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Abstract. This paper presents a bargaining framework grounded in the
methods of conceptual blending and amalgamation to support automated
negotiation. The bargaining scenario is represented using a content- AQ1

rich and descriptive formal language, featuring a subsumption hierar-
chy among negotiation terms. Bargainers generate proposals or counter-
proposals within the amalgam of their initial offers, incorporating unifica-
tions of all possible generalizations of these offers. Under this framework,
we prove that any bargaining sequence converges to an agreement when
each bargainer makes minimal concessions according to their individ-
ual preferences. The resulting agreement satisfies individual rationality,
collective rationality, Pareto optimality, and contract independence. Fur-
thermore, we show that this solution is uniquely characterized by these
properties.

Keywords: automated negotiation · bargaining · amalgamation ·
feature logic

1 Introduction

Bargaining is a typical form of human interaction. John Nash defines bargaining
as “two individuals who have the opportunity to collaborate for mutual benefit in
more than one way” [21]. “Under such a definition, nearly all human interactions
can be seen as bargaining of one form or another.” [3]. Computer scientists fur-
ther extend the definition of bargaining as the interactions among autonomous
agents, including computer systems [12,25,29]. As such, bargaining, has been
one of the most fundamental AI research topics, known as automated negoti-
ation, in the realm of multi-agent systems, with numerous applications across
various domains [1,9,13,14,17,22,24,25].

Traditionally, a bargaining situation is abstracted as a numerical game. The
game-theoretic model of bargaining provides quantitative methods to facilitate
bargaining analysis [21,26]. This highly abstract model allows us to directly
apply the approach to computing-related applications [20]. Most existing work
on automated negotiation is built upon game-theoretic models due to their well-
established framework and simplicity in implementation. However, numerical
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2 D. Zhang and E. Plaza

models of bargaining have limited expressive power. Real-world bargaining or
negotiations involve much more complex interactions, making purely numerical
models difficult to apply [25,27,29]. The primary challenge in developing and
applying automated negotiation technology lies in effectively describing negoti-
ation environments and domains, and designing appropriate negotiation mech-
anisms for autonomous systems across various applications [2,13,15,17,19,33].
To illustrate this challenge, let’s consider the following real-life scenario.

Assume that there are two agents, Geek and Artist, who share a room and
must agree on its configuration, i.e., assigning favorite furniture to each avail-
able position. Figure 1 shows the initial room design proposals from each agent.
Specifically, the agents must negotiate which large piece of furniture to place
against the North, South, East, and West walls, and which small piece of furni-
ture to place in the NW, NE, and SE corners (the SW corner is occupied by a
door). The agreement must specify both the type of furniture and its location.
The only consensus in their initial proposals is to place the sofa against the north
wall.

Fig. 1. A room design bargaining scenario: Geek vs Artist.

These types of negotiation scenarios are common in everyday life. Applying
the game-theoretic model of bargaining to such situations requires enumerating
all possible options (in this case, all potential furniture assignments) and deter-
mining the utility for each agent for every alternative. While this is feasible, it
is not realistic and does not align with how humans typically negotiate.

The real challenge for the implementation of automated negotiation with
real-world scenarios is how to describe the complicated bargaining domains and
then facilitate the negotiation between autonomous agents based on the domain-
specific criteria, rather than universally quantifying players’ preferences. Several
approaches have been proposed for describing negotiation domains, using verity
of formal languages, such as propositional/first-order logic, game description lan-
guage, description logic and other specialised formal languages [11,16,32]. How-
ever, these logic-based languages often lead to highly complex domain descrip-
tions and sophisticated mechanisms, resulting in substantial computational costs
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Bargaining Through Amalgamation 3

for automated negotiation, which does not seem necessary. This paper aims
to introduce an abstract language to describe bargaining domains. We borrow
the notion of amalgam from the case-base reasoning literature to express the
blending process [4,7,23]. Basically, an amalgam of two terms is a unification of
generalisations of these two terms [10]. In such a way, an amalgam merges the
information of the two terms but, due to the different degree of generalisation
from different terms, may take more information from one than the other. By
restricting players’ next proposals to the amalgams of their initial proposals, we
can then simplify the representation of individual preferences from numerical
to ordinal, which means that a player only has to compare alternatives rather
than quantify the alternatives. Based on the new preference representation, we
propose in this paper a bargaining model and develop a solution concept with
characterisation.

While we begin by describing a bargaining situation using order-sorted fea-
ture (OSF) logic, our bargaining model is not dependent on OSF logic. Any
formal language with the structure of a bounded distributive lattice can be used
to describe a bargaining situation within our framework. We specify the language
requirements in Sect. 2 meanwhile introduce the concept of amalgam and develop
a theorem that is fundamental the approach of this paper. Section 3 introduces
our bargain model. We then develop a solution concept for our bargaining model
and discuss the desired properties of a bargaining solution. The following section
investigates what kind of bargaining procedures can lead to a solution that sat-
isfied all desired properties and how to construct such a bargaining procedure.
Finally we conclude the paper with a discussion of future work.

2 Preliminaries

In this section, we introduce the concept of amalgams and basic assumptions for
the language we use to describe bargaining domains.

2.1 Feature Terms

For automated negotiation, a bargaining situation needs to be described in a
formal language1. We assume that there is a set of atom terms described in a
meta language, such as the terms in first-order logic, description logic or feature
term logic. For simplicity, we use the concept of terms from the order-sorted
feature logic (OSF), a mini segment of first-order logic, capable of describing
any objects in a formal object-oriented languages [10].

An OSF term can be defined by its signature: Σ = ⟨S,F ,≤,V⟩, where S is
a set of sort symbols, which includes ⊥ (also called “any”, representing the most
general sort), and ⊤ (also called “none”, representing the most specific sort). ≤
is a complete partial order among the sorts in S (representing the is-a relation
1 Although automated negotiation can potentially support natural language through

natural language processing technology, bargaining terms still need to be formally
represented internally.
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4 D. Zhang and E. Plaza

common to object oriented languages) such that ⊥ ≤ s ≤ ⊤ for any s ∈ S. F
is a set of feature symbols and V is a set of variable names. An OSF term, or
called a feature term, ϕ is an expression in the form

X : s[f1
.= ϕ1, ..., fn

.= ϕn]

which can be dissolved into the following OSF clause:

ϕ ::= X : s & X.f1
.= X1 & ... & X.fn

.= Xn (1)

where X is a variable in V, representing the root variable of the term ϕ and
each value Xi is the root of another feature term. s is a sort in S, f1, · · · , fn

are features in F (see [10] for more formal definitions). All feature terms with
respect to an OSF signature Σ are denoted as the set T .

In the remainder of this paper we will use the clausal form as shown in
(1), where vars(ϕ) represents the set of variables in a given feature term ϕ,
features(X) to denote the set of features defined for a variable X, and sort(X)
to denote the sort defined for a variable X.

Example 1. Consider the room design problem we mentioned in the previous
section. The scenario shown in Fig. 1 can be described in feature terms as follows:

– Geek’s design, denoted by ϕ0
1:

(X1 : Room) ∧
(X1.NE

.=X2 : Dresser) ∧ (X1.NW
.=X3 : PlantPot) ∧

(X1.SE
.=X4 : Armchair) ∧ (X1.E

.=X5 : Cabinet) ∧
(X1.W

.=X6 : ComputerDesk) ∧ (X1.N
.=X7 : Coach) ∧

(X1.S
.=X8 : Bookcase) ∧ (X6.supports

.= X9 : TowerComputer)
– Artist’s design, denoted by ϕ0

2:
(X1 : Room) ∧

(X1.NE
.=X2 : PlantPot) ∧ (X1.NW

.=X3 : CornerDesk) ∧
(X1.SE

.=X4 : FilingCabinet) ∧ (X1.E
.=X5 : DrawingTable) ∧

(X1.W
.=X6 : Tansu) ∧ (X1.N

.=X7 : Coach) ∧
(X1.S

.=X8 : GlassDoorCabinet) ∧ (X3.supports
.= X10 : Netbook)

where N, S, W, and E denote north, south, west and east, respectively. Accord-
ingly, for instance, NE meaning north east.

Given an OSF signature, Σ = ⟨S,F ,≤,V⟩, the ordering of sorts induces a
new ordering over all terms T , called subsumption, denoted by ⊑.

Definition 1. A feature term ϕ1 subsumes another one ϕ2, denoted by ϕ1 ⊑ ϕ2,
if there is a mapping m: vars(φ1) → vars(ϕ2) such that root(ϕ2) = m(root(ϕ1))
and for all X ∈ vars(ϕ1),

1. sort(X) ≤ sort(m(X)) and
2. features(X) ⊆ features(m(X))

We write ϕ1 ! ϕ2 to mean ϕ1 ⊑ ϕ2 but ϕ2 ̸⊑ ϕ1.
Given the subsumption relation, for any two terms ϕ1 and ϕ2, we can define

their anti-unification (ϕ1 ⊓ ϕ2) as their least general generalisation:
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Bargaining Through Amalgamation 5

Definition 2 (Anti-unification). The anti-unification of two terms ϕ1 and
ϕ2, noted as ϕ1⊓ϕ2, is the most specific term that subsumes both, i.e., ϕ1⊓ϕ2 = ϕ
such that:

1. ϕ ⊑ ϕ1 and ϕ ⊑ ϕ2;
2. there is no ϕ′ such that ϕ′ " ϕ, ϕ′ ⊑ ϕ1 and ϕ′ ⊑ ϕ2.

According to the definition, the anti-unification of the two terms in Example 1
is:
ϕ0

1 ⊓ ϕ0
2 =

(X1 : Room) ∧ (X1.NE
.=X11 : SF ) ∧ (X1.NW

.=X11 : SF )∧
(X1.SE

.=X12 : Furniture) ∧ (X1.E
.=X13 : LF )∧

(X1.W
.=X13 : LF ) ∧ (X1.N

.=X7 : Coach) ∧ (X1.S
.=X13 : LF )

where LF denotes “Large Furniture” and SF for “Small Furniture”.
It is easy to see that the anti-unification owns all the features that are in

common with the two terms. In general, anti-unification give the most specific
term that contains all features shared by two given terms. In case of two terms
have nothing in common, then ϕ1 ⊓ ϕ2 = ⊥.

A complementary operation to the anti-unification is that of unification, or
most general specialisation:

Definition 3 (Unification). The unification (or most general unifier MGU)
of two terms ϕ1 and ϕ2, denoted as ϕ1 - ϕ2, is the most general term that is
subsumed by both, i.e., ϕ1 - ϕ2 = ϕ such that:

1. ϕ1 ⊑ ϕ and ϕ2 ⊑ ϕ;
2. there is no ϕ′ such that ϕ′ ! ϕ, ϕ1 ⊑ ϕ′ and ϕ2 ⊑ ϕ′.

When two terms have contradictory information then they have no unifier -
which is equivalent to say that their unifier is “none”: ϕ1 -ϕ2 = ⊤. Obviously it
is the case for the two terms in Example 1.

Definition 4. Let ϕ1 and ϕ2 be two terms in T . ϕ1 and ϕ2 are inconsistent if
ϕ1 - ϕ2 = ⊤; otherwise, they are consistent.

2.2 Amalgams

As we mentioned in the introduction, we need some controlled way to “merge”
or “blend” bargainers’ proposals We call such a merging process amalgamation.
The notion of amalgams was introduced in the context of Case-based Reasoning
(CBR) [4,7,23], where new problems are solved based on previously solved prob-
lems (or cases, residing on a case base). Solving a new problem often requires
more than one case from the case base, so their content has to be combined in
some way to solve the new problem. The notion of amalgam of two cases (two
descriptions of problems and their solutions) is a proposal to formalize the ways
in which cases can be combined to produce a new, coherent case.
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6 D. Zhang and E. Plaza

Definition 5 (Amalgam). Given two terms ψa and ψb in T with anti-
unification ψ⊓ = ψa ⊓ψb, a term, ϕ, of T is an amalgams of ψa and ψb if there
are ϕa and ϕb in T such that ψ⊓ ⊑ ϕa ⊑ ψa, ψ⊓ ⊑ ϕb ⊑ ψb, and ϕ = ϕa - ϕb.
Here, ϕa and ϕb are called the transfers of the amalgam.

Conventionally, the set of all amalgams of ϕ1 and ϕ2 is called the space of
amalgams of ϕ1 and ϕ2, and will hereby be noted as A(ϕ1,ϕ2). Note that we
exclude ⊤ from the set of amalgams of any pair of terms because ⊤ contains no
information from any player.

Back to our room design example, it is easy to verify that both the following
terms are amalgams of ϕ1 and ϕ2:
ϕ′

1 =
(X1 : Room) ∧ (X1.NE

.=X2 : Dresser) ∧
(X1.NW

.=X3 : PlantPot) ∧ (X1.SE
.=X4 : Armchair) ∧

(X1.E
.=X5 : Table) ∧ (X1.W

.=X6 : ComputerDesk) ∧
(X1.N

.= X7 : Coach) ∧ (X1.S
.= X8 : Bookcase ∧ (X6.supports

.= X9 :
TowerComputer)

ϕ′
2 =

(X1 : Room) ∧ (X1.NE
.=X2 : PlantPot) ∧ (X1.NW

.=X3 : CornerDesk) ∧
(X1.SE

.=X4 : FilingCabinet) ∧ (X1.E
.=X5 : DrawingTable) ∧

(X1.W
.=X6 : Tansu) ∧ (X1.N

.=X7 : Coach) ∧ (X1.S
.=X8 : Bookcase ∧

(X3.supports
.= X10 : Netbook)

By observing these two terms we can see that ϕ′
1 is the same as ϕ1 but “ leans

to the other side” by agreeing on placing any table along the east wall. ϕ′
2, on

the other side, agrees on putting a bookcase along the south wall but not on other
features.

Based on the definitions, it is easy to see that the binary operations ⊓ and
- comply with the commutative, associative and absorption laws. Moreover the
following properties hold for all terms in T :

1. ψ ⊓ ⊤ = ψ and ψ - ⊥ = ψ (bounded lattice)
2. ψ ⊑ ψ1 ⊓ ψ2 iff ψ ⊑ ψ1 and ψ ⊑ ψ2

3. ψ1 - ψ2 ⊑ ψ iff ψ1 ⊑ ψ and ψ2 ⊑ ψ

Therefore, for any OSF signature Σ = ⟨S,F ,≤,V⟩, the set of terms T of Σ
forms a structure ⟨T ,⊑,⊓,-,⊥,⊤⟩, which satisfies the following conditions for
a bounded distributive lattice (BDL) [5]:

1. ⊥ ⊑ ϕ ⊑ ⊤ for any ϕ ∈ T ;
2. ψ1 ⊓ψ2 is the maximum of all lower bounds (in ⊑) of {ψ1,ψ2} for every pair

of terms ψ1,ψ2 ∈ T ;
3. ψ1 -ψ2 is the minimum of all upper bounds (in ⊑) of {ψ1,ψ2} for every pair

of terms ψ1,ψ2 ∈ T ;
4. ψ1 - (ψ2 ⊓ ψ3) = (ψ1 - ψ2) ⊓ (ψ1 - ψ3) (distributivity of - over ⊓);
5. ψ1 ⊓ (ψ2 - ψ3) = (ψ1 ⊓ ψ2) - (ψ1 ⊓ ψ3) (distributivity of ⊓ over -)).
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Bargaining Through Amalgamation 7

In the remaining of the paper we will use T to refer a language ⟨T ,⊑,
⊓,-,⊥,⊤⟩ with the BDL structure.

Lemma 1. For any term ϕ ∈ T , ϕ ∈ A(ϕ1,ϕ2) if and only if ϕ ̸= ⊤ and
ϕ1⊓ϕ2 ⊑ ϕ ⊑ ϕ1-ϕ2. Therefore, A(ϕ1,ϕ2) is the interval [ϕ1⊓ϕ2,ϕ1-ϕ2]\{⊤}.

Proof. “⇐” Given an amalgam ϕ ∈ A(ϕ1,ϕ2), there are ψ1 and ψ2 in L such
that ϕ = ψ1 - ψ2 with ϕ1 ⊓ ϕ2 ⊑ ψ1 ⊑ ϕ1 and ϕ1 ⊓ ϕ2 ⊑ ψ2 ⊑ ϕ2. From the
last two facts, we have (ϕ1 ⊓ ϕ2) - (ϕ1 ⊓ ϕ2) ⊑ ψ1 - ψ2 ⊑ ϕ1 - ϕ2; therefore
ϕ1 ⊓ ϕ2 ⊑ ϕ ⊑ ϕ1 - ϕ2.

“⇒” If ϕ ∈ [ϕ1 ⊓ϕ2,ϕ1 -ϕ2]\{⊤} then ϕ ⊑ ϕ1 -ϕ2. Now, (ϕ1 -ϕ2)⊓ϕ = ϕ,
and by distributivity we know ϕ = (ϕ⊓ϕ1)-(ϕ⊓ϕ2). Moreover, since ϕ1⊓ϕ2 ⊑ ϕ,
it holds that ϕ1 ⊓ ϕ2 ⊑ ϕ ⊓ ϕ1 ⊑ ϕ1 and ϕ1 ⊓ ϕ2 ⊑ ϕ ⊓ ϕ2 ⊑ ϕ2. Thus ϕ is an
amalgam with transfers ϕ ⊓ ϕ1 and ϕ ⊓ ϕ2. #

The following theorem shows that an amalgam space is monotonic.

Theorem 1. For any ϕ′
1,ϕ

′
2 ∈ A(ϕ1,ϕ2), A(ϕ′

1,ϕ
′
2) ⊆ A(ϕ1,ϕ2).

Proof. We want to proof that if ϕ ∈ A(ϕ′
1,ϕ

′
2) then ϕ ∈ A(ϕ1,ϕ2), i.e. that

ϕ1 ⊓ ϕ2 ⊑ ϕ ⊑ ϕ1 - ϕ2 holds. Since ϕ ∈ A(ϕ′
1,ϕ

′
2), it holds that ϕ′

1 ⊓ ϕ′
2 ⊑ ϕ ⊑

ϕ′
1 - ϕ′

2. Morever, it is easy to see that

ϕ1 ⊓ ϕ2 ⊑ ϕ′
1 ⊓ ϕ′

2 ⊑ ϕ ⊑ ϕ′
1 - ϕ′

2 ⊑ ϕ1 - ϕ2

holds, since

1. ϕ1 ⊓ ϕ2 ⊑ ϕ′
1 ⊓ ϕ′

2 holds because ϕ1 ⊓ ϕ2 ⊑ ϕ′
1 and ϕ1 ⊓ ϕ2 ⊑ ϕ′

2, and
2. ϕ′

1 - ϕ′
2 ⊑ ϕ1 - ϕ2 holds because ϕ′

1 ⊑ ϕ1 - ϕ2 and ϕ′
2 ⊑ ϕ1 - ϕ2. #

Although the classical propositional logic can be abstracted as a boolean
lattice thus is a bounded distributive lattice, other non-classical logics are not
necessarily satisfies the language requirement. In this case, we need to investigate
which segment of the language satisfies the conditions. Otherwise, only part of
the results presented in the paper are applicable. See more discussion in the last
section.

3 The Bargaining Model

In this section we develop a bargaining model using the notion of amalgam. For
the sake of simplicity, we consider the bargaining situations in which there are
only two agents.

A
ut

ho
r 

Pr
oo

f



8 D. Zhang and E. Plaza

3.1 Bargaining Structures

Bargaining outcomes are mostly determined by individual preferences. Most tra-
ditional bargaining models represent players’ preferences in cardinal utility as
it is well known that ordinal utility does not contain enough information for a
rational bargaining solution [28]. Unlike the traditional bargaining models, we
express bargainers’ preferences with a richer structure, which contains three basic
components. The first component is the bargaining terms expressing demands,
proposals or offers of players. For instance, Geek wants the Armchair to be
in North East corner while Artist wants a Filing Cabinet to be there. Such
a content-rich representation allows bargainers to combine demands from each
other and make more constructive proposals in order to reach a possible agree-
ment. This actually reflects the cooperative aspect of bargaining.

The second component is the “collective preference” of all bargaining parties.
This information is encoded by the partial order ⊑ of the language we use. If
the order stands for the logical implication, it means that all players agree that
an agreement with stronger statements is more preferable than one with weaker
statements. If the order represents “subsumption” relation among feature terms,
the order will mean that every party prefer specific terms to generic terms. Note
that the subsumption ordering may be induced from another order structure,
say the sort hierarchy shown in Fig. 2 for our room design problem.

Fig. 2. The sort hierarchy of the room design problem.

The three component of our preference structure is the “individual preference”
of each player. As we will define below, this individual preference has to be
aligned with the collective preference but mostly refine the common preference.
For instance, a player may prefer a bookcase to other particular large furniture to
be placed on the South wall even they are in the same level of the sort hierarchy.
We assume that individual preference is ordinal because it is only used when a
player has to make a decision which term should be chosen against the terms.
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Bargaining Through Amalgamation 9

Definition 6. Let ⟨T ,⊑,⊓,-,⊥,⊤⟩ be a bounded distributive lattice. A two-
player bargaining structure is tuple (T ,≺1,≺2), where ≺i (i = 1, 2) is a strict
total order over T and satisfies the following properties:

∀ϕ,ψ ∈ T if ϕ ⊑ ψ, then ϕ ≺i ψ

Note that we require the individual preference to be a strict total order because
we assume that whenever a player chooses a term as her new proposal from the
available options, she always chooses her most preferred one2.

Following the standard game-theoretic terminology, for any two terms ϕ,ψ ∈
T , we say that ϕ dominates ψ if ψ ≺i ϕ for all i ∈ {1, 2}. Note that “dominate”
here means “strictly dominate”.

Given a bargaining structure B = (T ,≺1,≺2), any pair (ϕ1,ϕ2) of terms in
T is called a bargaining situation. Each term ϕi of the bargaining situation is
called a proposal or an offer of player i. We denote all the bargaining situations
over the bargaining structure B by SB.

Intuitively, a bargaining situation represents the initial state of a negotiation
where all the preference information is encoded in the bargaining structure and
the proposals of each player. For instance, Fig. 1 represents a bargaining situation
when Geek and Artist meet for negotiation with the the initial proposals from
Geek and Artist ϕ0

1 and ϕ0
2 respectively as shown in Fig. 1.

Example 2. Consider the room design scenario again to show how individual
preferences take effect in player’s decision-making. Let ϕ0

1 and ϕ0
2 be the initial

proposals from Geek and Artist respectively as shown in Fig. 1. If Geek chooses
the concession not asking for an Armchair in SW (let’s call it ϕ1

1) after an
amalgamation, he is able to offer the room design in Fig. 3. This amalgamation
is the result of unifying two term ψ1

1 -ψ1
2, where ψ1

1 ! ϕ0
1 and ψ1

2 ! ϕ0
2. Similar

proposals can be made by the Artist.

3.2 Solution Concept and Desired Properties

Any bargaining theory is to develop a solution concept that can help predict the
agreement bargainers would reach with any bargaining situation [31]. Within
our model, an agreement is a term that can be described in the underlying
language. Therefore a bargaining solution should tell which term is reached in
each bargaining situation as formalised in the following:

Definition 7. Given a bargaining structure B=(T ,≺1,≺2), a bargaining solu-
tion f : SB → T is a function that maps each bargaining situation (ϕ1,ϕ2) to a
term f(ϕ1,ϕ2) ∈ T .

2 If somehow two items are not distinguishable for a player, we may remove it from
the language or using the reverse of the other player’s preference.
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10 D. Zhang and E. Plaza

Fig. 3. Artist’s counter proposal of removing Glass-door cabinet to incorporate Geek’s
proposal.

Obviously not every such a function is what we want. We want to know which
functions give a right prediction for bargaining among rational agents. For his
purpose, consider a set of properties, or axioms, we desire a bargaining solution
to satisfy.

The first property sets up a bottom line for any bargaining solutions is

Individual Rationality: f(ϕ1,ϕ2) ≽ i ϕ1 ⊓ ϕ2 for each i ∈ {1, 2}.

That is to say, an agreement should never be worse than the minimum of the
initial proposals for each player. For instance, if two proposal has something in
common, at least these common features should be included in the agreement.
With the situation shown in Fig. 1, at least both parties should agree on putting
the Coach on the North wall. Note that f(ϕ1,ϕ2) can be ⊥ if ϕ1 ⊓ϕ2 = ⊥ even
though it is not necessary.

The second property deals with an extreme bargaining situation in which
there is no conflicting between the initial proposals of two parties. In this case, we
assume that the outcome of bargaining is the maximum of their initial proposals.

Collective Rationality: If ϕ1 - ϕ2 ̸= ⊤, f(ϕ1,ϕ2) = ϕ1 - ϕ2.

The property looks quite promising intuitive but we cannot take it for granted
without considering other properties. Although ϕ1 - ϕ2 is the maximum under
the collective preference ⊑, there is no guarantee that ϕ1 -ϕ2 is Pareto optimal
to the players under the individual preferences. To deal with this issue, let us
introduce the most important assumption we propose in this paper. As we have
briefly described in the previous sections, we require any proposal from each
player must be an amalgam of the initial proposals. Based on the assumption,
it is natural to expect that the agreement of bargaining can be represented as
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Bargaining Through Amalgamation 11

an amalgam of the initial proposals. This property can be simply described as
follows:
Amalgamation: f(ϕ1,ϕ2) ∈ A(ϕ1,ϕ2).

Now let’s introduce the property of Pareto optimality, which is one of the
most important properties of a bargaining solution.
Definition 8. Given a bargaining situation (ϕ1,ϕ2), the Pareto set of (ϕ1,ϕ2)
is defined as:
P (ϕ1, ϕ2) = {φ ∈ A(ϕ1, ϕ2) : there is no ϕ′ ∈ A(ϕ1, ϕ2) such that ϕ′ dominates ϕ}

A bargaining solution f being Pareto optimal then means:
Pareto Optimality: f(ϕ1,ϕ2) ∈ P (ϕ1,ϕ2).

As mentioned above, these postulates are related each other. The follow-
ing propositions show Individual Rationality and Collective Rationality can be
derived from the other postulations.
Proposition 1. Any bargaining solution that satisfies Amalgamation is Indi-
vidual Rational.
Proof. Since f(ϕ1,ϕ2) ∈ A(ϕ1,ϕ2), by the definition of amalgam, we have ϕ1 ⊓
ϕ2 ⊑ f(ϕ1,ϕ2). By Definition 6, it follows that ϕ1 ⊓ ϕ2 ≽ i f(ϕ1,ϕ2) for each
i ∈ {1, 2}. #
Proposition 2. Any bargaining solution that satisfies Amalgamation and
Pareto Optimality is Collective Rational.
Proof. Let f be a bargaining solution that satisfies Amalgamation and Pareto
Optimality. On the one hand, for any ϕ ∈ A(ϕ1,ϕ2), we have ϕ ⊑ ϕ1 -ϕ2; thus
ϕ ≼ i ϕ1-ϕ2 for each i ∈ {1, 2}. By Amalgamation we know f(ϕ1,ϕ2) ≼ i ϕ1-ϕ2.
On the other hand, since f is Pareto optional, there is no term in A(ϕ1,ϕ2),
including ϕ1-ϕ2, strictly dominates f(ϕ1,ϕ2). Therefore f(ϕ1,ϕ2) = ϕ1-ϕ2. #

Finally we introduce a special property similar to Nash’s Independence of
Irrelevant Alternatives (IIA). The idea is inspired by a similar property in [32].
A bargaining situation (ϕ′

1,ϕ
′
2) is a simultaneous concession of a bargaining

situation (ϕ1,ϕ2) if ϕ′
i ≺i ϕi and ϕ′

i ∈ A(ϕ1,ϕ2) for each i ∈ {1, 2}; it is
minimal if there is no ψi ∈ A(ϕ1,ϕ2) such that ϕ′

i ≺i ψi ≺i ϕi for either i = 1
or i = 2.
Concession Independence: Let (ϕ′

1,ϕ
′
2) be a minimal simultaneous conces-

sion of (ϕ1,ϕ2). If ϕ1 - ϕ2 ̸= ⊤, either f(ϕ1,ϕ2) = f(ϕ′
1,ϕ2), f(ϕ1,ϕ2) =

f(ϕ1,ϕ′
2) or f(ϕ1,ϕ2) = f(ϕ′

1,ϕ
′
2).

Unlike the game-theoretic models of bargaining in which the domain of alter-
natives is mostly assumed to be continuous and convex thus the solution can be
unique if exists, the domain of alternatives in our model is finite and discrete
and therefore Pareto optimal solutions may not be unique. For instance, assume
that a couple, husband and wife, negotiates for choosing either Thai or Chi-
nese restaurant for dinner. If their preferences are exactly opposite, both the
alternatives “Thai restaurant” and “Chinese restaurant” are Pareto optimal.
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12 D. Zhang and E. Plaza

4 Solution Construction and Characterisation

In this section, we construct a concrete bargaining solution which is lead by
a natural procedure of bargaining between rational agents. We show that this
solution satisfies all the desired properties we listed in the previous section and
also can be and is fully characterised by these properties.

4.1 Bargaining Procedures

We assume that a bargaining procedure consists of a number of rounds. In each
round, two players make a proposal simultaneously3. The proposal of a player
for each round can be the same as the last round (named stand-still) or make
a new proposal by picking up a different term from the set of amalgams of
the proposals from the last round. Once both players choose to stand still, the
procedure terminates. Formally, we can describe a bargaining procedure as a
sequences of bargaining situations.

Definition 9. A bargaining sequence q = {(ϕt
1,ϕ

t
2)}n

t=0, where n can be any
natural number, is a finite sequence of bargaining situations such that ϕt

i ∈
A(ϕt−1

1 ,ϕt−1
2 ) for any t > 0and i ∈ {1, 2}. We call ϕt

i the proposal of player i
at round t.

(ϕ0
1,ϕ

0
2) is say that the sequence starts from of the sequence. We also say that

this sequence starts from (ϕ0
1,ϕ

0
2). By Theorem 1, A(ϕt

1,ϕ
t
2) ⊆ A(ϕt−1

1 ,ϕt−1
2 ) for

each t(1≤ t ≤ n); therefore the negotiation space monotonically decreasing with
the advance of bargaining.

A bargaining sequence records only a possible bargaining procedure without
assuming the rationality of players’ strategic behaviour. In fact, we may assume
that whenever a player decide to make a new proposal, instead of stand-still,
she would choose the most preferred one from the space of amalgams of the
previous proposal (excluding the previous proposals). In addition, it is reasonable
to assume that any bargaining procedure terminates whenever a player finds that
the proposal of her opponent is as preferable as the one she is proposing or even
better. These rationality assumptions can be formally described as follows:

Definition 10. A bargaining sequence {(ϕt
1,ϕ

t
2)}n

t=0 is rational if

1. for each t > 0and each i ∈ {1, 2}, ϕt
i ≽ i ϕ for all ϕ ∈ A(ϕt−1

1 ,ϕt−1
2 ).

2. ϕt
2 ≽ 1 ϕt

1 and ϕt
1 ≽ 2 ϕt

2 for all t ≥ 0.

This definition plus Theorem 1 immediately implies the following property,
which says that any rational bargaining sequence is a monotonic concession
procedure.

Proposition 3. Let {(ϕt
1,ϕ

t
2)}n

t=0 be a rational bargaining sequence. Then for
each t > 0and i ∈ {1, 2}, ϕt

i ≼ i ϕ
t−1
i .

3 Since we allow a player to repeat her previous proposal, bargaining with alternating
offers can be viewed as a special case of this simultaneous model.

A
ut

ho
r 

Pr
oo

f



Bargaining Through Amalgamation 13

We say a bargaining sequence q = {(ϕt
1,ϕ

t
2)}n

t=0 complete if there are two
proposals ϕt1

1 and ϕt2
2 , one from each player, such that 0≤ t1 ≤ n, 0≤ t2 ≤ n

and ϕt1
1 - ϕt2

2 ̸= ⊤. ϕt1
1 - ϕt2

2 is called an agreement of the sequence. Note that
ϕt1

1 and ϕt2
2 are not necessarily proposed at the same round (i.e., it is possible

that t1 ̸= t2). Also there might be multiple agreements reached by a sequence.
A complete bargaining sequence {(ϕt

1,ϕ
t
2)}n

t=0 is minimal concessive if for
any agreement ϕ of the sequence, ϕt

i ≽ i ϕ for all t > 0 and i ∈ {1, 2}. A
minimal concessive sequence represents an ideal bargaining procedure in which
no body made unnecessary concession. The following lemma shows that such an
ideal outcome may be achieved if one player can effectively use the “stand-still”
strategy.

A complete bargaining sequence {(ϕt
1,ϕ

t
2)}n

t=0 is a shortest minimal con-
cessive sequence for (ϕ0

1,ϕ
0
2) if there is no other minimal concessive sequence

starting from (ϕ0
1,ϕ

0
2) that is shorter than n.

Lemma 2. Let {(ϕt
1,ϕ

t
2)}n

t=0 be a shortest minimal concessive bargaining
sequence. Then ϕn

1 = ϕn
2 and it is also the unique agreement of the sequence.

Proof. Let ϕ = ϕt1
1 -ϕt2

2 is an agreement of the sequence. According to Theorem 1
and Definition 9, both ϕt1

1 and ϕt2
2 belong to A(ϕ0

1,ϕ
0
2). Therefore ϕt1

1 - ϕt2
2 ∈

A(ϕ0
1,ϕ

0
2) because ϕt1

1 - ϕt2
2 ̸= ⊤. Note that ϕti

i ⊑ ϕt1
1 - ϕt2

2 for each i ∈ {1, 2};
thus ϕti

i ≼ i ϕ
t1
1 -ϕt2

2 = ϕ for all i ∈ {1, 2}. By the definition of amalgam, it is easy
to know that ϕ ∈ A(ϕt

1,ϕ
t
2) where t = min{t1, t2}. According to Proposition 3,

there is t′i for each i ∈ {1, 2} such that 1≤ t′i ≤ t and φ = ϕ
t′
i

i . By the condition
of minimal concession, ϕk

i ≽ i φ for all k > 0. By Proposition 3 again we know
ϕk

i = φ for all k (t′i ≤ k ≤ n). Specifically, φ = ϕn
1 = ϕn

2 , which is the unique
agreement of the sequence. #

This lemma lead the following definition.

Definition 11. A bargaining function f is called a minimal concessive solution
if for each bargaining situation (ϕ1,ϕ2), there is a shortest minimal concessive
bargaining sequence {(ϕt

1,ϕ
t
2)}n

t=0 starting from (ϕ1,ϕ2) such that f(ϕ1,ϕ2) is
the agreement of the sequence.

The following theorem shows that a minimal concessive solution satisfies all
the desired properties listed in the previous section and are also fully charac-
terised by these properties.

Theorem 2. A bargaining solution satisfies Pereto Optimality, Amalgamation
and Concession Independence if and only if it is a minimal concessive solution.

Lemma 3. Given any bargaining situation (ϕ1,ϕ2), there are at most two short-
est minimal concessive bargaining sequences starting with (ϕ1,ϕ2).

Proof. Let {(ϕt
1,ϕ

t
2)}n

t=0 be a bargaining sequence starting with (ϕ1,ϕ2) that
satisfies the condition: for each t > 0, (ϕt

1,ϕ
t
2) is the minimal simultaneous con-

cession of (ϕt−1
1 ,ϕt−1

2 ). Since we assume that individual preferences are strictly
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14 D. Zhang and E. Plaza

total orders, the above sequence is unique for (ϕ1,ϕ2). Furthermore, we also
assume that our language contains only finite number of terms, therefore each
term has a chance to appear in both sides of the sequence. Assume that ϕt1

1

and ϕt2
2 are the earliest ones that appear in both sides, where t1 and t2 are the

indexes of their second occurrences for each side, respectively. If t1 ̸= t2, say
t1 < t2, let t′2 be the index such that ϕt1

1 = ϕ
t′
2

2 . For each k(0≤ k ≤ t′2), let
ψk

2 = ϕk
2 ; for each k(t′2 < k ≤ t1), let ψk

2 = ϕ
t′
2

2 . Then {(ϕt
1,ψ

t
2)}

t1
t=0 is a short-

est minimal concessive sequence. Since this process is constructive, the shortest
minimal concessive sequence is unique for (ϕ1,ϕ2). If t1 = t2, we can construct
with the above approach two shortest minimal concessive sequences with exactly
the same length. Therefore there are at most two shortest minimal concessive
bargaining sequences starting from (ϕ1,ϕ2). #

Lemma 4. Any minimal concession solution satisfies Pareto Optimality.

Proof. let f be a minimal concessive solution. For any bargaining situation
(ϕ1,ϕ2), let {(ϕt

1,ϕ
t
2)}n

t=0 be the shortest minimal concessive sequence such
that f(ϕ1,ϕ2) is the agreement of the sequence. According to Lemma 2,
f(ϕ1,ϕ2) = ϕn

1 = ϕn
2 . If f(ϕ1,ϕ2) is not Pareto optimal, there is ϕ ∈ A(ϕ1,ϕ2)

such that ϕ dominates f(ϕ1,ϕ2). It turns out that ϕ ≻ i ϕn
i for each i ∈ {1, 2}.

Therefore ϕ appears in the sequence. This implies that ϕ is an agreement of the
sequence, which contradicts uniqueness of agreement proved by Lemma 2. #

Lemma 5. Any minimal concession solution satisfies Concession Independence.

Proof. Let (ϕ′
1,ϕ

′
2) be the minimal simultaneous concession of (ϕ1,ϕ2). By

Lemma A2 there are at most two shortest minimal concessive sequences for
(ϕ1,ϕ2). Let {(ϕt

1,ϕ
t
2)}n

t=0 be one of them. Obviously ϕ1 = ϕ′
1 and ϕ2 = ϕ′

2.
If neither ϕ0

1 nor ϕ0
2 is an agreement of the sequence, then the sequence after

remove the initial bargaining situation is a shortest minimal concessive sequence
for (ϕ′

1,ϕ
′
2). If one of ϕ0

1 and ϕ0
2, say the former, is an agreement of the sequence,

the sequence after remove ϕ0
2 from the original sequence is a shortest minimal

concessive sequence for (ϕ0
1,ϕ

′
2). Since there are at most two shortest minimal

sequences for (ϕ0
1,ϕ

′
2), f(ϕ1,ϕ2) will have to choose one of them. Therefore

f(ϕ1,ϕ2) = f(ϕ′
1,ϕ2), f(ϕ1,ϕ2) = f(ϕ1,ϕ′

2) or f(ϕ1,ϕ2) = f(ϕ′
1,ϕ

′
2). #

Now let’s prove the main theorem.

Proof. “⇐”. Obviously any minimal concessive solution satisfies Amalgamation.
Lemma A3 and A4 shown that Pareto Optimality and Concession Independence
are satisfied.

“⇒”. Let f be a bargaining solution that satisfies Amalgamation, Pareto
Optimality and Concession Independence. For any bargaining situation (ϕ1,ϕ2),
if ϕ1 -ϕ2 ̸= ⊤, {(ϕ1,ϕ2)} is a shortest minimal concessive sequence for (ϕ1,ϕ2).

Assume now that ϕ1 - ϕ2 = ⊤. Let {(ϕt
1,ϕ

t
2)}n

t=0 be a bargaining sequence
starting with (ϕ1,ϕ2) that satisfies the condition: for each t > 0, (ϕt

1,ϕ
t
2) is the

minimal simultaneous concession of (ϕt−1
1 ,ϕt−1

2 ). Since our language is finite,
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Bargaining Through Amalgamation 15

f(ϕ1,ϕ2) appears in both sides of the sequence. Similar to the proof of Lemma
A1, we can construct a minimal concessive sequence that ends with f(ϕ1,ϕ2).
Since f is pareto optimial, such a sequence is a shortest minimal concessive
sequence. #

5 Conclusion

In this paper, we proposed a new bargaining framework based on the notion of
amalgam. We use a “content-rich” language to describe bargainers’ proposals or
offers and use two types of orderings to express bargainers’ collective preferences
and individual preferences. We assume that any bargain proceeds upon the pro-
tocol that any new proposal of a bargainer must be an amalgam of the previous
proposals which in fact takes into account the concession of one bargainer and
the requests of the other bargainer.

As we have mentioned, our bargaining framework is not only applicable to the
language of OSF logic but also any formal language that contains connectives
that form a bounded distributive lattice (BDL). Nevertheless, not all formal
languages, especially logical languages, are a BDL. For instance, the description
logic or sort-ordered logic is not a DBL in general, which blocked our attempt
to directly apply our approach to certain domains, such as logic-based bargining
theory, GDL-based negotiation and ontology-based negotiation [16,30,32]. It is
interesting to know whether any segments of these logics satisfy our language
requirements. Nevertheless, the definition of amalgam does not reply on BDL
structure therefore our approach is still applicable for the domains that cannot
be described by a BDL language (especially when solution characterisation is not
a major concern). It is also interesting if we reduce the language requirement
from BDL to bounded lattice, what are the results we can still have? We leave
these questions for the future.

We also intend to explore the relation of our approach with concept blending
and creativity. Concept blending [4,7,8,23] is a cognitive model of creative think-
ing by which new concepts are created by combining (“blending”) two existing
concepts (called also mental spaces). Bargaining through amalgamation can be
seen as a related concept applied to negotiation: a bargainer not only makes con-
cessions on prior demands but explores creative proposals, by making combina-
tions of elements existing in the proposals of both bargainers, while maintaining
the sequence of creative proposals guided by the individual preferences.

Nearly all existing bargaining models, including this work, assume static
preferences. However, preferences can be dynamic and may evolve during nego-
tiation. Developing a negotiation framework that accommodates the dynamic
measurement of bargainers’ preferences would be a promising direction for future
research [6,18].
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