimization problems, and the development of ACO hybrids with other optimization techniques.

As mentioned already in the introduction, work on ACO started in 1991 with Marco Dorigo’s PhD thesis and the development of
AS, the first ACO variant for solving discrete (combinatorial) optimization problems. Even before the development and publication of
the second ACO variant for discrete optimization called Ant Colony System (ACS) [9,10] in 1996, some researchers proposed an ACO-
inspired algorithm for continuous optimization already in 1995 [8]. However, even though since then there have been other attempts
to adapt ACO to continuous optimization—see, for example, [35,36]—this line of research has never really prospered. Instead, an
immensely successful trend—the hybridization with other techniques for optimization—started, in the context of ACO, already in
1997 in [10] by combining the ACO variant ACS with a local search technique for improving the solutions generated by the artificial
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ants. Apart from AS and ACS, other often-used ACO variants are the Rank-Based Ant System [13] (introduced in 1999), the Max-Min
Ant System (MMAS) [15] (introduced in 2000), population-based ACO [21] (introduced in 2002), and the Hyper-Cube Framework
for Ant Colony Optimization [22] (introduced in 2004). In addition, the line of research dealing with introducing “negative learning”
to existing ACO variants also aimed at a general improvement of the algorithm. Apart from the first such attempt in 1999 [12], other
papers in this line of research include [37-39].

In addition to the development of generally applicable ACO variants, researchers have also focused on ACO variants tailored to
solve important families of optimization problems. This is the case, for example, for multi-objective optimization (first publication in
2001 [17]), for dynamic optimization (first publication in 2001 [18]), for stochastic optimization (first publication in 2002 [19]), for
integer non-linear optimization problems (first publication in 2009 [28]), and for problems where solutions require a human rating
(first publication in 2014 [30]). After the initial publications for each of the mentioned optimization problem families, much addi-
tional work was done, especially in multi-objective optimization. Specific application examples can be found in [40,41], while [42]
provides a recent review on this specific topic. Moreover, researchers even investigated the automatic design of multi-objective ACO
algorithms [43].

Before researchers considered combining and hybridizing ACO with other techniques for optimization, important research work
studied the relation of ACO algorithms to existing (more classical) techniques. The pioneers of ACO were already aware, for example,
of its relation to reinforcement learning [44]. Another example concerns a study from 2002 that uncovers the similarities between ACO
and Stochastic Gradient Descent [20]. Additionally, ACO was studied from a theoretical point of view. The first proof of convergence
(concerning a simple graph-based ACO variant) was published in 2000 [16]. Another theoretical topic of interest was the runtime
analysis of (simplified) ACO variants. Examples of work on this topic can be found in [45-47].

Interesting work on ACO hybrids—going beyond simply adding local search or combining the method with another metaheuristic—
started with combining ACO with constraint programming in 2004 [23]. Other examples of this hybridization type include [48,49].
Even a book was published on this topic in 2010 [50]. A specific ACO hybrid using dynamic programming in order to find the
best solution in a larger object was proposed [24]. Another generally applicable hybrid ACO variant is Beam-ACO, introduced in
2005 [25]. Instead of generating a single solution, in Beam-ACO each artificial ant executes a probabilistic beam search algorithm
(incomplete tree search) based on the current pheromone information. For example, other applications and variants of Beam-ACO
can be found in [51,52]. Next, a hybrid of ACO with Lagrangian relaxation was introduced in 2008 [27], and another one with linear
relaxation in 2010 [29]. In both cases, the information obtained from the relaxations is used to bias the solution construction process
of ACO. For example, a similar hybrid can be found in [53]. In a similar way, integer programming was used in 2017 by [32] to guide
ACO'’s solution construction to areas in the search space with feasible and high-quality solutions. In [54], ACO is used to improve the
lower bounds within the Lagrangian relaxation heuristic. In recent years, researchers have studied machine learning (ML) models
rather than operations research (OR) techniques to guide the construction of solutions in ACO by making use of learned heuristic
information. In 2021 [33], reinforcement learning was used for the first time for this purpose. Deep learning methods such as graph
neural networks (GNNs) were used for the first time in 2022 [34] for the same purpose. For example, a similar approach can be found
in [55].

As was the case for all metaheuristics, research on parallelization strategies has been conducted rather early. In the context of
ACO, this happened for the first time in 1999 [11]. Later, research was undertaken in order to be able to execute ACO algorithms
beneficially on GPUs, which was done for the first time in 2007 [26]. Another attempt to speed-up ACO was done in [31].

Finally, it is worth mentioning that the first journal special issue dedicated to ACO was published in the journal Future Generation
Computer Systems in 2000 [14], and the first book on ACO was published in 2004 [4].

3. Bibliometric study of the ACO literature

The graphics shown and discussed in the following were generated on September 5, 2024, based on data obtained from Scopus
(www.scopus.com) with the following search term:

( TITLE-ABS-KEY ("ant colony optimization") OR TITLE-ABS-KEY ("ant algorithm") OR
TITLE-ABS-KEY ("ant colony system") )

More specifically, the complete Scopus database was searched for documents with at least one of the terms “ant colony optimization”,
“ant algorithm”, or “ant colony system” in the document title, abstract, or keywords. We are aware that this might not capture all
possible documents on ACO variants. However, the vast majority of documents are considered in this way. The body of 25,993
documents discovered in this way will henceforth be called the body of literature on ACO.

Fig. 1 shows how the body of literature on ACO distributes over different scientific areas, document types, countries of origin,
and authors/editors. Not surprisingly, more ACO-related documents were published in Computer Science than in any other scientific
area'; see Fig. 1a. Computer Science if followed by Engineering and Mathematics. Other scientific areas such as Decision Sciences,
Physics and Astronomy, and Materials Science are trailing with considerably fewer ACO-related documents published. Regarding the
document type distribution shown in Fig. 1b, it might initially seem surprising that the body of literature on ACO contains more
journal articles than conference papers. However, in the author’s opinion, this reflects the trend seen in the last 20 years, in which

! In this context, note that documents may be attributed to more than one scientific area.

89


http://www.scopus.com

C. Blum

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

PRLZEY Computer Science
pPLPI] Engineering

pALE] Mathematics

pAiEl] Decision Sciences

JERE] Physics and Astronomy

Materials Science

Energy

Social Sciences

Business, Management and Accounting

Environmental Science
(a) Publications per scientific area

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
10497 [SHILE]

E3EY] India
pRLf) United States

1241 |leh}

L[] United Kingdom

[YE] Taiwan

[PE] Malaysia

(c) Publications per country

Physics of Life Reviews 51 (2024) 87-95

0 1500 3000 4500 6000 7500 9000 10500 12000 13500 15000 16500
Journal Article

Conference Paper
Book Chapter

Conference Review

Editorial

Note

Letter,

(b) Publications per paper type

0 10 20 30 40 50 60 70 80 90 100 110
El Zhang, ).

Fidanova, S.

El§ Dorigo, M.

E§ Ku-Mahamud, K.R.
EE] Castillo, O.
] Middendorf, M.
L& Liu, S.
e Stitzle, T.

Lyl You, X.

(d) Publications per author/editor

Fig. 1. Bar charts that show how the body of literature on ACO distributes over (a) scientific areas, (b) document types, (c) countries of origin, and (d) authors/editors.

Note that only the ten most relevant entries are shown for each category.

funding agencies from numerous countries have attributed much more value to journal articles than to conference papers. In fact,
this assumption is confirmed by Figs. 2b and 2c that show, respectively, the evolution over the years of the percentage that journal
articles and conference papers occupy concerning the body of literature on ACO. While the percentage of journal articles was growing
over the years, the percentage of conference articles was decreasing.

Another interesting aspect concerns the distribution of documents according to countries of origin; see Fig. 1c. Interestingly,
authors from China have published more than double the number of documents on ACO compared to authors from any other country.
In fact, Fig. 2e indicates that the percentage of ACO publications from China was growing strongly starting in 1999. Currently, nearly
50% of all ACO publications per year are (co-)authored by Chinese authors. This is in contrast to the percentage of ACO publications
authored by scientists from Europe and North America (see Fig. 2d), which has been strongly decreasing since 1993, currently reaching
a level of approx. 15%. Finally, the ten most prolific authors for what concerns publications on ACO are shown in Fig. 1d.

Next we study the evolution of the ACO publication numbers over the years in comparison to some of the most well-known

metaheuristics from the literature:

1. Particle Swarm Optimization (PSO) [56]: PSO is a metaheuristic inspired by the flocking behavior of birds. It maintains a popu-
lation of solutions throughout the search process. These solutions change at each iteration, depending on themselves and other
solutions from their neighborhood. This technique is, together with ACO, among the most well-known nature-inspired meta-
heuristics.? The data for PSO was obtained on September 5, 2024, from Scopus with the following search term:

TITLE-ABS-KEY ("particle swarm optimization")

2. Simulated Annealing (SA) [59]: This metaheuristic is arguably the oldest among the ones based on local search, that is, the move
to neighbors of the incumbent solution obtained by applying a rather small change to the incumbent solution. Such a neighbor
solution is accepted as a new incumbent solution if it is either of better quality or with a probability that decreases with an
increasing quality difference with the incumbent solution. The data for SA was obtained on September 5, 2024, from Scopus

with the following search term:

TITLE-ABS-KEY ("simulated annealing")

2 Note that this comment does not take into account so-called new bio-inspired metaheuristics such as grey wolf optimizer (GWO) or cuckoo search (CS), as many of
them have been shown in the literature to re-invent the wheel rather than adding new algorithmic ideas to the literature on metaheuristics; see, for example, [57,58].
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Fig. 2. Plots that show the evolution of (a) ACO publications in general, (b) journal articles, (c) conference papers, (d) papers written by authors from Europe and
North America, and (e) papers written by authors from China.

3. Tabu Search (TS) [60]: While SA is able to escape from local optima by means of probabilistic decisions on the acceptance of
neighbor solutions worse than the incumbent solution, TS is able to do so by explicitly forbidding to return to recently visited
solutions by means of so-called tabu lists that store attributes of recently seen solutions. TS, just like SA, is one of the prominent
metaheuristics based on local search. The data for TS was obtained on September 5, 2024, from Scopus with the following search
term:

( TITLE-ABS-KEY ("tabu search") OR TITLE-ABS-KEY ("taboo search") )

While ACO and PSO were introduced in the early/mid-1990s, SA and TS were already introduced in the 1980s, as indicated by
the start of the different lines in Fig. 3a. When ACO and PSO were introduced, both SA and TS already enjoyed more than 100
publications per year. However, the publication numbers of ACO and PSO quickly started to rise. In 2006, PSO—for the first time—
surpassed both SA and TS regarding the number of publications. The same happened for ACO in 2008. Both events coincide with a
boom around research on metaheuristics that started in the early 2000s, which is indicated in Fig. 3c.> Comparing ACO and PSO,
it can be noticed that, after the year 2008, the publication numbers of PSO continued a steep increase, while the increase of ACO’s
publication numbers continued in a more moderate way. This might be attributed to several possible reasons. First, while well-working
PSO variants exist for both continuous and discrete optimization problems, ACO is predominantly applied to discrete optimization
problems, even though several ACO variants for continuous optimization exist (see, for example, [35,61]). Second, the main inventor

3 The data for this graphic was obtained on September 5, 2024, from Scopus with the search term TITLE-ABS-KEY ("metaheuristic"). Even though many
authors do not mention the term “metaheuristic” in the title/abstract/keywords of their paper when dealing with a specific metaheuristic, this graphic gives a good
idea of the sharp rise of research on metaheuristics starting in the early 2000s.
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of the ACO metaheuristic (Marco Dorigo) gradually turned his scientific attention to other research topics (mainly swarm robotics),
starting in the early/mid-2000s. This did not happen to the same extent in PSO. Many of the researchers involved in early works on
PSO are still heavily involved nowadays. Finally, a third reason might be found in the slightly stronger adoption of PSO in Asia and
the South-Pacific region. In terms of numbers, approximately 79% of all publications on PSO originated there, while this is only the
case for approximately 71% of the publications in the case of ACO.

Next, we take a look at a noticeable change in research on ACO that has been observed during the last 15-20 years. In the first
approximately ten years after the introduction of ACO, one of the important research lines concerned the development of well-working
variants of the algorithm. Most of the ACO variants used today have been introduced in these years. The two most important and most-
used ACO variants are undoubtedly ACS [10] and MMAS [15]. However, when looking at the evolution of the number of publications
that explicitly mention either ACS or MMAS in the title/abstract/keywords—see Fig. 3b—it can be seen that the publication numbers,
in both cases, start to decrease after the year 2010. Interestingly, the number of publications on hybrids between ACO algorithms and
other techniques for optimization has been growing since then; see the orange line in Fig. 3b. This coincides with a general growth of
literature on hybrid metaheuristics since the early 2000s. In other words, work on specific ACO variants has gradually been replaced
by work on hybridizing ACO with other optimization techniques, a tendency that can be seen in the same way in the context of other
metaheuristics.

Finally, we show how the trend towards open-access publishing is reflected in the ACO literature; see Fig. 4. Disregarding the
first few years with some open-access publications (due to a low statistical significance) the graphic provided in this figure shows
that the percentage of open-access publications has been steadily growing from below 10% to currently above 30%. It is worth
mentioning, however, that—in the last six years—this number has rather remained constant. This leaves room for speculation. A
possible explanation could be that all researchers/institutions that can afford open-access publishing are already making use of it,
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while those researchers/institutions that have not yet adopted open-access publishing will not be doing so in the near future due to
economic reasons. In any case, the author of this paper argues that a new publishing model is necessary to free academic publishing
from questionable economic interests.

4. Conclusion

In this paper we first provided a chronology of algorithmic developments in ACO research. Clearly, the focus in the early years was
on the development of different ACO variants, either generally applicable or focused on a specific family of optimization problems.
Moreover, researchers tried to gain a better understanding of ACO by studying its relationship to other (more classical) techniques for
optimization. In the last 20 years, the trend to hybridize different optimization algorithms is clearly seen in the chronology and the
subsequent bibliometric study. Moreover, the bibliometric study shows an interesting geographic shift of the research on ACO from
Europe and North America in the early years to China and India in the later years. Moreover, the bibliometric data also indicates a
clear shift from publishing in conference proceedings to publishing in journal papers. Even though there might be several reasons for
this, a significant one is surely the importance given to journal publications by funding agencies in different countries. Other aspects
seen in the bibliometric data are the growing share of open-source publishing and the popularity of nature-inspired optimization
techniques in recent years.

Finally, there is room for some speculation about future directions in ACO research and, more generally, in research on meta-
heuristics (in the sense of approximate, iterative, stochastic optimization algorithms). As indicated already by the trend to hybridize
different techniques, there is probably no point in continuing to do research on different metaheuristics separately from each other. In
the opinion of this author, as a research community, we should come up with a catalog of different algorithmic components both from
metaheuristics and from exact techniques, and we should work towards a (automized) methodology to combine these components
in a convenient way when faced with a new optimization problem to be solved. There is already recent research in this line (see, for
example, [62]), and the author believes that even more ambitious works of similar nature will appear during the next years.
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