UNIVERSITAT POLITECNICA DE CATALUNYA
DEPARTAMENT DE LLENGUATGES I SISTEMES INFORMATICS

TESI DOCTORAL

Logic Programming with
Fuzzy Unification and Imprecise Constants:

Possibilistic Semantics and Automated Deduction

Memoria de treball presentada per na Teresa Alsinet Bernadd a la Universitat
Politécnica de Catalunya. El treball contingut en aquesta memoria ha estat rea-
litzat a I'Institut d’Investigaci6é en Intel-ligencia Artificial del Consejo Superior de

Investigaciones Cientificas sota la direccié del Dr. Lluis Godo Lacasa.

Bellaterra, maig de 2001

Contents

Abstract 1

1 Introduction
1.1 Context and objectives
1.2 Contributions e

1.3 Publications 12
1.4 Structure of the thesis 13
2 Related work on inference systems of fuzzy logic 17
2.1 Imtroduction. 17
2.2 Deductive systems of fuzzy logic 17
2.2.1 The basic many-valued logic. 19
2.2.2 Godellogic 22
2.2.3 Lukasiewicz logic Lo oL 27
2.24 Productlogic 27

2.3 Resolution-based systems of fuzzy logic 28
2.4 Rule-based systems oL oL 37
2.5 Fuzzy logic programming 39

3 Background on necessity-valued possibilistic logic and its exten-

sion with fuzzy constants and fuzzily restricted quantifiers 47
3.1 Imtroduction. 47
3.2 Necessity-valued possibilistic logic 48
3.2.1 Semantics oL 49
3.2.2 A formal system for necessity-valued possibilistic logic . . 50
3.2.3 Automated deduction 51

ii

Contents

3.3 Possibilistic logic with fuzzy constants and fuzzily restricted quan-
tifiers: PLFC
3.3.1 Variable weights
3.3.2 Fuzzyconstants.

3.3.3 Inference with fuzzy constants and variable weights

On the semantics and automated deduction for PLFC
4.1 Imtroduction
4.2 Extending standard possibilistic semantics
4.3 Formalizing PLFC
4.3.1 The base language of PLFC: Syntax and many-valued se-
mantiCso e e e e
4.3.2 Possibilistic semantics for PLFC
4.4 Resolution and refutation in PLFC
4.5 Automated deduction
4.5.1 Most general substitution
4.5.2 Generalized mergingrule

4.5.3 Refutation procedure.

A fuzzy possibilistic logic based on Gddel infinitely-valued logic109

5.1 Imtroduction.
5.2 The underlying fuzzy logic: Godel logic
5.3 Possibilistic reasoning over Godel logic: PGL
5.4 A possibilistic logic programming language

5.5 Completeness of the proof method

A complete calculus for PGL extended with fuzzy constants
6.1 Introduction. L.
6.2 Adding fuzzy unification: PGLT
6.2.1 The PGLT language: Syntax and semantics
6.2.2 Extended inference with possibilistic pattern matching . .
6.3 PGLT programs v it
6.4 Completeness of the PGLT proof method
6.4.1 Modularity constraint
6.4.2 Context constraint,

6.4.3 The completenessresult

109

129

Contents iii

6.5 Automated deduction 182
6.5.1 Completing the knowledgebase 183
6.5.2 Transforming the knowledge base 187
6.5.3 Computing the maximum degree of deduction 190

7 An automated deduction system for a first-order extension of

PGL™* 193
7.1 Introduction. 193
7.2 A first-order possibilistic logic with fuzzy constants based on
Godel predicate logic oL 194
7.2.1 Godel predicate logic extended with fuzzy constants . . . 194
7.2.2 Possibilistic reasoning over Gddel predicate logic extended
with fuzzy constants 198
7.3 A first-order possibilistic logic programming language with fuzzy
constantso e e 202
74 Automated deduction 209
7.4.1 Fuzzy unification oL 212
7.4.2 Proof procedure L. 228
743 Examples 232
7.5 A translator system oo 237
8 Conclusions and future work 245

References 255

iv

Contents

Abstract

In this thesis we focus on the formalization of first-order logical systems for rea-
soning under possibilistic uncertainty and vague knowledge. In this framework,
we first define a formal semantics and a sound resolution-style calculus by refu-
tation for the necessity-valued fragment of first-order possibilistic logic extended
with fuzzy constants and fuzzily restricted quantifiers (called PLFC). The res-
olution rule includes an implicit fuzzy unification mechanism of fuzzy events.
Second, we formalize a general fuzzy possibilistic logic (called PGL) based on
Godel infinitely-valued logic, and we define a complete modus ponens-style cal-
culus for the Horn-rule fragment of PGL. Third, we extend this logic with fuzzy
constants and a fuzzy unification mechanism which preserves completeness for a
particular class of clauses. Finally, we extend the fuzzy unification mechanism
to the first-order case, and we describe how this mechanism can be implemented
in the Warren Abstract Machine context.

Concerning the semantics, because of the fuzzy information, the truth eval-
uation of formulas is many-valued and belief states are modeled by normalized
possibility distributions on a set of many-valued interpretations in both PLFC
and PGL. Hence, we consider a suitable extension of the notion of necessity
measure for fuzzy sets in both systems; in particular, for fuzzy sets of interpre-
tations. However, the semantics of PLFC and PGL are not equivalent. On the
one hand, the basic connectives of PLFC are negation and disjunction and of
PGL are conjunction and implication, and the two sets of connectives are not
inter-definable. On the other hand, the extended necessity measure for fuzzy
sets used in PLFC is different from the one used in PGL, although both are
extensions of the standard necessity measure for crisp sets.

Concerning the automated deduction system, the proof method for PLFC
is defined by refutation through a generalized resolution rule extended with a
necessity measure of matching of fuzzy events. During the proof process, a
merging rule must be applied after each resolution step, and the search space
consists of all possible orderings of the literals in the knowledge base. In contrast,
in PGL, the merging rule is applied during a pre-processing step of the knowledge
base, and the proof procedure is defined by deduction through a generalized
modus ponens rule and a unification mechanism of fuzzy constants based on

three inference patterns.

Chapter 1

Introduction

1.1 Context and objectives

Logic programming began in the early 1970’s as a direct outgrowth of previous
work in automatic theorem proving. Building on work of Herbrand in 1930
(Herbrand, 1967), there was much activity in theorem proving in the early 1960’s
by Davis and Putnam (1960), Gilmore (1960), Prawitz (1960), and many others.
This effort culminated in the definition of the resolution rule by Robinson (1965).
Subsequently, Kowalski (1974) and Comerauer et al. (1973) were led to the
fundamental idea that logic can be used as a programming language, which is
based on a procedural interpretation of formulas, and the first Prolog interpreter
was implemented.

One of the main ideas of logic programming, which is due to Kowalski
(1979a,1979b), is that an algorithm consists of two disjoint components: the
logic and the control. The logic is the statement of what the problem is that has
to be solved. The control is the statement of how it is to be solved and has to
be provided by the logic programming system itself.

From then, logic programming languages have been applied to a wide range
of areas such as artificial intelligence or deductive databases. Among these lan-
guages, Prolog is the most representative but it is not powerful enough for rea-
soning and representing knowledge in situations where there is vague, imprecise
or incomplete information. However, as Zadeh has stated, the challenge now

facing both subfields of computer science is to produce systems exhibiting com-

3

4 Introduction

mon sense reasoning and human-knowledge representation, rather than purely
symbolic logical deduction. The representation of human-originated information
and the formalization of some forms of common sense reasoning motivated the
creation and development of fuzzy set theory by Zadeh (1965). Fuzzy sets bring
to logic programming a mathematical framework for capturing impreciseness as

well as uncertainty.

To get insight into the domain of this thesis let us first clarify the distinction

between impreciseness and uncertainty.

Impreciseness or vagueness is fuzziness, a phenomenon arising when we try
to characterize phenomena encountered in the world. It is connected with delin-
eation of classes of objects having some property, which is general imprecise or
vague and which thus leads to classes with no sharp boundaries. For instance,
young is a vague property and we cannot uniquely decide about a given person
whether he or she is young or not —the less is the age of a person (measured
e.g. in years), the more true is that he or she is young. Hence, truth of proposi-
tions (statements) involving imprecise or vague information is a matter of degree
which may lay between true and false. Fuzziness can thus be characterized by
some kind of many-valued logic and namely, by fuzzy logic and fuzzy sets. The

word “crisp” is used as meaning “non-fuzzy”.

Uncertainty is a phenomenon which accompanies occurrence of other phe-
nomena, mostly in time. Thus, it arises when we try to characterize phenomena
under incomplete or partially inconsistent information. For instance, we may
be more or less certain that a given person is 35 years old and, usually, our
degree of uncertainty is due to the fact that we do not have enough information
about him or her. Hence, uncertainty of occurrence is as well a matter of degree
which may lay between absolute ignorance and absolute certainty. Possibility,

probability and belief theories characterize different sides of uncertainty.

A significant distinction between truth and uncertainty on the formal level
consists of the compositionality. Namely, the truth of the composite property,
say (¢ and/or ¢)(zo), can be computed from the truths of p(zy) and ¥ (z).
This does not hold for the uncertainty (and its forms — possibility, probabil-
ity or belief). And, following the discussion of Dubois and Prade (1986) and
Dubois et al. (1991a), one could say that uncertainty concerns precise (or
imprecise) statements under incomplete information while vagueness (logic of

truth) concerns imprecise statements under complete information.

1.1. Context and objectives 5

The problems connected with logic programming in logics of uncertainty and
fuzziness are mostly reduced to the question how some generalization of the res-
olution principle can be formulated and how the automated deduction can be re-
alized. The fuzzy resolution principle roots to 1972 when the paper of Lee (1972)
was published. Later on, Ishizuka and Kanai (1985) implemented Lee’s results
in the fuzzy Prolog-ELF system. From then, new inference systems have been
proposed based on a variety of non-classical logics such as multiple-valued log-
ics (Escalada-Imaz and Manya, 1995; Klawonn and Kruse, 1994; Vojtds, 2001a;
Yasui and Mukaidono, 1996), possibilistic logic (Dubois et al., 1988a; Dubois
and Prade, 1990; Dubois et al., 1991b), probabilistic logic (Bacchus, 1990;
Heinsohn, 1994; Lukasieewicz, 1998), evidential support logic (Baldwin, 1986;
Baldwin, 1987a; Baldwin et al., 1993), or fuzzy operator logic (Liu and Xiao,
1985; Liu, 1989; Weigert et al., 1993). Depending on the underlying logic,
some systems are more suitable for dealing with vague knowledge, while others
are more appropriate for reasoning under incomplete or partially inconsistent
knowledge. Therefore, most of the fuzzy logic programming systems proposed
in the literature implement proof procedures for reasoning under one of the two
complementary forms of indeterminacy: uncertainty and vagueness. And, al-
though there are some attempts to handle linguistic truth values (Alsinet and
Manya, 1996; Hinde, 1986; Li and Liu, 1990; Yasui and Mukaidono, 1998) and
fuzzy unification (Arcelli et al., 1998; Bel et al., 1986; Cayrol et al., 1982;
Formato et al., 2000; Gerla and Sessa, 1999; Schwartz, 1989; Umano, 1987;
Virtanen, 1998; Vojtas et al., 2001b) in the framework of fuzzy logic program-
ming, only the inference systems defined by Baldwin et al. (1995) for evidential
reasoning, and Dubois et al. (1996,1998b) and Godo and Vila (1995) for pos-
sibilistic logic, provide a unified framework for the treatment of vagueness and
uncertainty.

The main objective of this thesis is the definition of first-order logic program-
ming systems for reasoning under possibilistic uncertainty and vague knowledge

which allows us, for instance, to model statements of the form
“it is almost sure that Peter is young”,

where the vague property young is represented by means of a fuzzy constant, and
the uncertainty expression almost sure is represented by means of a degree in the
unit interval [0, 1], for instance 0.9, expressing how much the fuzzy statement

“Peter is young” is believed in terms of necessity measures.

6 Introduction

Our departure points are: (i) the syntactic extension proposed
by Dubois et al. (1996,1998b) of the necessity-valued fragment of first-order
possibilistic logic dealing with fuzzy constants and fuzzily restricted quantifiers,
which is called PLFC; and (ii) the propositional temporal logic defined by Godo
and Vila (1995), which is based on a possibilistic semantics and a sound logical
inference system allowing a partial matching between fuzzy temporal constraints.

To achieve our goal, we explore three lines of research. First, we define a
formal semantics and a sound refutation proof method by resolution for PLFC.
Then, following the approach proposed by Godo and Vila (1995), we define
a possibilistic logic programming language with fuzzy constants based on the
Horn-rule fragment of Godel infinitely-valued logic extended with a fuzzy uni-
fication mechanism. Finally, we extend the fuzzy unification mechanism to the
first-order case and we provide the resulting language with a logic programming
environment based on a suitable extension of the Warren Abstract Machine
(WAM) (Warren, 1983; Ait-Kaci, 1991) to our fuzzy and possibilistic context.

In the next section we briefly describe these three lines of research.

1.2 Contributions

The first contribution of this thesis consists of both the formalization of PLFC
itself and an automated deduction system for it by (i) providing a formal se-
mantics; (ii) defining a sound resolution-style calculus by refutation; and (iii)
describing a first-order proof procedure for PLFC clauses based on the calculus
and on a novel notion of most general substitution of two literals in a resolution
step.

In PLFC, formulas are pairs of the form

(0 (2), £(@)),

where T and y denote sets of free and implicitly universally quantified variables
such that § D Z, p(Z) is a disjunction of literals with fuzzy constants, and f(7y)
is a valid valuation function which expresses the certainty of ¢(Z) in terms of
necessity measures. Basically, valuation functions f(§) are constant values and
variable weights. Variable weights (Dubois et al., 1994a; Dubois et al., 1994b)

are suitable for modeling statements of the form

“the more z is A (or z belongs to A), the more certain is p(z)”,

1.2. Contributions 7

where A is a fuzzy set with membership function p4(z). This is formalized in
PLFC as,

“for all x, p(x) is certain with a necessity of at least pa(z)”,

and is represented as (p(z), A(z)). When A is imprecise but not fuzzy, the
interpretation of such a formula is just “Vz € A, p(z)”. So variable weights
act as (flexible if they are fuzzy) restrictions on an universal quantifier. On the
other hand, fuzzy constants in PLFC can be seen as (flexible) restrictions on an

existential quantifier. In general,
“L(B) is certain with a necessity of at least o”

is represented in PLFC as (L(B),«), where L is either a positive or a negative
literal and B is a fuzzy constant. For instance, if B is imprecise but not fuzzy,
p(B) and —p(B) are interpreted in PLFC as

“Jr € B,p(x)” and “Jz € B,—p(x)”,

respectively. When B is fuzzy, we get a more complex complex interpretation
in terms of level-cuts. Thus, if B is a fuzzy set with a membership function upg,

p(B) is interpreted in possibilistic terms as
“[Fz € [pBlp, p(z)] is certain with a necessity of at least 1 — 37

for each 8 € [0,1], where [ug]s denotes the S-cut of pg.

Concerning PLFC semantics, as predicates are allowed to talk about
ill-known, imprecise or fuzzy constants and a form of fuzzily restricted quan-
tifiers is also present, we introduce three major changes with respect to the
standard semantics of first-order possibilistic logic. On the one hand, all fuzzy
components are interpreted as fuzzy sets, and thus, the truth value of formu-
las is not Boolean but many-valued and the set of truth values is the whole
unit interval [0,1]. On the other hand, belief states are modeled by normalized
possibility distributions on a set of many-valued interpretations, and thus, we
consider a suitable extension of the notion of necessity measure for fuzzy sets,
in particular for fuzzy sets of interpretations. Finally, in order to measure the
certainty of PLFC formulas in a possibilistic model, we cannot take into account
all possible many-valued interpretation, but only those which share a common

interpretation of fuzzy constants which leads us to define the notion of context.

8 Introduction

As in classical first-order possibilistic logic, the proof method for PLFC is
refutation by a generalized resolution rule between positive and negative literals.
However, as we consider fuzzy constants and variable weights in the language,
we introduce two major changes with respect to classical first-order inference
systems. On the one hand, we define a directional fuzzy unification mechanism
between variable weights and fuzzy constants. On the other hand, in order to
compute higher degrees of unification, we define a merging rule between clauses.

In logic programming languages, unification is a basic process in a proof
procedure, used to match the terms of atomic formulas and thus allowing the
inference of new information through some resolution-like rule. In classical logic
the unification process has been well-established and clearly defined (Robinson,
1965); in particular, when trying to match a constant A to another constant
B the unification algorithm fails whenever A # B, and thus, the unification
mechanism is based on a syntactic and symmetric matching. New problems
arise when we allow fuzzy constants in the system. On the one hand, we must
measure the degree of matching between fuzzy events, for instance, the linguistic
terms between_22_and_25 and young, both defined over a common reference set
years. On the other hand, as people between 22 and 25 years old are usually
considered to be young, but not all young people are between 22 and 25 years
old, the fuzzy pattern matching measure must be asymmetrical or “directional”
in the sense of estimating the certainty degree of a fuzzy event based on some
available fuzzy information, and thus, to compute the unification degree between
two fuzzy events in a logic programming system we must know the origin of each
fuzzy information in the knowledge base.

In PLFC, due to the disjunctive interpretation of fuzzy constants, the unifica-
tion (in the classical sense) between fuzzy constants is not allowed. For instance,

from
(=p(A)V¢,1) and (p(A4),1),
which, if A is not fuzzy, are interpreted respectively as
“Fzr e A, -p(z)]Vy” and “Jz € A, p(x)”,

we can infer ¢ whenever A is a precise constant. However, as variable weights
are interpreted as conjunctive information, a partial matching between fuzzy
events is allowed through variable weights and fuzzy constants. For instance,

from

1.2. Contributions 9

(=p(z) V¢ (2), A(z)) and (p(B),1),
which, if A and B are not fuzzy, are interpreted respectively as
“Yre A, -p(z) Vi(z)” and “Jz € B, p(z)”,

we infer ()(B),N(A | B)), where N(A | B) is a necessity measure of matching
between fuzzy events. Hence, in PLFC the unification mechanism consists of
determining the certainty of a variable weight based on the information of a
fuzzy constant.

PLFC provides a powerful framework for reasoning under disjunctive and
conjunctive vague knowledge but, due to variable weights, has some compu-
tational limitations. The current proof method for PLFC (resolution-style by
refutation) is not complete and does not allow us to define an efficient proof
algorithm. In order to stretch variable weights and compute higher degrees of
unification, the merging rule must be applied after every resolution step, and
the search space consists of all possible orderings of the literals in the knowl-
edge base. On the other hand, as the calculus for PLFC is defined by refutation
through a generalized resolution rule between positive and negative literals, to
prove a PLFC formula involving fuzzy constants, for instance, (p(4), 1), which
if A is not fuzzy is interpreted as “dx € A, p(z)”, we must add to the knowledge
base —[(p(A),1)] which is represented and interpreted in PLFC as

(—p(z), A(z)) and “Vze€ A, —p(x)”,

respectively. Hence, clauses with variable weights are strictly necessary in PLFC.
Due to these limitations, we have turned our attention to a possibilistic

language based on definite clauses with fuzzy constants.

The second contribution of this thesis is the formalization of a possibilistic
logic programming language with fuzzy constants based on the Horn-rule frag-
ment of Goédel infinitely-valued logic which, as in classical logic programming
systems, enables us to define an efficient proof algorithm based on a complete
calculus and oriented to goals. The definition of this language has been done in
three sequential phases. Next, we briefly describe the results achieved in each
phase.

First, we formalize a general fuzzy possibilistic logic based on Go6del

infinitely-valued logic (called PGL) by (i) defining a syntax; (i) providing a

10 Introduction

well behaved and featured possibilistic semantics on top of truth functions of
Godel logic; and (iii) defining a sound inference method by deduction based
on a Hilbert-style axiomatization of the logic and a generalized modus ponens

inference rule.

Second, we focus on the fuzzy possibilistic logic programming language that
results from considering the Horn-rule fragment of PGL, and we prove for this
restricted class of formulas that the modus ponens-style calculus is complete
for determining the maximum degree of possibilistic belief with which a fuzzy
propositional variable can be entailed from a set of formulas. In the particular
case that we do not allow recursive formulas in the language, the underlying
uncertainty logic of our logic programming language is syntactical equivalent
to the family of multiple-valued propositional logics the interpreter defined by
Escala-Imaz and Manya in (Escalada-Imaz and Many4, 1995; Manya, 1996) can
deal with. The interpreter is based on a backward proof algorithm for computing
the maximum degree of deduction of a fuzzy propositional variable from a set
of formulas whose worst-case time complexity is linear in the total number of

occurrences of propositional variables in the set of formulas.

Third, we extend the Horn-rule fragment of PGL with fuzzy constants. We
refer to this extension as PGLT. In PGLT, fuzzy constants are interpreted as
disjunctive imprecise knowledge. In doing so, we are led to extend the underlying
uncertainty logic at two levels. On the one hand, many-valued interpretations
interpret fuzzy constants as fuzzy sets, and thus, the already proposed notion of
context of PLFC is also needed. On the other hand, in order to allow a partial
matching between fuzzy constants, we extend the PGL modus ponens-style cal-
culus with a fuzzy unification mechanism based on a necessity-like measure and
five deduction rules. In this context, (i) we formalize the notion of non-recursive
and satisfiable PGL* program; (ii) we prove, for this restricted class of programs
satisfying a context constraint, that the modus-ponens style calculus extended
with the semantical unification mechanism is complete for determining the max-
imum degree of possibilistic belief with which a goal with fuzzy constants can
be entailed; and (iii) we define an efficient as possible proof algorithm for com-
puting the maximum degree of deduction of a fuzzy goal from a non-recursive

and satisfiable PGL™ program.

The proof algorithm for a PGL™ program clearly departs from classical

propositional interpreters and is performed in four sequential steps. A satis-

1.2. Contributions 11

fiability testing step of PGL™ clauses. A pre-processing step which, due to the
disjunctive interpretation of fuzzy constants, ensures that all (hidden) clauses of
a PGL™T program are considered. A translation step which translates a PGL*
program extended with all (hidden) clauses into a semantically equivalent set
of facts for determining the maximum degree of possibilistic belief with which a
fuzzy goal can be entailed, whenever the program satisfies a context constraint.
And finally, a deduction step, based on a necessity-like measure, which computes

the maximum degree of deduction of a fuzzy goal from the equivalent set of facts.

The pre-processing step is strictly necessary in order to ensure completeness
and it is conceptually equivalent to apply the merging rule in PLFC, and
thus, the set of (hidden) clauses of a PGL* program is hard to be computed.
However, after applying the pre-processing and the translation steps to the
clauses of a PGL* program, only if new rules are added to the knowledge
base this set of (hidden) clauses must be computed again. Hence, when
extending the knowledge base with facts only the equivalent set of facts must
be computed again, and the time complexity of the algorithm is linear in
the total number of occurrences of predicates symbols in the set of clauses.
Finally, the maximum degree of deduction of a fuzzy goal can be computed in
a constant time complexity from the equivalent set of facts —in the sense that
it is equivalent to compute the partial matching between two fuzzy constants.
And, for each goal with predicate symbol ¢, the computed degree of deduction
is the maximum degree of possibilistic entailment whenever the PGL* pro-
gram satisfies a context constraint for ¢, which is easily checked during the
translation step. Hence, for each goal the proof algorithm determines if the

computed degree of deduction is the maximum degree of possibilistic entailment.

The final contribution of this thesis is the extension of PGL' to the
first-order case. We refer to this extension as PGL*Y. In this context, (i)
we extend the syntax and the semantics of PGL™T to allow variables in the lan-
guage; (ii) we provide the language with a sound modus ponens-style calculus
by deduction through some unification rules, a fusion rule and weight weaken-
ing rule; (iii) we formalize the notions of most general directional fuzzy unifier
and unification degree of a pair of atomic formulas; (iv) we develop a direc-
tional fuzzy unification algorithm based on a distinction between general and

specific patterns; (v) we define a proof procedure oriented to program queries

12 Introduction

that applies the generalized modus ponens inference rule in a reverse way by
using a depth-first strategy; and (vi) we define a system for translating PGL1V
programs into machine code by extending the WAM with the directional fuzzy

unification algorithm and certainty weights.

1.3 Publications

Most of the results presented in this thesis have already been published as journal

articles or in conference proceedings:

(1) T. Alsinet, F. Manya, L. Jové and J. Morillo. A multiple-valued logic
programming system: Definition and implementation. In Actas de la VI Con-
ferencia de la Asociacion Espariola para la Inteligencia Artificial, CAEPIA-95,
pages 37-45, Alicante, Spain, 1995.

(2) T. Alsinet and F. Manyad. A declarative programming environment for
infinitely-valued logics. In Proceedings of the Sizth International Conference on
Information Processing and Management of Uncertainty in Knowledge-Based
Systems, IPMU-96, pages 1205-1210, Granada, Spain, 1996.

(3) T. Alsinet. Una primera aproximacién a la unificacién fuzzy via relaciones de
compatibilidad. In Actas del VII Congreso Espanol sobre Tecnologias y Ldgica
Fuzzy, ESTYLF-97, pages 159-164, Tarragona, Spain, 1997.

(4) T. Alsinet. Algorisme d’unificacié fuzzy direccional. Butlleti de I’Associacidé
Catalana d’Intel-ligéncia Artificial, 12, pages 109-117. Actes de les Jornades
d’Intel-ligencia Artificial: Noves Tendéncies, Lleida, Spain, 1997.

(5) T. Alsinet and L. Godo. Fuzzy unification degree. In Proceedings of
the Second International Workshop on Logic Programming and Soft Computing,
pages 23—-43, Manchester, UK, 1998.

(6) T. Alsinet, L. Godo and S. Sandri. On the semantics and automated deduc-
tion for PLFC, a logic of possibilistic uncertainty and fuzziness. In Proceedings
of the Fifteenth Conference on Uncertainty in Artificial Intelligence, UAI-99,
pages 3-12, Stockholm, Sweden, 1999.

1.4. Structure of the thesis 13

(7) T. Alsinet and L. Godo. A complete calculus for possibilistic logic program-
ming with fuzzy propositional variables. In Proceedings of the Sixteenth Confer-
ence on Uncertainty in Artificial Intelligence, UAI-2000, pages 1-10, Standford,
CA, 2000.

(8) T. Alsinet and L. Godo. A complete proof method for possibilistic logic
programming with semantical unification of fuzzy constants. In Actas del X
Congreso Espanol sobre Tecnologias y Logica Fuzzy, ESTYLF-2000, pages 279—
284, Sevilla, Spain, 2000.

(9) T. Alsinet and L. Godo. A proof procedure for possibilistic logic pro-
gramming with fuzzy constants. In Proceedings of the Sizth European Confer-
ence on Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
ECSQARU-2001, Toulouse, France, 2001. In press.

(10) T. Alsinet and L. Godo. Towards an automated deduction system for
first-order possibilistic logic programming with fuzzy constants. International

Journal of Intelligent Systems. To appear, 2001.

(11) T. Alsinet and L. Godo. Adding similarity to possibilistic logic with fuzzy
constants. In Proceedings of the Ninth International Fuzzy Systems Association
World Congress, IFSA-2001, Vancouver, Canada, 2001. In press.

1.4 Structure of the thesis

The thesis is organized in eight chapters, whose contents are summarized below.

Chapter 1. Introduction

In this chapter we first discuss and motivate the importance of defining and
implementing logic programming systems for reasoning under both of the
two complementary forms of indeterminacy: uncertainty and vagueness.

Then, we describe the objectives, main results and structure of the thesis.

Chapter 2. Related work on inference systems of fuzzy logic

In this chapter we provide an overview, from a formal and logic program-
ming point of view, of some inference systems of fuzzy logic, where the

term “fuzzy logic” mainly refers to truth-functional multiple-valued logics.

14 Introduction

Chapter 3. Background on necessity-valued possibilistic logic and its

extension with fuzzy constants and fuzzily restricted quantifiers

In this chapter we first present formal and logic programming aspects of a
fragment of possibilistic logic where formulas are valued by a lower bound
on their degree of necessity. Then, we give a detailed description of the
inference patterns proposed by Dubois, Prade and Sandri to handle fuzzy
constants and fuzzily restricted quantifiers in this fragment of possibilistic

logic. We refer to this extension as PLFC.

Chapter 4. On the semantics and automated deduction for PLFC

In this chapter we provide PLFC with a formal semantics and a sound
proof method by refutation using an extended version of the resolution
inference rule based on a necessity-like measure for computing the partial

matching between fuzzy events.

Chapter 5. A fuzzy possibilistic logic based on Goédel infinitely-valued

logic

In this chapter we first define a general fuzzy possibilistic logic based on
propositional Godel infinitely-valued logic. We refer to this logic as PGL.
Then, we provide the fuzzy possibilistic logic programming language that
results from considering the Horn-rule fragment of PGL with a complete
modus-ponens style calculus for determining the maximum degree of pos-
sibilistic belief with which a fuzzy propositional variable can be entailed

from a set of formulas.

Chapter 6. A complete calculus for PGL extended with fuzzy con-

stants

In this chapter we first extend the Horn-rule fragment of PGL with fuzzy
constants and a semantical unification mechanism which preserves com-
pleteness for a particular class of formulas. We refer to this extension
as PGLT. Then, we focus on automating the computation of the maxi-
mum degree of deduction of an atomic formula with fuzzy constants from

a knowledge base.

1.4. Structure of the thesis 15

Chapter 7. An automated deduction system for a first-order extension
of PGL™T

In this chapter we first extend the underlying uncertainty logic of PGL™ to
the first-order case. Then, we focus on logic programming aspects by defin-
ing a directional fuzzy unification algorithm and a backward first-order
proof procedure. Finally, we define a logic programming environment for

this first-order possibilistic language with fuzzy constants.

Chapter 8. Conclusions and future work

In this chapter we briefly summarize the main contributions of the thesis,
and point out some open problems and future research perspectives that

we plan to tackle in the near future.

Finally, the reader can find the references appearing in the text.

Chapter 2

Related work on inference

systems of fuzzy logic

2.1 Introduction

In this chapter we present some inference systems of fuzzy logic, where the term
“fuzzy logic” mainly refers to truth-functional multiple-valued logics.

The chapter is organized as follows. In Section 2.2 we develop some deductive
systems of fuzzy logic related with our framework. In Section 2.3 we focus
in the field of resolution systems of fuzzy logic being the base of many fuzzy
programming language proposals. In Section 2.4 we present some rule-based
systems of fuzzy logic. Finally, in Section 2.5 we present some logic programming

systems of fuzzy logic.

2.2 Deductive systems of fuzzy logic

In this section, following Héjek and Godo (1997) and Hajek (1998b), we de-
scribe logical properties of some truth-functional many-valued logics related
with our framework. The set of truth values is the unit interval [0,1] and
truth functions behave classically on extremal truth values 0 and 1, and satisfy
some natural monotonicities. Thus, the truth function of conjunction (disjunc-
tion) is non-decreasing in both arguments; the truth function of implication is

non-decreasing in the second argument but non-increasing in the first, i.e. the

17

18 Related work on inference systems of fuzzy logic

less true is the antecedent ¢ and the more is true the succedent 1 the more is
true the implication ¢ — 1; and negation is non-increasing. This leads to the

notion of a t-norm (cf. Schweizer and Sklar (1963)). A t-norm is an operation
*:[0,12 > [0,1]

which is commutative and associative, non-decreasing in both arguments, and

having 1 as unit element and 0 as zero element, i.e.

Txy=1y*T,
(xxy)xz=1ux*(yx*2),

z <z’ and y <y implies z xy < 2’ x 7/,
lxx ==,

Oxz=0.

Usually continuous t-norms are considered as good candidates for truth func-
tions of conjunctions. Each continuous t-norm % determines uniquely its corre-

sponding residuated implication = (not necessarily continuous) satisfying that
r=>y>ziff zxz <y,
for each z,y,z € [0,1]; and defined as
z=>y=max{z € [0,1] | zxz <y},

for each z,y € [0,1].

Three outstanding examples of fuzzy logic systems are:
Godel logic (Godel, 1932) with the conjunction
x *y = min(z,y)

and the corresponding residuated implication

1, ifz<y
T=y= i
y, otherwise.

Lukasiewicz logic (Lukasiewicz, 1970) with the conjunction
z*xy =maz(z+y—1,0)

and the corresponding residuated implication

N 1, ifx<y
xT=>y=
1—-z+y, otherwise.

2.2. Deductive systems of fuzzy logic 19

Product logic (Hajek et al., 1996) with the conjunction
xxy=ux-y (product of reals)

and the corresponding residuated implication

N 1, ifx<y
T=y=
y/z, otherwise.

In all these cases negation, denoted —, is defined as
-r =z = 0.

One can show that each continuous t-norm is composed in a certain way
from these three examples by an algebraic construct called ordinal sum (see
e.g. Klement et al. (2000)), and the min and max operations are definable from
x and =. Indeed, for each continuous t-norm * and its residuated implication

=, the following identities are true:

min(z,y) = z*(z =),

max(z,y) = min((z = y) = y,(y =) =).

Next, we present Hajek’s basic many-valued propositional logic (Hajek,
1998b) since it is the logic that captures what is common to all fuzzy logic
systems based on continuous t-norms. Then, we develop Gddel propositional
and predicate logic since it is the underlying fuzzy logic of one of the logic
programming systems defined in this thesis. Finally, we briefly describe some
logical properties of Lukasiewicz and Product logics. In all these logical systems
deduction is based on modus ponens in the setting of a Hilbert-style axiomati-
zation and provable formulas correspond to 1-tautologies, i.e. formulas that take
the truth value 1 under any interpretation. Logics of partial truth have been
studied, in a very general manner, by Pavelka (1979). The reader interested in
formal aspects of these logics is invited to consult (Hajek, 1995a; Novak, 1990;
Novak, 1995a). The theory of deductive systems of fuzzy logic is fully developed
in (Gottwald, 1999; Gottwald, 2001; Héjek, 1998b).

2.2.1 The basic many-valued logic

The language of basic fuzzy propositional logic (denoted hereafter BL) is built

in the usual way from a (countable) set of propositional variables, a (strong)

20 Related work on inference systems of fuzzy logic

conjunction &, an implication — and the truth constant 0. When fixing a con-
tinuous t-norm *, we fix a propositional calculus PC(x) (whose set of truth values
s [0,1]). This means that * is the truth function of the (strong) conjunction
&, and the residuated implication = of * becomes the truth function of the

implication —. Further connectives are defined as follows:

eAY s p&(p = ¢),
eV is ((p = 9) 2) A (Y = 9) = 9),
- is ¢ =0,
p=1 is (¢ >)& =).
An interpretation of propositional variables is a mapping I assigning to each
propositional variable p its truth value I(p) € [0,1]. This extends to each formula

via truth functions as follows:
1(0) = o,
I - v) = Ip) = 1),
I(p&y) = I(p) x ().

A formula ¢ is a 1-tautology of PC(x) if I(¢) = 1 for all interpretation I.

The following is an axiomatization of BL:

(A1) (p—2¢)— ((¢ = x) = (¢ = X))

(A2) (p&rp) —

(A3) (p&rp) — (¢&<p)

(Ad) (p&(P&X)) = ((p&)&X)

(A5a) (v = (¥ = x)) = ((p&y) = x)

(A5b) ((p&y) = x) = (¢ = (¥ = X))

(A6) ((p=9¥)=x) > (¥ 2 9) 2 x) = X)

(A7) 0=

The deduction rule of BL is modus ponens (from ¢ and ¢ — 1 derive ¥).
Given this, the notions of a proof and of a provable formula in BL are defined
as usual (relative to BL axioms).

All axioms of BL are 1-tautologies in each PC(x). If ¢ and ¢ — 1 are
1-tautologies of PC(x), then 1 is also a l-tautology of PC(x). Hence, each
formula provable in BL is a 1-tautology of each PC(x).

A theory over BL is a set of formulas. A proof in a theory T is a sequence

©1,...,p, of formulas of which each member is either an axiom of BL, or a

2.2. Deductive systems of fuzzy logic 21

member of T (special axiom), or follows from some preceding members of the
sequence using the deduction rule modus ponens. A formula ¢ is provable in a
theory T, written T F ¢, if ¢ is the last member of of a proof in T'.

The deduction theorem for BL reads as follows. Let T be a theory and let
©, 1 be formulas. T U {p} b ¢ iff there is an n such that T F ¢™ — 1 (where
P" is p& ... &y, n factors).

Now, following Hajek (1998b), we introduce some algebras corresponding to
BL similarly as Boolean algebras correspond to classical logic.

A residuated lattice is an algebra
(L7 I—|7 |_|7 *7 :>7 07 1)
with four binary operations and two constants such that

(i) (L,n,u,0,1) is a lattice with the largest element 1 and the least element
0 (with respect to the lattice ordering <);

(ii) (L,*,1) is a commutative semigroup with the unit element 1, i.e. * is

commutative, associative, and 1 x x = x for each x € L; and

(iii) * and = form an adjoint pair, i.e z < (z = y) iff x * 2z < y for each z, y,
z€ L.

A residuated lattice (L, M, U, *,=,0,1) is a BL-algebra iff the following iden-
tities hold for each z, y € L:

zNy=xx*(z=>y),
(z=>y)U(y=>2) =1

A residuated lattice (L,MM,U, x,=,0,1) is linearly ordered if its lattice order-
ing is linear, i.e. for each pair z, y € L it holds that x My = x or z My =y
(equivalent, z Ly = z or z Uy = y). A linearly ordered residuated lattice is a
BL-algebra iff the identity z My = x * (x = y) is true in it.

Let L= (L,N,U,*,=,0,1) be a BL-algebra. An L-interpretation of propo-
sitional variables is a mapping I assigning to each propositional variable p an
element I(p) of L. This extends in the obvious way to each formula using the

operations on L as truth functions, i.e
1(0)
I{p = v) = L) = 1(y),

I
o

22 Related work on inference systems of fuzzy logic

L&) = I(g) x1(¢),

e Ay) = I(p)NIY),

Levy) = Lp)uI(y),
I(-p) = I(p) =0

A formula ¢ is an L-tautology if I(p) = 1 for each L-interpretation I
The logic BL is sound with respect to L-tautologies: If ¢ is provable in BL,
then ¢ is an L-tautology for each BL-algebra L. More generally, if T is a theory
over BL and T proves ¢ then, for each BL-algebra L and each L-interpretation
I of propositional variables assigning the value 1 to each formula of T, I(p) = 1.
Finally, Héjek’s original completeness theorem for BL reads as follows (Hajek,

1998b). For each formula ¢ the following three things are equivalent:
(i) ¢ is provable in BL;
(ii) for each linearly ordered BL-algebra L, ¢ is an L-tautology; and
(iii) for each BL-algebra L, ¢ is an L-tautology.

This result has been improved to get standard completeness for BL, i.e. com-
pleteness of BL with respect to standard BL-algebras in [0, 1] — the real unit in-
terval structures defined by continuous t-norms % and their corresponding resid-
uated implications =. First results were obtained by Héjek (1998a), but it was
Cignoli et al. (2000) who finally proved that a formula ¢ is provable in BL iff
I(p) = 1 for each interpretation I over standard BL-algebras in [0, 1], i.e. iff ¢
is a 1-tautology for each continuous t-norm * and its corresponding residuated

implication =.

2.2.2 Godel logic

In 1932, Godel published an extremely short paper (Gddel, 1932) concerning
intuitionistic logic (a subsystem of classical logic with a different meaning of
connectives, e.g. ¢ V - is not provable). Gédel’s aim was to show that there is
no finitely valued logic for which axioms of intuitionistic logic would be complete.
For this purpose he created a semantics of (possibly infinite-valued) propositional

calculus which is now called Gédel logic (denoted hereafter G).

2.2. Deductive systems of fuzzy logic 23

Following Hajek (1998b), the language of G is built in the usual way from
a (countable) set of propositional variables, a conjunction A, an implication —
and the truth constant 0. Further connectives are defined as follows:
eV is (g = 9) 2) A (Y = 9) = 0),
- is ¢ =0,
p=¢is (¢ > Y)A[W = o).
The semantics of G is given by interpretations I of propositional variables
into the unit interval [0, 1] which are extended to arbitrary formulas by means

of the following rules:

I1(0) = 0,
I Atp) = min(I(p), I(1)),
_)L it I(e) <I(9)
Mo =v) = { I(v)), otherwise.

For the derived connectives, truth interpretations take these forms:

I(p V) = max(I(p),I(¥)),
C[1, i) =0
o) = {O, otherwise,
N)L if I(p) = 1(y)
e=v) = {min(I(cp),I(’gb)), otherwise.

The following is an axiomatization of G:

(Al) (p=29) 2> (¥ = x) = (= X))

(A2) (pAY) =

(A3) (pAY) = (W Ay)

(Ad) (pA(p—=9) = WA =)

(A5) (p= W —=x)=pAY) =X

(A6) (=) = x) = (¥ = 9) = x) = X)
(A7) 00—

(A8) p—=pAp

Actually, logic G is equivalent to the extension of intuitionistic logic with the
pre-linearity axiom (¢ — 9) V (¥ —). Furthermore, one can show that G is
equivalently axiomatized by BL plus ¢ — (p&p) — idempotence of &. It follows
easily that &1 is equivalent to ¢ A 1), so that & is redundant.

24 Related work on inference systems of fuzzy logic

The deduction rule of G is modus ponens. The notion of proof, denoted ¢,
is as usual (relative to G axioms). Deduction theorem is valid for G: TU{p} kg ¢
iff T kg (¢ = ¥). G is the only PC(x) having the deduction theorem, i.e. if
PC(x) satisfies the deduction theorem then * is minimum.

Algebras for G (called G-algebras) are BL-algebras satisfying the identity
T *x =z, i.e. with idempotent multiplication.

Completeness for G reads as follows: ¢ is provable in G iff I{(p) = 1 for each
interpretation I. Furthermore, G enjoys strong completeness. Namely, let T be
an arbitrary theory over G. An interpretation I is a model of T' iff I(y)) = 1 for
each ¢ € T. Then, T proves ¢ iff I(¢) = 1 for each interpretation I which is a
model of T'.

An interesting extension of Gdédel logic is the so-called Rational Gaédel logic
(denoted hereafter RGL), where for each rational r € [0, 1] a truth constant 7
is introduced into the language!. Interpretations I are then extended to RGL
formulas by requiring I(7) = r, for each rational r € [0,1]. Azioms of RGL are

those of G plus the following book-keeping axioms for truth constants:

(RGL1) 7 A5 = min(r,s)
(RGL2) 7F—>35=7=3s

where = is GOdel implication function.

For RGL one cannot expect a Pavelka-style completeness (i.e. provability
degree = truth degree), since this style of completeness strongly relies on the
continuity of the truth functions, and it is obvious that in RGL, the truth func-
tion of implication is not continuous. In (De Baets et al., 2001), the authors
proved the following finite strong completeness result by adapting an analogous
theorem proposed in (Esteva et al., 2000) for an extension of RGL: Let T be
a finite theory over RGL. Then, T proves ¢ iff I(p) = 1 for each interpretation
I which is a model of T. In particular, T proves 7 — ¢ iff I(¢) > r for each
interpretation I which is a model of T'.

One potential drawback of Gddel logic to be used for approximate reasoning
is that it lacks an involutive negation. In (Esteva et al., 2000), the authors
studied residuated logics arising from extending SBL logic (BL logic with Gddel
negation) with a new involutive negation connective ~. In this framework, they

define an axiomatization of Gdédel logic G extended with connectives ~ and A

'In the same spirit as what was originally done by Pavelka (1979) with the infinitely-valued
Lukasiewicz logic and later improved by Héjek (1998b).

2.2. Deductive systems of fuzzy logic 25

(called G..), where Agp is = ~ ¢. They show that G~ is complete with respect to
the so-called standard G..-algebra, the unit interval [0, 1] equipped with G&del’s
truth functions and with the involutive negation ~ z = 1 — z. Furthermore,
they also consider the extension of G.. with rational truth constants preserving
completeness results.

Next, we develop Godel predicate logic (denoted hereafter GV). Following
Hajek (1998b), the language of GY consists of

e object variables;

object constants;

e propositional variables;

predicates symbols each together with its arity;

connectives A, —;

truth constants 0, 1; and

quantifiers V, 3.

Other connectives (V, =, =) are defined as in propositional calculus.

Terms are object variables and object constants. Atomic formulas are either
of the form p(t,...,t,), where p is a predicate symbol of arity n and ty,...,t,
are terms, or just propositional variables. If ¢ and v are formulas and z is an
object variable, then ¢ A4, ¢ — 1, (Vz), (3z)p, 0 and 1 are formulas; each
formula results from atomic formulas by iterated use of this rule.

An interpretation has the form
M = (U,i,m),
where
e U is a non-empty domain (or sets of domains if we have sorts);

e ; maps each propositional variable into a truth value of the unit interval
[0,1] and each predicate symbol p of arity n into a n-ary relation on U
i(p) : U™ = [0,1]; and

e m maps each object constant into an element of U.

26 Related work on inference systems of fuzzy logic

An evaluation of object variables is a mapping v assigning to each object
variable z an element v(z) € U. The truth value of an atomic formula ¢ under
an interpretation M and an evaluation of variables v, denoted ||¢||m,v, is just
i(p) if ¢ is a propositional variable p, and if ¢ is of the form p(¢i,...,t,), then

it is computed as

Pt - -5 ta)llve = i(@) (1[Im0, - - -5 llEnllne,o),

where, for i = 1,...,n, ||t;||m,. is v(z) if ¢; is an object variable z, and it is m(c)
if ¢; is an object constant c.
The above truth value extends to the value ||¢||m,y, for each GV formula ¢,

in the usual manner with truth functions of Gédel logic:

MMy = 1,
0llm,, = O,
leAdlme = min((lellv,e, [[¥]m,0),
1 if [|ollm,o < ([¥]lM,0
llp = Yl = { [1¢]|v,0, 0t1|1|er|x|vise,
|(V2)pllm,e = inf{||¢|lm, | v'(y) = v(y) for each variable y, except z},
13z)pllm,e = sup{|l¢llm, | v'(y) = v(y) for each variable y, except z}.

The truth value of a GV formula ¢ in M is
llellm = inf{||¢|lm,» | v is an evaluation of variables}.

Logical axioms of GV are those of Godel propositional logic plus the logical

axioms on quantifiers:

(V1) (Vx)p(x) = ¢(t) (¢t substitutable for z in ¢(z))
(31) (t) = (Fx)p(x) (t substitutable for z in p(z))
(V2) (Vz)(x = ¢) = (x = (Vz)¢) (x not free in x)
(F2) (Vz)(p = x) = ((Fx)p = x) (z not free in x)
(V3) (Vz)(eVx) = (Vz)p V x) (z not free in x)

Deduction rules are modus ponens and generalization (from ¢ derive (Vz)yp).
Completeness for GV reads as follows: Let T be an arbitrary theory over GV.
An interpretation M is a model of T iff ||¢|lm = 1 for each ¢ € T. Then, T

proves ¢ iff ||¢||m = 1 for each interpretation M which is a model of 7.

2.2. Deductive systems of fuzzy logic 27

2.2.3 Lukasiewicz logic

The language of Lukasiewicz propositional logic (denoted hereafter L) is built in
the usual way from a (countable) set of propositional variables, an implication
— (r = y = min(1,1 -z +y)), and the truth constant 0. Negation and (strong)

conjunction are defined as follows:

—p is p—=0 (rz=z=>0=1-2),
& is ~(p =) (z*y =maz(z +y—1,0)).

Conjunction, disjunction and (strong) disjunction are defined as follows:

AP s p&(p—»¢) (¢My =min(z,y)),
eV is (¢ =) 2 ¢ (2Uy =max(z,y)),
VY is = (zUy = min(z +y, 1)).

The following are the original axioms of L. (Lukasiewicz, 1970):

k1) o= W9

£2) (p—=9) = (b= x) = (¢ = X))
L3) (0 =) = (p—=¢)

E4) (p =) =) = (@ —=¢) =)

Completeness of this set of axioms was conjectured by Lukasiewicz in the thirties,
but first proved by Rose and Rosser (1958).

Lukasiewicz propositional calculus can be understood as a schematic exten-
sion of BL by the schema

= .

Algebras for L (called MV-algebras) are BL-algebras in which the identity
z = ((x = 0) = 0) is valid, and L is complete with respect to the standard
MV-algebrain [0, 1], i.e. the algebra defined by [0, 1] being the continuous t-norm
* the Lukasiewicz t-norm (z *y = maz(z + y — 1,0)) and = its corresponding

residuated implication.

2.2.4 Product logic

The logic based on the product t-norm has been considerably less investigated
than the two preceding ones (see Alsina et al. (1983)). Product logic was
introduced by Héjek et al. (1996).

28 Related work on inference systems of fuzzy logic

The language of product propositional logic (denoted hereafter II) is built
in the usual way from a (countable) set of propositional variables, a (strong)
conjunction ®, an implication — and the truth constant 0.

The axioms of II are those of BL plus:

(1) x> {(pOx2vOXx) = (¢ =)
(12) pA-¢@—0

The axiom (I12) can be equivalently replaced by each of the following formulas:

—(p @) = -,
(p = —p) = e,
_‘(P V _‘_‘(P-

Product algebras (or II-algebras) are BL-algebras satisfying

2 < (z*xz=2>y*2) = (z=y)),

M-z =0.

Hajek et al. (1996) have proved completeness theorem with respect to
the class of IT-algebras. Moreover, standard completeness with respect to the
standard Il-algebra in [0,1] has also been proved, i.e. the algebra defined by
[0,1] being the continuous t-norm * the usual product and = its corresponding
residuated implication. Baaz et al. (1998) have showed that Lukasiewicz logic

has a faithful interpretation in product logic.

2.3 Resolution-based systems of fuzzy logic

In logical systems presented in the last section the notion of proof was based on
modus ponens in the setting of a Hilbert-like axiomatization. A very different
family of fuzzy logics uses the (max, min,1 — -) triple for modeling disjunction,
conjunction and negation, the set of truth values is the unit interval [0, 1], and
the notion of proof is related to some resolution rule, i.e. to compute the truth
value |9 V x|| from ||p V ¢|| and ||=¢ V x||- This trend, initiated by Lee (1972),
has blossomed in the framework of logic programming and preserves simple
clausal forms. Klement and Navara (1999) have compared these two fuzzy logic
traditions.

The first fuzzy resolution method was defined by Lee (1972). At the syntac-

tic level, formulas are classical first-order formulas but, at the semantic level,

2.3. Resolution-based systems of fuzzy logic 29

formulas have a truth velue which may be intermediary between 0 and 1. An
interpretation M is defined by an assignment of a truth value to each atomic
formula, from which truth values of compound formulas are computed in the

following way:

l=ellm = 1—llellm,
ll Allm
leV¥|m

min(||¢||n, [[1]lM),

max(||¢||lm, [|9¥|m)-

The notions of validity, consistency and inconsistency are generalized to fuzzy
logic: Let ¢ be a fuzzy formula. ¢ is valid iff ||¢||m > 0.5 for each interpre-
tation M, i.e the set of designated truth values is [0.5,1]. ¢ is inconsistent iff
[lellm < 0.5 for each interpretation M. And, ¢ entails another formula v, de-
noted ¢ = ¢, if ||¢||m > 0.5 for each interpretation M such that ||¢||m > 0.5.
Lee and Chang (1971) proved that a fuzzy formula is valid (inconsistent) iff
the formula is classically valid (respectively, inconsistent), i.e. considering the
involved predicates and propositions as crisp; and that ¢ |= 9 in fuzzy logic iff
¢ | ¢ in classical logic. The resolvent of two clauses C; and Cj is defined as
in classical first-order logic. Lee (1972) proved that provided that C; and Cs
are ground clauses, and if min(||Cy|], ||C2|]) = a > 0.5 and max(||Cy]|, ||C2]|) = b,
then a < [|R(C1,C2)|| < b for each resolvent R(Cy,Cs) of C; and C,. This
is generalized to resolvents of a set of ground clauses obtained by a number
of successive applications of the resolution principle. Hence, Lee’s resolution is
sound. This result also holds for intervals of truth values with a lower bound
greater than 0.5. Lee’s proof method does not deal with refutation, hence it is
not complete (since resolution is not complete for deduction).

Many subsequent works have been based on Lee’s definitions and results.
In (Shen et al., 1988; Mukaidono et al., 1989) Lee’s resolution principle was
generalized by introducing a fuzzy resolvent. Let C; and Cs be two clauses
of fuzzy logic and let R(Cy,Cs) be a classical resolvent of C; and C>. Let
l be the literal on the basis of which R(Cy,Cs) has been obtained. Then,
the fuzzy resolvent of Cy and Cy is R(C1,C2) V (I A —l) with the truth value
max([|R(C1, Co)||, ||(I A =D)||). It is proved that a fuzzy resolvent is always a
logical consequence of its parent clauses, which generalizes Lee’s result. One of
the drawbacks of this approach is the necessity to know a concrete interpretation

using which || - || can be computed. Also, the problem is that this approach —and

30 Related work on inference systems of fuzzy logic

the ones based on elaboration of these ideas, e.g. (Bénéjam, 1986; Liau and Lin,
1988; Orlowska and Wierzchon, 1985; Yager, 1985)— is based on the language of
classical logic, and thus, does not make possible to deal with intermediate truth

values at the syntactic level.

This is not the case of the operator fuzzy logic defined in (Liu and Xiao,
1985; Liu, 1989; Weigert et al., 1993), where formulas may be prefixed by a
valuation A which takes its value in a lattice and imbrication of valuations is
admitted as in modal languages. For instance, A\p, Aag and A(p A ar)) are well
formed formulas in this logic. Operator fuzzy logic is truth-functional not only
for the usual connectives V, A and — but also, for the imbrication of A’ operators.
Thus, [|Ap|| = Ao||¢]||, where o is a fuzzification operator which may have various
interpretations (the authors propose arithmetic mean). This enables to grade
inconsistency as follows. A formula ¢ of operator fuzzy logic is A-inconsistent
iff ||ollm < A for every crisp interpretation M. Hence, the greater A, the less
inconsistent the formula is. Moreover, if Ay, is the minimum value for which ¢
is A-inconsistent, the value 1 — Ay can be seen as a measure to which degree ¢
is inconsistent (maximal inconsistency corresponds to Amin = 0). A formula can
be transformed into an equivalent set of clauses of the form Ay ...A,l, where [
is a literal. A A-resolution is defined in the following way: The higher A, where
A acts as a threshold, the more contradictory (in terms of truth values) the
complementary literals must be to enable A-resolution (a too high threshold A
inhibits resolutions with insufficient contradictions). It is proved that a set of
clauses T is A-inconsistent iff we can get a A-empty clause by A-resolution from
T.

In the framework of the logical systems presented in Section 2.2, a resolution
rule for Lukasiewicz-based logics has been proposed in (Thiele and Lehmke, 1994;
Lehmke, 1995; Klawonn and Kruse, 1994; Klawonn, 1995).

Lehmke and Thiele defined a resolution system for so-called weighted bold
clauses. Clauses are of the form C' = [;V --- Vl,, where [; are literals in classical
way (they consider only propositional logic) and V is the Lukasiewicz (strong)
disjunction (i.e. [|C1 VCs|| = min(||Cy||+]|C2]|, 1)). They introduce the resolution

rule as follows:

T + C7 and p occurs in Cy
T F Cy and —p occurs in Cy
T+ (CiVC\p\-p ~

2.3. Resolution-based systems of fuzzy logic 31

where \ denotes the operation of omitting the corresponding literal. Then, they

get the following result:
IfTHC then T |= C, and if T has no 1-model then T' I O0.

Klawonn and Kruse turned to predicate fuzzy logic. They introduce special
implication clauses of the form (Vz; ...z,)(p = A) and (Vz; ...2z,)p, where A is
an atomic formula and ¢ contains only “and” and “or” kinds of connectives and
no quantifiers. Only a finite set of truth values is considered and implication
clauses do not allow existential quantifiers. They introduce the concept of a
fuzzy theory T, called here L-Prolog program, as a set of clauses over the set
of all implication clauses Fy. Then, the resolution mechanism is defined in the
following way: Let 71 and T be two L-Prolog programs. T5 is directly derivable

from T; if it is constructed in the following way:

1. If there is an implication clause (V1 ...z,)(¢ = A), then

Ti((Va1 - 20)p)&

and Ty (V1 ...2,)B) = T1((Vzy ... 2,)B), for B # A.

2. If there is an implication clause (Vzi...z,)A and terms t; ...t;,
i1,...,0r € {1,...,n}, without variables, then A’ is obtained by substi-
tuting t;, ...t;, for the variables x;, ...x;, and quantifying the remaining

id

ones and we put To(A") =Ty (V21 ... z,)A) V T1(A).

On the basis of these concepts, the authors prove a completeness theorem: Let
T be an L-Prolog program. T +% (Y ...z,)¢ iff T E (Vo ...7,)e, where F©,
(E%) means that ¢ is derivable (respectively, true) at least to the degree a.
Novak (1999) points out that there are two main problems related with
resolution-based systems of fuzzy logic. On the one hand, a satisfactory so-
lution of the resolution principle in fuzzy logic has been limited till now because
of the lack of the formulation of a generalization of the Herbrand theorem, which
is the basis of the resolution principle in the classical logic. A significant step
in this direction has been obtained by Novék and Perfilieva (2000) where the

fuzzy version of the Herbrand theorem has been proved. On the other hand,

32 Related work on inference systems of fuzzy logic

algorithmization of the refutation procedure in fuzzy logic is a difficult problem
because, in general, conjunction and disjunction operations are not distributive,
and thus, it is difficult to find a universal representation of formulas in fuzzy logic
in a normal conjunctive form style, as is the case of the classical logic. Novak
(1999) states that a solution of this problem can be expected from McNaughton
(1951) theorem in Lukasiewicz logic, which establishes that every formula can
be represented by a partially linear function on [0, 1]. An algorithmic proof of it
has been given by Mundici (1994) and Tonis and Perfilieva (2000).

A particular case of resolution of fuzzy logic is based on extending the modus
ponens inference rule to formulas with degrees of truth. The problem is to com-
pute the truth value ||9|| from ||¢|| and ||¢ = %||. In this framework, in (Valverde
and Trillas, 1985; Godo, 1990) a family of infinitely-valued logics was studied.
These logics are chiefly characterized by the following points: the interpretation
function of the conjunction connective has to fulfill the properties of t-norms,
the implication connective is defined by residuation with respect to the conjunc-
tion connective, and the interpretation function of the negation connective is the
unit complement function. They show that, in this case, the t-norm that gives
meaning to the conjunction connective is a modus ponens generating function
for the implication. Thus, let I be an interpretation (a mapping that assigns to
every propositional variable a truth value from the unit interval [0,1]) and let T

be a set of weighted formulas of the form

(Soman)
(1 A---Aon = Y, aR).

Then,
lnf{I(’lvb) | I ': T} = *(aR7a17 .. .,Oén),
where

IETIfI(pi A Apy =) >agand I(p;) > a; fori=1,...,n,
L1 A Apn) = x(I(p1), .- -, I(n)),
I(e = ¢) =1(p) = I(¥),

= being the residuated implication of a t-norm . Based on this result, a

complete calculus for deducing infinitely-valued propositional atomic formulas

2.3. Resolution-based systems of fuzzy logic 33

from a set of infinitely-valued Horn clauses was defined in (Escalada-Imaz and
Manya, 1995; Manya, 1996). They design an efficient proof procedure that
could act as a propositional interpreter for infinitely-valued propositional logic
programs. Some logic programming extensions as a negation as failure rule and
a cut operator are also considered. Notice that when using a modus ponens
inference rule in the frame of Horn clauses, we do not need any transformation
into normal forms.

A refutation proof method by resolution for a first-order language based
on Horn clauses with fuzzy predicates (called fuzzy Horn clauses) was defined
in (Mukaidono and Yasui, 1994; Yasui et al., 1995; Yasui and Mukaidono,
1996). They define the following resolution rule: If there exists a substitution
0 such that B0 = Bi4,...,B,0 = B0, then the resolvent of Bj,..., B, and
A < By,...B, is A0, and its truth value is calculated as

40| = [|A6 = B16,... Bnb|| * (| B16l| A ... A||B,0]),

where * is the composition operation of truth values of premises and A is a fuzzy
logic conjunction operator.

A proof method, based on a generalized modus ponens rule for a
truth-functional fuzzy logic with arbitrary/flexible t-operators has been devel-
oped in (Vojtas and Paulik, 1996; Vojtas, 1998; Vojtas, 2001a). The language
consists of propositional variables and several conjunctions, disjunctions and
implications which are interpreted as t-norms, t-conorms and residuated impli-
cations, respectively. Completeness is proved in the framework of a declarative
semantics based on fixpoint theory.

Concerning resolution-based theorem proving in finitely-valued propositional
logics, Baaz and Fermiiller (1995) suggested a two-level approach. The first
level consists of translating arbitrary formulas of a particular finitely-valued
propositional logic into clause form. Given the definition of a finitely-valued logic
by means of the truth tables of its connectives, it can be devised a logic-dependant
translation calculus that derives a clause from a formula of the source logic. This
translation can be done in such a way that the language of the clause forms
is independent from the particular language of the source logic except for the
number of truth values, i.e. clause forms are logic-independent. The second level
consists of the application of a logic-independent resolution calculus to the clause

forms obtained in the first level.

34 Related work on inference systems of fuzzy logic

These logic-independent clause forms are known as signed formulas in con-
Junctive normal form (signed CNF formulas). A signed CNF formula is a set
of signed clauses and a signed clause is a set of signed literals. A signed literal
is an expression of the form S:p, where S, called the sign of the literal, is a
subset of the truth value set and p is a propositional atom. An interpretation is
mapping that assigns to every propositional atom an element of the truth value
set. An interpretation satisfies a signed literal S:p iff it assigns to p a truth
value that appears in S. An interpretation satisfies a signed clause iff it satisfies
at least one of its literals. A signed CNF formula is satisfiable iff there exists an
interpretation that satisfies all its clauses; otherwise, it is unsatisfiable.

One significant subclass of signed CNF formulas is the class of reqular CNF
formulas. Roughly speaking, regular CNF formulas are those sighed CNF for-
mulas such that the signs of the literals are either of the form {j € N |j > i} or
of the form {j € N|j < i}, where N is the truth value set, < is a total order
on N and i,j € N. Another subclass is the class of monosigned CNF formu-
las. They are those signed CNF formulas whose signs are singletons instead of
arbitrary subsets of the truth value set.

Two remarkable contributions to the first level of Baaz and Fermiiller’s ap-

proach to resolution-based theorem proving are the following ones:

e The system MUltlog (Baaz et al., 1993; Baaz et al., 1996) which com-
putes an optimized logic-dependant translation calculus for deriving signed
CNF formulas from the definition of the operators and quantifiers of any
finitely-valued first-order logic. It produces a sequent calculus and a nat-

ural deduction system as well.

e Hihnle’s method for deriving a satisfiability equivalent signed CNF formula
from an arbitrary formula of any finitely-valued logic (H&hnle, 1994b). A
formula A is satisfiability equivalent to a formula B if it holds that A is
satisfiable iff B is satisfiable. This property is weaker than logical equiva-
lence. For proofs by refutation, satisfiability equivalence suffices. He has
described a structure-preserving method for generating short conjunctive
normal forms (i.e. short signed CNF formulas) whose length is linear in
the length of the input formula and polynomial in the cardinality of the
truth value set.

Concerning the second level, there exist several resolution calculus for signed

2.3. Resolution-based systems of fuzzy logic 35

CNF formulas and their subclasses. The first resolution calculus for signed CNF
formulas was defined by Murray and Rosenthal (1993) which consists of the
following signed parallel resolution, merging and simplification rules:
Si:pvCy -+ Snu:pVCnp
(S1N---NSp):pVCLV---VCy’

S1:pV Sa:pVv C
(S1USs):pvC’
0:pvC
—c
Subsequently, Hahnle (1994b) defined a sequential refutation complete reso-
lution calculus for signed CNF formulas which consists of the above simplification
rule and the following signed binary resolution rule:
Si:pV (Cy So:pV Cy
(S1NSs):pvCi VO’

Completeness is proved using a straightforward generalization of classical se-
mantic trees to the multiple-valued context. Hahnle (1996) points out that for
obtaining refutation completeness the merging rule is not necessary.

The fact of developing separately inference rules for regular clauses appears
to be very beneficial for obtaining efficient proof procedures for regular CNF
formulas. On the one hand, all regular literals have either positive or negative
polarity; on the other hand, any unsatisfiable set of regular literals has an unsat-
isfiable subset of cardinality two, contrary to what happens with signed literals.
These points enable to define refinements of signed resolution calculi which are
complete for regular CNF formulas and bear a close resemblance to classical res-
olution versions. In this frame, Hahnle (1994b) proved that the following regular

version of the resolution rule is refutation complete for regular CNF formulas:
5i]:p¥ 0 - [Bin]ipV Cn [S]ipV €
Civ---vCrVvC(C

As already noted, the merging rule is not necessary for obtaining completeness.

if max i > j.
1<k<m k J

Later, Hahnle (1996) defined the following complete regular version of negative
hyperresolution:

CyVv---vCy,VvC
provided m > 1, i; < j; for each 1 <1 < m, and C4,...,C,,,C contain only

negative literals.

36 Related work on inference systems of fuzzy logic

Manya (1996) proved that for obtaining completeness for regular Horn for-
mulas it is enough to resolve on regular positive unit clauses. Then, the following

rule is defined as a refutation complete calculus for regular Horn formulas:
>j|:p

[eiipve s
C

Beckert et al. (2000) showed that each signed CNF formula can be reduced
to a satisfiability equivalent regular formula which is only polynomially larger.

In (De Baets et al., 2001), the authors considered the sublanguage £z of
G~ (Godel logic with involution) built from the set of propositional variables
and only with the connectives A, V and ~. They introduce truth constants
by considering weighted formulas as pairs (p,a), where ¢ € Lz and « is a
rational from [0,1] understood as a lower bound for the truth value of ¢. In
this framework, they formalize a semantics and define a transformation # which
maps a set of weighted £ z-formulas T into a set T# consisting only of weighted
Lz-clauses and semantically equivalent to 7. Then, they show how weighted
Lz-clauses can be translated into regular clauses, and the regular version of the
resolution rule is used for defining a complete proof method by refutation for
weighted £z-formulas.

Baaz and Fermiiller (1995) studied monosigned resolution and proved that
only one inference rule is needed to determine the satisfiability of monosigned

CNF formulas. This rule is very close to classical binary resolution:

{vi}:pVv Cy {v2}:pV Oy
Ci1V Cy

if vy 75 V9 with V1,02 € N.

There exist some automated theorem provers for multiple-valued logics. The
most representative among them is s7AP (Beckert et al., 1996), developed at the
University of Karlsruhe. It is a generic tableau-based theorem prover for finitely-
valued first-order logics with sorts and equality; it was implemented in Prolog.
Surveys on deduction methods for many-valued logics that contain results of
signed and regular CNF formulas are (Hdhnle, 1994a; Hihnle and Escalada-
Imaz, 1997; Hahnle, 2001). The reader interested in an homogeneous exposition
and the main references of earlier approaches to multiple-valued resolution not
based on signed clauses is invited to consult Hahnle (1994a, Chapter 8). Among

the resolution systems examined there are those of Morgan (1976), Orlowska

2.4. Rule-based systems 37

(1978) and Di Zenzo (1988) for Post logics, that of Schmitt (1986) for a specific
three-valued logic for use within a natural language dialogue system, those of
Stachniak and O’Hearn (1990) for a wide class of multiple-valued logics and those
of da Costa et al. (1990) and Lu et al. (1991) for paraconsistent logics. The
theory of many-valued non-clausal resolution is fully developed in (Stachniak,
1996).

2.4 Rule-based systems

In this section we give a brief overview of the use of rule-based systems and
of the problems related with the interpretation of weights attached to logical
formulas or symbolic expressions.

In seventies, the so called rule-based or expert systems appeared which started
a new and very successful field of research in the theory of artificial intelligence.
The first was MYCIN developed by Shortliffe and Buchanan (1975). The general
idea of expert systems is to develop an intelligent computer program that uses
knowledge and inference procedures to solve problems that are difficult enough
to require significant human expertise for their resolution (Feingenbaum, 1987).
According to Dubois et al. (1991a) and Bouchon-Meunier et al. (1999), a
so-called “certainty” factor ranging on a numerical scale is attached to each
“f ...then” rule an to each fact in the knowledge base. Then, combination
and propagation operations enable the system to compute, in a compositional
way, (i) the certainty factor estimated to what extent a (compound) condition
is satisfied from the certainty factors attached to the satisfaction of elementary
conditions; (ii) the certainty factor attached to the conclusion of a rule from the
ones attached to the satisfaction of its condition part and to the rule itself; and
(iii) the certainty factor of a fact obtained by fusing partial conclusions, obtained
in different ways, but pertaining to the same matter.

Max and min operations were used in MYCIN (Buchanan and Shortliffe,
1984), as well as in PROSPECTOR (Duda et al., 1981), for the evaluation
of disjunctive and conjunctive conditions, respectively. Fuzzy set researchers
have tried to improve the MYCIN approach to rule-based inference systems by
allowing fuzzy conditions in rules, applying fuzzy connectives for the combination
and the propagation of the degrees attached to pieces of knowledge, and allowing

fuzzy degrees rather than taking for granted that precise degrees were always

38 Related work on inference systems of fuzzy logic

available.

When fuzzy conditions are allowed in rules and the available information in
the knowledge base is also fuzzy, a fuzzy pattern matching problem arises for
estimating to what extent the condition of rules is satisfied, and thus, the partial
matching between fuzzy events is a matter of degree as defined in (Yager, 1980).
The partial matching between fuzzy events can be approximated by degrees of
possibility and necessity as proposed by Cayrol et al. (1982) and Bel et al.
(1986), or by degrees of inclusion. Magrez and Smets (1989) proposed to use a
degree of inclusion based on Lukasiewicz implication. Cayrol et al. (1982) and
Prade (1982) proposed to extended necessity measures of matching, and Baldwin
and Pilsworth (1979) possibility measures, to independent multiple conditions
using minimum and maximum for conjunction and disjunction of conditions,
respectively. In (Dubois et al., 1988b; Sanchez, 1989; Yager, 1989), the authors
proposed to handle unequally important conditions using weighted operations,
applied to pattern-matching in information retrieval. Finally, Lesmo et al.
(1983) and Dubois (1989a) studied the case of several fuzzy productions rules
concluding on a same fact or decision. Another application of fuzzy rule-based
systems is similarity-based reasoning. In these systems, analyzed by Dubois and
Prade (1991c), the pattern matching problem comes down to compute a distance

between fuzzy events.

Combination and propagation issues have been investigated for rule-based
systems using fully compositional connectives operations. However, several
drawbacks and methodological problems may be encountered (see Dubois and
Prade (1989b) and Léa Sombé (1990, Chapter 2.1) for detailed discussions). The
certainty factors were originally understood as probabilities but treated exten-
sionally. Later on, it has been found that expert manipulation corresponds to
understanding certainty factors as beliefs. However, in both cases, extensional-
ity cannot be accepted. Another thing is a question whether fuzzy logic (logic
of truth) could be helpful for rule-based systems. The weights can be under-
stood as truth degrees and then, a logically-based procedure can be derived
as proposed in (Ivdnek, 1991; Novdk and Ivének, 1995b). In (Dubois et al.,
1991a; Bouchon-Meunier et al., 1999) several inference patterns are analyzed.
Some fuzzy logic-based inference engines defined in the mid-eighties are (Ad-
lassnig et al., 1986; Appelbaum and Ruspini, 1985; Bonissone et al., 1987;
Martin-Clouaire and Prade, 1985; Soula et al., 1986; Tong and Appelbaum,

2.5. Fuzzy logic programming 39

1988; Tong and Shapiro, 1985).

In order to cope with the vagueness and imprecision of certainty factors or
degrees of truth linguistically assessed by experts, several authors have attached
fuzzy sets numbers (in the unit interval) to logical formulas or symbolic expres-
sions, rather than just scalar values. For instance, Umano (1986,1989) uses the
extended min operation for combining fuzzy degrees of matching with fuzzy cer-
tainty factors attached to rules, while in the inference system MILORD (Sierra,
1989; Puyol, 1994) different operations can be considered for propagating the
linguistically expressed certainty values as defined in (Godo et al., 1987;
Godo et al., 1989).

Finally, in (Novék, 1999) a different problem related with rule-based systems
is analyzed: “In dealing with rule-based systems we meet the problem that
we have to deal both with the vagueness as well as the uncertainty”. And
the author states that no purely fuzzy logic as well as uncertainty/probability
logic-based inference engines in expert systems is correct. The problem consists
in the fact that a proper unifying theory is still not available. An attempt to
prepare a formal frame for a theory of the whole natural language semantics has
been proposed by Novak (1992). And, in (Hijek et al., 1995b; Hajek, 1998b;
Godo et al., 2000; Godo et al., 2001) a formal bridge between probability,
belief functions and fuzzy logic has been defined. The possibilistic system based
on Godel infinitely-valued logic defined in this thesis provides a formal frame to
deal with vagueness as well as possibilistic uncertainty and could act as inference

engine for expert systems.

2.5 Fuzzy logic programming

In this section, we briefly review some logic programming systems which have
been defined to deal with some kind of indeterminacy (vagueness or uncertainty)
in knowledge-based systems. Most of these systems are based on some of the
resolution mechanisms presented in Section 2.3. Some extensions of fuzzy logic
programming as linguistic truth values and fuzzy unification are also considered.
Surveys on fuzzy knowledge-based systems are (Dubois et al., 1991a; Escalada-
Imaz et al., 1996; Martin and Arcelli, 1998; Novdk, 1999; Wagner, 1998).

The first programming language for implementing fuzzy inferences, called
FUZZY, was designed and implemented by LeFaivre (1974b,1974a). However,

40 Related work on inference systems of fuzzy logic

the system is not based on a formal fuzzy logic. A version handling fuzzy truth
values, called L-FUZZY, was developed by Freksa (1981).

Lee’s results were implemented first by Ishizuka and Kanai (1985) in the fuzzy
Prolog-ELF system. As a consequence of Lee’s soundness result, only clauses
having a truth value greater than 0.5 are used for inference. When several proofs
exists for a same goal, the user may ask for all solutions or for the best one(s).
The search strategy is blind and close to Prolog’s. The user may specify a proof
threshold, under which all solutions are inhibited.

The FProlog interpreter (Baldwin et al., 1987b) was developed following
Baldwin’s work on fuzzy relations (Baldwin, 1981). It allows fuzzy relations
to be defined, with a membership value giving the degree of truth of tuples.
Standard fuzzy operators (such as min/max) are used to compute truth values
of formulas and to combine truth values arising from different proofs paths for
a same conclusion. Truth values are not allowed for rules as well as fuzzy at-
tribute values. The FProlog interpreter has been extended by Baldwin et al.
(1993,1995) in the Fril system. It is based on the theory of mass assignments,
which includes probability and fuzzy sets as special cases, and can deal with
uncertainty (i) in attributes by allowing fuzzy sets as data values; (ii) in facts
and rules by using support pairs which define probability intervals; and (iii) in
inference by calculating a support pair for any inferences made. Fril also in-
cludes a complete Prolog-like subsystem, allowing procedural code to be written
and executed in a depth-first mode. In (Baldwin and Martin, 1996), the authors
have defined an object-oriented programming extension of Fril.

The Fuzzy Sets Prolog system developed by Umano (1987) allows both lin-
guistic truth values and fuzzy constants with a discrete or continuous member-

ship function. For instance, the fuzzy statement
“it is more or less true that Mary is about 26 years old”

may be translated by the fuzzy-valued fuzzy formula
age(Mary,{0.6/25,1/26,0.7/27})[{0.7/0.8,1/0.9,0.8/1}].

The resolution process consists of 5 steps. First, the unification of terms involved
in complementary literals by means of the computation of the compatibility of
the fuzzy constants involved inside the terms (by means of a function f), and the

aggregation of the compatibility degrees for all terms of two matched literals (f1).

2.5. Fuzzy logic programming 41

Then, the computation of the weight associated with a fact (f2). Finally, the
combination of the weights of the premises of a rule (fs), and the combination of
the obtained result with the weight associated with the rule (fs). For instance,
from the clauses

p(a’)]on],

q(t', ¢)[ex],

p(a) Aq(b,c) = r(d)[B],

r(d) can be proved with the linguistic truth value

f4(ﬂ:f3(f2(a17f(a7 al))an(a27f1(f(b7 bl)af(ca cl)))))

By default f is the so-called compatibility measure in Zadeh’s sense (Zadeh,
1979) and the combination functions are the min operation extended to fuzzy
numbers. However, the author does not define a formal underlying semantics to
deal with fuzzy elements.

The Fuzzy Prolog system defined by Hinde (1986) enables linguistic truth
values to have another linguistic truth value in its scope. For instance,
(p(a)[az])[@1], which makes the underlying logic a bit similar to a modal logic
in which modalities would be linguistic truth values. However, Hinde (1986)
does not deal with such logical aspects and formulas with such imbricated truth
values are truth-functionally evaluated.

Schwartz (1989) defined two inference methods for reasoning with qualitative
linguistic information. One is based on a scalar distance & between linguistic
terms, i.e. given a rule py A --- A p, — ¢ and facts p’l,...,p'n, we compute
d; = 6(p1,p), fori € {1,...,n}, and d = d; + --- + d,,, then we infer ¢’ such
that d(q,q’) is the closest to d. Remark that a large distance between p; and pj
still gives a result held for certain, and thus, it may lead to rather misleading
results (contrarily to the generalized modus ponens where a weak matching result
leads to an uncertainty level). The second method is based on an association
of an ordered set of linguistic values to each proposition (for instance, {“very-
tall”, “tall”, “rather-tall”, “medium-tall”, “rather-not-tall”, ...}) and deduction
is then based on an inclusion relation between them.

Orci (1989) extended Lee’s resolution with a threshold, and formalized a
declarative semantics. However, he does not really specify what kind of knowl-
edge the system is able to treat. The truth value of a clause may be a function of

the logical variables involved in it, which enables an easy representation of fuzzy

42 Related work on inference systems of fuzzy logic

sets. Ray (1990) also used Lee’s approach together with the explicit handling of
vague predicates represented by fuzzy sets.

Mukaidono has worked on fuzzy logic programming for many years
(Shen et al., 1988; Mukaidono et al., 1989; Mukaidono and Yasui, 1994;
Yasui et al., 1995; Yasui and Mukaidono, 1996), his most recent contribu-
tion being the LbFP system (Yasui and Mukaidono, 1998) based on fuzzy logic
with Lukasiewicz implication and product as compositional operations. In LbFP
fuzzy attribute values are not allowed as fundamental objects, and thus, no
changes to the unification algorithm are therefore necessary. Facts and rules
are augmented with truth values which can be specified by means of linguistic
hedges. LbFP is formulated in terms of tree resolution rather than the more
usual linear resolution. A different approach was proposed in PROFIL (Kikuchi
and Mukaidono, 1988). Facts are weighted by an “interval truth value” contain-
ing their truth value, and rules are weighted according to Lukasiewicz implica-
tion. The combination of several refutations is done by taking the intersections
of the resulting interval truth values and it enables to compute an indetermi-
nation degree (if the interval truth values are not disjoint) or a contradiction
degree (if they are). Allowing imprecision on degrees of truth in PROFIL can
be viewed as an attempt to deal with the uncertainty (pervading the available
knowledge), and not only with the intermediary truth of vague statements with
respect to precise states of knowledge.

In (Ivének et al., 1988) the authors implemented a Prolog-like theorem
prover for a Lukasiewicz logic with conjunction (min), disjunction (max), the
classical involutive negation (1—.), strong conjunction (a& S = max(0,a+5—1))

and Lukasiewicz implication. Rules have the form
“context: ; if: 1); then: y; with weight: a”.

The contribution of a rule (y;¥; x; @) to the evaluation of the truth value of x is
truth-functionally computed, and the results given by different rules concluding
x are combined by a bounded sum operation.

Li and Liu (1990) defined a fuzzy Prolog, called f-Prolog, in a manner reminis-
cent of the FProlog system discussed above. Their extensions are (i) in allowing

weighted first-order Horn-rules of the form

q - [fe(oa]-]]qla"'aq"a

2.5. Fuzzy logic programming 43

where the deduction degree of the conclusion g is computed as the product of f
and the minimum of the deduction degrees of the goals ¢;, i € {1,...,n}; (ii) in
specifying a minimum threshold for a query to be satisfied; and (iii) in allowing
weights to be fuzzy numbers. Fuzzy constants are not allowed.

More recently, a finite-valued Lukasiewicz logic based Prolog was defined in
(Klawonn and Kruse, 1994; Klawonn, 1995). The interpreter, called LULOG,
has been implemented in LISP and is based on a restricted subset of first order
logic, mainly by avoiding negation. Neither fuzzy constants nor linguistic truth
values have been considered.

Based on the work of Escalada-Imaz and Manya (1994), in (Alsinet et al.,
1995; Alsinet and Manya, 1996) a first-order extension of this system was im-
plemented by adapting the Warren Abstract Machine to the infinitely-valued
context. One feature of the program clauses is that the attached truth value
can be an algebraic expression instead of a value from the interval [0,1]. This
characteristic allows to represent fuzzy sets as a set of clauses in such a way
that the attached algebraic expression corresponds to the membership function
of the fuzzy set. For instance, the trapezoidal fuzzy set? young = [10; 20; 30; 40]

is represented by the following rules:

((z) z < 10,0),

(() : — z2>=10Az < 20,0.1xz —1),
(Myoung(x) : — 2 >=20A2 < 30,1),

(() :— 2>=30A2<40,-0.1x2+4),
(() : — x>=40,0).

Then, the fuzzy predicate Young can be defined as follows:

(Young(x) : —Age(x, y) A /‘young (y): 1)

Virtanen (1994,1998) defined a declarative and procedural semantics of a
logic programming language with linguistic variables. The resolution is based
on a modus ponens rule extended with fuzzy equality relations for determining
the proximity between linguistic terms, i.e from the fact B’ and the rule B — A

we infer A’, where

par(z) = sup E(up(y), up (y)) = pa(z),

2We use the representation of a trapezoidal fuzzy set as [t1;t2;ts;ta] where the interval

[t1,t4] is the support and the interval [t2, %3] is the core.

44 Related work on inference systems of fuzzy logic

E being a fuzzy equality relation and = an implication relation. The author
defines a unification algorithm for determining the choice of a “fuzzy equal term”
for a variable that occurs more than once in a clause.

Rios-Filho and Sandri (1995) addressed the problem of unification involv-
ing fuzzy constants in systems where a separation between general and specific
patterns can be made. The patterns classified in the first context are part of
general information, like rules in expert systems, or ungrounded clauses in logic
programming languages. The ones classified in the second context come from
specific information about a problem, like facts in expert systems, or grounded
clauses in logic programming languages. In this framework, they propose to
use inclusion measures to compare fuzzy constants modeling different kinds of
knowledge, and resemblance measures, otherwise. They also propose to aggre-
gate distinct fuzzy constants matching a given variable.

Cao and Creasy (2000) extended annotated fuzzy logic programming with

fuzzy truth values. The authors propose the following inference rule:

Bi:LiA---ANBy: L,
By:LiN---ANB,:L,— H:Lg
H:Lj ’

where L; and L}, for i = {0,...,n}, are fuzzy truth values, and Ly is defined as
the least specific fuzzy truth value such that

A(Lo | Ig) < max A(L;| I}),
i=1,...,

n

A(L; | L) being a mismatching degree computed as
A(L; | Li) = 1 —inf ppr(u) = p (u),

where = is the Lukasiewicz implication. Fuzzy constants are not allowed in
atomic formulas.

As already pointed out in Section 2.4, a different approach for computing
the partial matching between terms in knowledge-based systems is based on
fuzzy similarity relations. In this framework, in (Arcelli et al., 1998) three
different kinds of unification in the fuzzy context were defined. The first one is
based on similarity relations, the second one identifies similar objects through an
equivalence relation and the last one uses “semantic constraints” for defining a

more flexible unification. The authors extend classical resolution for each kind of

2.5. Fuzzy logic programming 45

fuzzy unification. In particular, the resolution rule based on similarity relations,
which had been already used in the LIKELOG system (Formato, 1998), is the
following one:

GiN---NG;N---NGp, A:—BiA---ANBp,
OGLA - ANGi_1t ABi A ABp AGig1 A+ ANGp)’

where 6 is an extended unifier of G; and A and the unification degree is computed
by means of a fuzzy similarity relation over 6.

More recently, Gerla and Sessa (1999) formalized a methodology for trans-
forming an interpreter for SLD-resolution into an interpreter that computes on
abstract values which express similarity properties on the set of predicate and
function symbols of a classical first-order language. In (Formato et al., 2000;
Formato, 1998) the unification algorithm of Martelli and Montanari (1982) was
extended to allow a partial matching between crisp constants through similarity
relations.

Finally, Vinaf and Vojt4s (2000) studied the problem of valid reasoning from
data in situations when attributes are crisp but there is uncertainty concerning
the identity of objects possessing these attributes. The authors state that this
problem may become quite common in databases formed by joining heteroge-
neous sources and propose to use a similarity degree between object names.

In the framework of an extended possibilistic logic, Godo and Vila (1995) pro-
posed a necessity-weighted propositional temporal logic with a Horn-rule style
syntax and a possibilistic semantics. The authors define a sound inference mech-

anism composed of a sort of possibilistic modus ponens, i.e.

(Bnaan)
(BiA---AB, — A ag)

(A, min(ag,1,...,03))

?

where A and B;, for i = 1,...,n, are fuzzy temporal constraints; and two infer-
ence patterns allowing a partial matching between fuzzy temporal constraints.
These inference patterns provide a way to infer certain fuzzy constraints (facts)

from uncertainty ones, and viceversa, i.e.

(4,0)

DY >
@) if par > (@ = pa)

46 Related work on inference systems of fuzzy logic

and
(4,1)

(4, a)’

where o = inf,, pa(u) = par(u), = being the Lukasiewicz implication. Similar

inference patterns are used in this thesis for defining a complete calculus for
a possibilistic logic programming language with fuzzy constants based on the
Horn-rule fragment of Godel infinitely-valued logic.

More recently, a syntactic extension of the necessity-valued fragment of
first-order possibilistic logic dealing with fuzzy constants and fuzzily restricted
quantifiers (called PLFC) was proposed in (Dubois et al., 1996; Dubois et al.,
1998b). In PLFC the partial matching between two fuzzy events A and B is im-
plicitly computed by the resolution mechanism. In this framework, the authors
define the following inference pattern:

(—p(z) Vq(z), A(z)), (p(B) Vr, @)
(¢(B) Vr,min(a, N(A | B))) ’

where N(A | B) = inf,, max(1 — pp(u), na(u)) is a necessity-like measure of how
much certain is the fuzzy event A given the fuzzy information B. The inference
patterns proposed by Dubois et al. (1996,1998b) to handle fuzzy constants
and fuzzily restricted quantifiers in this fragment of possibilistic logic are fully
developed in Chapter 3. In this thesis we provide PLFC with both a formal
semantics and a sound refutation by resolution proof method.

Finally, Kullman and Sandri (1999) studied, from a syntactic point of view,
how PLFC logic, in the context of Horn clauses, can be handled in the annotated
logic framework, and Sandri and Godo (1999) showed how to build theories in
PLFC for temporal reasoning based on fuzzy temporal constraints by adapting
the approach used in (Godo and Vila, 1995).

Chapter 3

Background on
necessity-valued possibilistic
logic and its extension with
fuzzy constants and fuzzily

restricted quantifiers

3.1 Introduction

The necessity-valued fragment of possibilistic logic (Dubois et al., 1994c) is
a logic of uncertainty tailored for reasoning under incomplete evidence. At the
syntactic level it handles formulas of propositional or first-order logic to which
are attached numbers between 0 and 1, or, more generally, elements in a totally
ordered set. These weights are lower bounds on so-called degrees of necessity
of the corresponding formulas. The degree of necessity (or certainty) of a for-
mula expresses to what extent the available evidence entails the truth of this
formula. Degrees of necessity are closely related to fuzzy sets (Zadeh, 1965;
Zadeh, 1978), and necessity-valued possibilistic logic is especially adapted to

automated reasoning when the available information is pervaded with vague-

47

48 Background on PL and PLFC

ness. A vague piece of evidence can be viewed as defining an implicit ordering
on the possible worlds it prefers to, this ordering being encoded by means of a
possibility distribution. Hence, necessity-valued possibilistic logic is a tool for
reasoning under uncertainty based on the idea of (complete) ordering rather than
counting, contrary to probalistic logic. This idea has been extensively applied to
model non-monotonic reasoning with possibilistic logic (see e.g. (Dubois et al.,
1994c; Benferhat et al., 1997)). Recently, Dubois et al. (1996,1998b) have
proposed a syntactic extension of this logic, called PLFC, with fuzzy constants
and fuzzily restricted quantifiers. In this chapter we develop formal and logic
programming aspects of both the necessity-valued fragment of possibilistic logic
and its extension with fuzzy events.

The chapter is organized as follows. In Section 3.2 we present the language,
the semantics and the proof method by refutation of the necessity-valued frag-
ment of possibilistic logic. In Section 3.3 we establish the possibilistic interpre-
tation of fuzzy events in PLFC and the inference patterns proposed by Dubois,
Prade and Sandri for PLFC.

3.2 Necessity-valued possibilistic logic

A necessity-valued formula is a pair

(¢,),

where ¢ is a classical first-order, closed (without free variables) formula and
a € (0,1] is a lower bound on the belief on ¢ in terms of necessity measures. A
necessity-valued knowledge base is then defined as a finite set (i.e. a conjunction)
of necessity-valued formulas. A formula (p, @) is thus interpreted as a constraint
N(p) > a, where N is a necessity measure on logical formulas, a mapping from
the set of logical formulas to a totally ordered bounded scale, usually (but not

necessarily) given by [0, 1], characterized by the axioms:

@ N(T)=1
(i) N(L)=0
iii) N(pA9) =min(N(p), N(¢))

(iif)
(iv) N(p) = N(%), if p and 9 are classically equivalent

where T and L denote respectively tautology and contradiction.

3.2. Necessity-valued possibilistic logic 49

A possibility measure II is associated by duality with NV, namely

I(p) =1 - N(=(p),

where 1 — () is the order-reversing map of the scale. It states that the absence

of certainty in favor of =(¢) makes ¢ possible.

3.2.1 Semantics

We present here the usual (monotonic) semantics for the necessity-valued pos-
sibilistic logic (simply possibilistic logic from now on). For the sake of an easier
understanding, we first consider the propositional case, and then the first-order

case.

The propositional case

Let £ be a classical propositional language and let Z be the set of classical
propositional interpretations for L, that is, the set of interpretations I of the
propositional variables of £ into the Boolean truth value set {0,1}. Each in-
terpretation of propositional variables I extends to any classical propositional
formula in the usual way, and thus, I{(p) € {0,1} for each formula ¢. For each
formula ¢, we write I = ¢ iff I(p) = 1. We also write [¢] to denote the set of
models of ¢, i.e. [p] ={I € T |I|= ¢}.

Belief states are modeled by normalized possibility distributions m : T — [0,1]
on the set of possible interpretations Z. A possibility distribution 7 is normalized
when there is at least one I € Z such that 7(I) = 1. In other words, belief states
modeled by normalized distributions are consistent states, in the sense that at
least one interpretation (or state or possible world) has to be fully plausible.
These are our possibilistic models.

The satisfaction relation between possibilistic models (i.e. possibility distri-

butions) and possibilistic formulas is defined as follows:

T = (p,a) iff N([¢] | 7) > a,

where N(. | m) is the necessity measure induced by = on the power set of Z,
defined as

N(g] | 7) = jnf max(1 = w(D), K(p)) = inf 1= (0.

50 Background on PL and PLFC

If 7 | (p,a) we say that 7 is a model of (p,a). It is interesting to notice that

the set of models of (p,a) has a greatest element m(,, o) defined as
T(p,a)(I) = max(1 — o, I(¢)), for each T € Z.

Hence, there is an equivalent definition of possibilistic satisfaction:

7 = (p, @) iff 7(I) < max(1 — a,I(p)) for each I € 7.

As usual, if K denotes a necessity-valued knowledge base, we say that «
is a model of K iff w is a model of each necessity-valued formula in K. The

possibilistic entailment, denoted =pr,, is then defined as follows:

K Epr (p,a) iff 7 = (p, @) for each 7 being model of K.

The first-order case

When the language L is of first-order, things do not change very much. First-

order interpretations are structures of the form
M = (U7 1:7 m)7

where U is a non-empty domain (or sets of domains if we have sorts); ¢ maps each
predicate symbol of arity n to a subset of U™; and m maps each object constant
to an element of the domain U. Then, if ¢ is a closed first-order formula, we
continue writing M |= ¢ to denote that ¢ is true in the interpretation M. For
instance,

M E (¥ z)p(z,c) iff (u,m(c)) € i(p) for each u € U.

Now, possibilistic models are possibility distributions 7« on the set of first-
order interpretations M = {M = (U,i,m)} of £, and possibilistic semantics
(possibilistic satisfaction and entailment) are then just as for the propositional

case.

3.2.2 A formal system for necessity-valued possibilistic

logic

Possibilistic logic is axiomatized (Hilbert-style) by the axioms of classical first-

order logic weighted by 1, i.e.

3.2. Necessity-valued possibilistic logic 51

(A1) (= (@ —9),1)

(A2) ((p=> W —=x) = (= 9) = (¢ = X)), 1)

(A3) ((0p =) = (¢ = ¥) = ¢),1)

(A4) ((Vz)p(x) = @(t),1) (¢ substitutable for z in p(z))
(A5) ((Vz)(p = ¥) = (p = (Vx)),1) (z not free in)

together with the following graded versions of the usual modus ponens and gen-
eralization inference rules:

(@), (p = ¥, B)
(¢, min(e, 8))

(p,)
(Y z)p,)

together with the following weight weakening inference rule:

if z is not bound in ¢;

(p,a) .
(o,p) L=

We denote by Fpy the notion of proof in possibilistic logic derived from
this formal system of axioms and inference rules. In Dubois et al. (1994c),
the authors showed that the proposed formal system is sound and complete
with respect to the above possibilistic semantics, i.e. for any necessity-valued

knowledge base K we have

K IZPL (903 a) iff K pr (903 Oé)-

3.2.3 Automated deduction

Refutation by resolution is an automated deduction method which has been
nicely adapted to possibilistic logic.

In order to extend resolution to possibilistic logic, a clausal form is first
defined. A possibilistic clause is a pair (C,«a), where C is a first-order (or
propositional) clause and « is a valuation of (0,1]. A possibilistic clausal
form is a universally quantified conjunction of possibilistic clauses. Indeed,
let K = {(¢s,a;) | i = 1,...,n} be a necessity-valued knowledge base. The

possibilistic clausal form C of K can be obtained by the following method:

1. Put each formula ¢; into clausal form, i.e. ¢; = (V) A;(Ci;), where Cj; is

a universally quantified classical first-order clause.

2. C + (V) A\ ;j{(Cij,)}

52 Background on PL and PLFC

Once a clausal form is defined for a given necessity-valued knowledge base,
the resolution principle may easily be extended from classical first-order logic
to possibilistic logic. The following possibilistic resolution rule between two
possibilistic clauses (C1,a;) and (Cs, a2) has been established by Dubois and
Prade (1987b):

(C1, 1), (Cy,)
(R(C1,C3), min(a, az))’
where R(C1,C>) is any classical resolvent of C; and Cs. For instance,
(-pVg,a),(pVvrp)
(gVr,min(a,B))
Dubois, Lang and Prade have shown (Dubois et al., 1994c) that the pos-

(3.1)

sibilistic resolution rule is sound with respect to the possibilistic entailment of
possibilistic clauses: Let C be a set of possibilistic clauses, and let (C,a) be
a possibilistic clause obtained by a finite number of successive applications of
possibilistic resolution rule 3.1 to C. Then, C |Epr, (C, «). Moreover, they have
shown that refutation by resolution can be used for computing the maximal
necessity valuation @ with which a necessity-valued knowledge base K entails
a classical formula ¢, i.e. @ = sup{a € (0,1] | K =pr (p,a)}. Refutation by

resolution is extended to possibilistic logic as follows:

1. Put K into possibilistic clausal form C.
2. Put —¢ into clausal form; let C, ..., C,, be the obtained clauses.
3. '+« CU{(C1,1),...,(Cn,1)}.

4. Search for a deduction of (L, &) by applying possibilistic resolution rule 3.1

from C' repeatedly, with & maximal.

5. K EpL (¢,).

In other words, if we denote the above procedure of proof by refutation through

resolution by ;. , we have the following soundness and completeness result:
K ':PL (p,a) iff K Fpr, (p,@) iff K Fpp (p,@).

An implementation for finding out the refutation with a maximal first has been
proposed in (Dubois et al., 1987a). Finally, using the Fp, procedure, other
inference rules can be derived. For instance, the following fusion rule:

(¢,), (p, B)
(¢, maz(a, B))’

Possibilistic logic with fuzzy constants and fuzzily restricted quantifiers 53

and, when the unification mechanism employed in the resolution rule is the same

as in classical logic, the following particularization rule is also derivable:

(Y 2)p(x), @)
((t), @)

if ¢ substitutable for x in ¢(x).

3.3 Possibilistic logic with fuzzy constants and

fuzzily restricted quantifiers: PLFC

Dubois et al. (1996,1998b) defined a syntactic extension of necessity-valued
possibilistic logic, always using formulas in possibilistic clausal form, where, in
order to deal with fuzzy predicates and ill-known values, variable weights and
generalized fuzzy constants are allowed respectively. The underlying idea of the
authors was to propose an extension of possibilistic logic sticking to classical logic
proof procedures as much as possible, in particular to refutation by resolution,
as in standard possibilistic logic. However, there was no evaluation there about
whether such a proof by refutation method can be supported by a well-defined
semantics. As we have already pointed out in Section 1.2, in this thesis we
provide this extension with both a formal semantics and a sound refutation by
resolution proof method. In the rest of this thesis we refer to this extension as
PLFC.

3.3.1 Variable weights

One way to accommodate fuzzy predicates in the framework of possibilistic logic,
is to allow for fuzzy predicates in the language and to have extended resolution
rules for them (Dubois and Prade, 1990). A different way, used in PLFC, is to
keep classical predicates, but to allow for variable weights, as already suggested
in (Dubois et al., 1994a; Dubois et al., 1994b). Namely, the weight associ-
ated with a classical logic formula, which expresses its level of certainty and is
formally interpreted in terms of a necessity measure, may itself depend on vari-
ables involved in it. Letting the weight be a function of variables involved in the
formula makes the certainty of the formula depend on some proviso expressed
in terms of regular, or fuzzy, predicates whose characteristic functions appear

in the expression of the weight. This enables us to attach a fuzzily restricted

54 Background on PL and PLFC

universal quantifier to a classical formula. Thus, variable weights are employed

in PLFC to enable the modeling of statements such as
“the more z is A (or z belongs to A), the more certain is p(z)”,
where A is a fuzzy set with a membership function p4. This is formalized as,
“for all x, p(x) is true with a necessity degree of at least pa(z)”,

and represented as

(p(2), A(z)),
where it is assumed, as in standard possibilistic clauses, that all variables ap-
pearing in a clause are universally quantified. When A is imprecise but not

fuzzy, the interpretation of such a formula amounts to say that
“Yxe A, p(r)is true”.

So A acts as a (flexible if it is fuzzy) restriction on the universal quantifier. For

instance, the statement
“the younger the person, the more certain he/she is single”

can be represented by the variable certainty weighted possibilistic clause
(mage(z,y) V single(z), young(y)),

where here pa = pyoung-

The resolution principle was extended from possibilistic logic to variable cer-
tainty weighted possibilistic logic in the following way. The instantiation of
a variable certainty weight is determined by the instantiation of the involved

variables. For instance, from

(=p(z) v q(z), A(z)) and (p(a),)
we infer
(¢(a), min(A(a), o)),
where A(a) is computed as p4(a). Hence, the particularization of variables is

performed both on the logical-part and on the weight-part of a clause, as in the

following example:

(—age(z, z) V ~age(y,t) V friend(z,y), min(0.6, approz_equal(z,t)))
(age(Mary,20),0.9)
(age(Peter,21),0.7)

(friend(Mary, Peter), min(0.9,0.7, 0.6, approz_equal (20, 21)))

Possibilistic logic with fuzzy constants and fuzzily restricted quantifiers 55

When applying the above resolution mechanism to possibilistic clauses with
variables weights, involved variables may disappear in the logical-part of a clause,

but still appear in the weight-part. For instance, from

(=p(z) V q(y), R(z,y)) and (p(z), A(z)),

where R and A denote a (fuzzy) relation and a (fuzzy) set, respectively, we can

infer
(a(y), min(R(z,y), A(z))),

which, in possibilistic terms, is interpreted as “for all y and 2 € X, ¢(y) is
true with a necessity degree of at least min(ug(x,y), pa(x))”, where X denotes
the supposedly finite domain of variable z, and thus, for each z € X we get a
clause with a same logical-part. Hence, the fusion rule was proposed to eliminate

variables that only appear in the weight-part of a clause, and thus, from

(q(y), min(R(z, y), A(z)))
we infer
(a(y), maxmin(R(z,y), A(2))).
A more intuitive example is the following one. From
(—speaks(xz,y) V visited(x, Europe), min(0.7, Latin(y)))
and
(speaks(Mary,z),S_F_I(x)),
where Latin denotes the set composed of all Latin languages and
S_F_I = {Spanish, French, Italian}, we infer
(visited(M ary, Europe), min(0.7, Latin(z), S_F_1(z))),

which, in possibilistic terms, is interpreted as “for all language xz, we
are certain that Mary has visited Europe with a necessity of at least
min (0.7, Latin(z), S_F_I(x))”, and thus, for each language we get a clause with
a same logical-part. Now, applying the fusion rule we infer

(visited(Mary, Europe), max min(0.7, Latin(z), S_F_I(z))),

r€languages

which can be turned into

(visited(Mary, Europe),min(0.7, max min(Latin(z),S_F_I(z)))),

z€languages

56 Background on PL and PLFC

where maxzcianguages min(Latin(z), S_.F_I(x)) = 1, i.e. “we are certain that
Mary has visited Europe with a necessity of at least 0.7” provided that she

speaks a Latin language.

3.3.2 Fuzzy constants

In the above examples, constants are precise values as usual. Allowing for im-
precise or even fuzzy constants representing ill-known values clearly enlarges
the knowledge representation power of the possibilistic logic language. Fuzzy

constants are used to model typical fuzzy statements of the type
“in Brazil the mean temperature in December is about_25”,

represented in PLFC as
mean_temp(Brazil, December, about_25),

where mean_temp is a classical predicate and about_25 is a generalized constant.
In case about_25 denotes a crisp interval of temperatures, say [24, 26], the above

expression is interpreted as
“J z € [24,26] such that mean_temp(Brazil, December, x) is true”.

In case about_25 denotes a fuzzy interval of temperatures with a membership

function pepout_25, the above expression is interpreted in possibilistic terms as

“Jx € [about_25)3 such that mean_temp(Brazil, December, z) is certain with
a necessity of at least 1 — 87, for each g € [0, 1],

where [Uabout_25]3 denotes the S-cut of pepous_25- S0, a fuzzy constant can be
seen as (flexible if it is fuzzy) restriction on an existential quantifier.

More formally, in PLFC, an imprecise constant
B={b,...,bn}

expresses disjunctive information about the elements in B. Thus, the expres-
sion L(B), where L is either a positive or negative literal, is equivalent to the
disjunction

L(by) V-V L(by,)

and so, it is interpreted as

“3 b € B such that L(b)”.

Possibilistic logic with fuzzy constants and fuzzily restricted quantifiers 57

On the other hand, a fuzzy constant B with membership function pp can be
described by its 8-cuts, i.e. [us]g = {b | pp(b) > B} with 8 € [0,1]. Then, the
certainty that L([ug]s) holds is lower bounded by 1 — . Indeed, in possibility
theory the necessity measure that [ug|s is true, knowing the fuzzy information
B is such that

N(luBlp) = bgi[ﬂ,fg]ﬁ 1—pp(b) >1-4.

Hence, when B is a fuzzy constant, L(B) is equivalent to the set of possibilistic

clauses with imprecise constants

{(L([ksls), N([1sls)) | B € [0,1]}.

This set is finite iff the number of distinct possibility levels 8 which are necessary
for describing B is finite. Assume that these levels are ordered in the following
way
Bi1=1>pB2>-> B> Pry1 =0,

then

N([pBlg;) =1 — Biy1, fori=1,... k.
In particular,

N([usls) = N({b| ps(b) > 0}) =1,
which expresses that we are certain that the values restricted by B are in the
support of B. In case the number of distinct S-cuts is infinite (which requires
that the universe on which the fuzzy set B is defined is also infinite), and the
membership function pp is continuous, we have that N([ug]s) = 1 — . Finally,
since [1B,uB,)8 = [1B:1]s U[uB,)s, we have that L(By; U Bs) = L(B1) V L(B2) in
the crisp and in the fuzzy cases.

Special attention must therefore be given when reading a literal such as —p(B)

in a possibilistic clause. Indeed, if B is not fuzzy,
(p(B),1) and (-p(B),1)
have to be respectively interpreted as
“Yz € B, p(z)” and “Jz e B, -p(z)”.
Moreover, a formula such as
(=p(B) v r(C), 1),

where B and C' are not fuzzy, should be interpreted as

58 Background on PL and PLFC

“it is certain that [3z € B, —p(z)] or [Ty € C, r(y)]”,
or equivalently,
“it is certain that [V z € B, p(z)] = [Fy € C, r()]”
that is completely different of the interpretation
“it is certain that V z € B, [p(z) — [3y € C, r(v)]]”,
or equivalently,
“it is certain that Vz € B, [-p(z) or [Ty € C, r(v)]]”,

which is represented as (—p(z) V r(C), B(x)).
It is also important to note that the proposed framework does not completely
allow for a proper handling of conjunction inside the scope of an existential

quantifier (i.e. an imprecise constant). For instance, we cannot represent
“it is certain that 3z € B, [Vy € C, p(z,y)]”,

but only
“it is certain that Vy € C, [3z € B, p(z,y)]”

as (p(B,y),C(y)). Indeed, B does not play the role of a Skolem constant here.
Moreover, since “3 z € B, [p(z) and ¢(z)]” only entails (but is not equivalent
to) “[Az € B, p(z)] and [3 = € B, ¢(z)]”, the representation of the first formula
cannot be handled in PLFC since we can only express (p(B),1) and (g(B),1),

which is the exact counterpart of the second formula.

3.3.3 Inference with fuzzy constants and variable weights

In this section we develop the inference patterns proposed by Dubois, Prade and
Sandri for handling fuzzy constants and variable weights in the framework of
possiblistic logic.

First, we present the pattern of reasoning with a restricted, but non-fuzzy,

quantifier A and an imprecise constant B. Thus, from
Yze Aa Vya _'p(may) Vq(m,y)” and “Jze€ B; p(l’,C)”,

where y is a non-restricted variable and c is a precise constant, we can conclude
that

Possibilistic logic with fuzzy constants and fuzzily restricted quantifiers 59

“J 2 € B such that q(z,¢)” provided that B C A.

Hence, if A and B are imprecise, but non-fuzzy, objects, we get the following

possibilistic inference pattern:

(—p(z,y) V q(z,y), A(z))
(p(B,c),1)
(q(B, C), mianB NA(x)) ’

(3.2)

where mingep pa(z) = 1iff B C A, and is zero, otherwise.

Pattern 3.2 can be readily extended to the case of a fuzzily restricted quan-
tifier, where pa(z) is the membership function of a fuzzy set A. Indeed, if
B ={b,...,b,},

(p(B,¢),1)
is equivalent to

(p(blac) V- Vp(bnac)7 1)

Then, from

(—p(z,y) Vq(z,y), A(z)), applied to z = by,...,z = by,
and
(p(bla C) V- Vp(bna C)a 1)7

we can conclude that

(q(blac) VeV q(bn,c),min(MA(bl), s 5/J/A(bn)))5

which is precisely pattern 3.2 when A is fuzzy and B is non-fuzzy.

Now, we consider the pattern of reasoning with a restricted, but non-fuzzy,
quantifier A and a fuzzy constant B with membership function pp, having a
finite number k of 8-cuts, such that 3 =1 > 82 > - > B > Bry1 = 0. In

possibilistic terms, it reads

(ﬁp(a:,y) Vq(;l:,y),A(w))
(p([,U/B]B“C), 1- ﬂi+1): for i = 1: . ‘Jk

Thus, we can apply pattern 3.2, looking for 8; such that [ug]s, C A with 1— ;14

(3.3)

as large as possible (since we are interested in the most certain conclusion).

Hence, from 3.3, we can conclude

(¢(B,c), max min(l— i1, min pa(x))).
=1,k 2€lunls,

60 Background on PL and PLFC

It can be shown, in the infinite case with continuous membership functions (e.g.
Prade (1982)), that

supg min(1 — B, minge(y,1, pa(z)) = 1 —inf{B | [upls C A}
= inf,ga 1l — pp(z).

When B has a finite number k& of level cuts, we also have
max;—1,..., min(l — ,8i+1,minze[uB]ﬁi pa(z)) = minggal — pp(x).

Hence, from 3.3 we can conclude
(¢(B, c),minl — pp()).

The general case, where both A and B are fuzzy, can be handled in terms of

level cuts as well. Indeed, we have the possibilistic clauses
([V S [IU/A]OH _'p(ma y) \4 q(x7y)]7 a); for each a-cut of A7

and
([= € [uBlg:, p(z,c)],1 — Pit1), for each S-cut of B.

Then, we should maximize min(c, 1 — f;41) under the constraint [ugls, C [pala-
Prade (1982) proved that in the infinite case for continuous membership func-

tions

sup{min(a,1 = B) | [upls C [na]o} = infmax(pa(2),1 - pp()).

In the finite case, we still have

max{min(a, 1 = Bi11) | [usls, C [uala} = minmax(ua(e), 1 - ps ().

From this result, Dubois, Prade and Sandri established the following general
pattern for PLFC:
(=p(z,y) V q(z,y), A(z))
(p(B,¢),1)
(q(B,c),N(A|B)) ~

(3.4)

where
N(A|B) = inf max(pa(2),1 - pp(z))

is the necessity measure of the fuzzy event A based on the fuzzy information B.

Possibilistic logic with fuzzy constants and fuzzily restricted quantifiers 61

Several remarks are in order here. The first one is that, obviously, this
pattern generalizes the cases where only A or B are fuzzy. The second one is
that with this definition, in general, we can only ensure that % <NAA) <1
Furthermore, N(A | A) =1 iff A is not a fuzzy constant. And the third one is

that the equivalence
N(A | B) =1 iff the core of A D the support of B

is also a consequence.

When A is a fuzzy relation, pattern 3.4 was generalized as follows. Let
A= A; x---x A, be a fuzzy relation with membership function pa(z1,...,Zm).
Then, if z; is unified with a fuzzy constant B;, fori =1,...,m, N(A| B) in 3.4
is changed into

N(A|Bl><---XBm): . min N(Az|Bz)

i=1,...,m

Finally, pattern 3.4 produces conclusions which are all the stronger as A is

large and B is small. Indeed,
N(A|B)> N(A"| B) if pa > pa

and
N(A|B)> N(A|B') if up < ppr-

This points out that it is interesting to have possibilistic clauses with the greatest
possible weight. In order to get larger variable weights, the fusion inference rule

was extended in the following way:

(=p(z) V ¢, A(2))
(=p(z) V', B(x))
(-p(z) Vg Vr,[AUB](z))

Then, for instance, from
(=p(z) VqVr,[AUB|(z)) and (p(C),1)
using pattern 3.4 we can conclude
(qvr,N([AUB]| (),

and we may have that N([AUB] | C) > 0 while N(A | C) = N(B | C) =0.

Chapter 4

On the semantics and

automated deduction
for PLFC

4.1 Introduction

In Chapter 3 we first presented formal and logic programming aspects of the
necessity-valued fragment of possibilistic logic (Dubois et al., 1994c), a well-
known graded logic of uncertainty suitable to reason under incomplete informa-
tion, built upon classical first-order logic, and with a sound and complete proof
procedure by refutation through resolution. Then, we gave a detailed descrip-
tion of the syntactic extension, proposed by Dubois et al. (1996,1998b), of this
fragment of possibilistic logic with fuzzy constants and variable weights (called
PLFC).

Now in this chapter we tackle both the formalization of PLFC itself and
an automated deduction system for it by (i) providing a formal semantics; (ii)
defining a sound resolution-style calculus by refutation; and (iii) describing a
first-order proof procedure for PLFC clauses based on (ii) and on a novel notion
of most general substitution of two literals in a resolution step. In contrast to
standard possibilistic semantics, the truth value of a formula with fuzzy con-

stants is many-valued instead of Boolean, and consequently, an extended notion

63

64 On the semantics and automated deduction for PLFC

of possibilistic uncertainty is also needed.

The chapter is organized as follows. In Section 4.2 we provide possibilistic
logic extended with fuzzy constants with formal semantical grounds which leads
to a qualitative jump from Boolean to many-valued semantics of the underlying
representational language and, in turn, to an increasing of complexity of the
uncertainty model. In Section 4.3 we formalize the syntax and the semantics of
PLFC clauses. To this end, in the first part of this section we focus on PLFC
clauses with constants weights, and then, we take into account variable weights.
In Section 4.4 we define a sound proof method by refutation using an extended
version of the possibilistic resolution rule. Finally, based on them, in Section 4.5

we describe an automated deduction method for PLFC.

4.2 Extending standard possibilistic semantics

We are concerned in providing PLFC with a sound semantics, extending the
one provided in Section 3.2 for possibilistic logic. So, the matter is what has to
be modified in the possibilistic logic semantics to support the extension of the
logical constructs of PLFC, where predicates are allowed to talk about ill-known,
imprecise or fuzzy constants, and where a form of fuzzily restricted quantifiers
is also present.

For instance, consider the following predicate instance:
mean_temp(Brazil, december, about_25)

denoting an imprecision about what the actual mean value of the temperatures
is. Our intended interpretation is that about_25 is a fuzzy set of temperatures
describing temperatures around 25°C, in the range from —50°C to 50°C, and

with a particular membership function
Habout 25 * [—50, 50] — [0, 1].

In doing so, we are introducing two major changes in the standard semantics
of possibilistic logic: (i) the truth value of predicates and formulas are no longer
Boolean but many-valued, and thus, the set of truth values becomes the whole
unit interval [0, 1]; and (ii) the certainty evaluation of formulas in a possibilistic
model has to be extended in a suitable manner, that is, we have to define what

does N([¢] | 7) mean when ¢ contains fuzzy constants.

4.2, Extending standard possibilistic semantics 65

(i) From Boolean to many-valued. With respect to standard possibilistic
logic, the main difference of truth values is that now, for instance, in a particular
interpretation, the predicate instance mean_temp(Brazil,december, about_25)
can be true (1), false (0), but can also take some intermediate truth degree,
depending on how much the actual temperature in the interpretation fits with

the fuzzy set about_25. For instance, consider an interpretation
M = (U7 Z-7 m)7
where

e U =U; x Uy x Us, where U; is a set of countries, Us is the set of months
and Us is the crisp interval [—50, 50].

e i maps the predicate symbol mean_temp into a crisp relation

i(mean_temp) C Uy x Uy x Us. For instance,

i(mean_temp) = { (Brazil, january,30), ..., (Brazil,december,27),

(Spain, january,5), ..., (Spain, december, 10) }.

e m not only assigns elements of U to usual object constants, but also a
fuzzy set (i.e. a membership function) to each fuzzy constant, in this case
to about_25. For instance, m(about_25) = [20;25; 25; 30].

Then, it seems natural to take as truth degree of the predicate instance

mean_temp(Brazil, december, about_25), in the interpretation M, the value

||mean_temp(Brazil, december, about 25)||M = fm(about_25) (27)

= M[20;25;25;30] (27)
= 0.6.

(ii) Certainty-evaluation. According to (i), we assume from now on that
the truth value of PLFC formulas ¢ in each interpretation M is a value ||¢||m €
[0,1]. Therefore, each PLFC formula does not induce anymore a crisp set of

interpretations, but a fuzzy set of interpretations [¢], defining
pp)(M) = ||o|lm, for each interpretation M € M.

Hence, if we want to continue measuring the uncertainty induced on a PLFC

formula by a possibility distribution on a set of interpretations, we have to

66 On the semantics and automated deduction for PLFC

consider some extension for fuzzy sets (of interpretations) of the standard notion
of necessity measure.
The basic question is, given a belief state modeled by a possibility distribution

7, how to establish the possibilistic semantics of statements of the type
¢ is « — certain,

where ¢ represents vague, incomplete or imprecise knowledge about the real
world (i.e. a fuzzy set). Thus, we have to define a measure N(- | 7), extension
of the necessity measure introduced in Section 3.2 for classical sets, in such a
way that a possibility distribution 7 supports the statement iff N([¢] |) > a.
This question has already been tackled by Dubois and Prade (1991c) (see f.i.
Dubois et al. (1994c)) where they propose to use this index:

N*(l¢] | m) = inf «(M) = pie)(M),

where = is the reciprocal of Godel’s many-valued implication, defined as

N 1, ifx<y
€T =
Y 1 — 2, otherwise.

Several remarks are in order here. The first one is that it is indeed an
extension of the classical definition, in the sense that we recover it whenever ¢
model precise knowledge about the real world (i.e. a crisp set). The second one
is that with this definition, the condition

(M) < max(1 — a, py,)(M)) for each M € M,

©]

is again equivalent to
N¥([p] |) > a.

And the third one is that the equivalence
N*([¢] | m) =1 iff 7(M) < pp)(M) for each M € M

is also a nice consequence.

But, the bad news about this candidate semantics is that proof by refu-
tation using the resolution rule 3.4 (the general pattern for PLFC proposed
by Dubois et al. (1996,1998b)) is not sound, even though the resolution rule 3.4
itself can be proved to be sound.

Let us consider the following instances of predicate mean_temp:

4.2, Extending standard possibilistic semantics 67

A1: mean_temp(Brazil,december, ur,)
A2: mean_temp(Brazil, december, ur,)

where pr, and pr, are trapezoidal fuzzy sets of temperatures in the range from
—50°C to 50°C defined as

pr, = [20;24;26;30] and pr, = [20;25;25; 30].
It is easy to check that

inf t t)=0
s o o () = pm(t) = 0,

and thus, (mean_temp(Brazil,december, ut,),@) cannot be a logical conse-
quence of (mean_temp(Brazil,december, ur,),1) if & > 0. On the other hand,

by refutation, using the resolution rule 3.4, we get that

(mean_temp(Brazil,december, ur,),1)

(—=mean_temp(Brazil, december, x), ur,(x))
(J_, N(NTz | IU’TI)) ’

where the PLFC clause (—mean_temp(Brazil,december, z), pur,(x)) stands for

—(mean_temp(Brazil, december, ur,),1) and

N(ur, | pry) = P max(1 — pr, (), pry (t)) = 4/9 > 0.

However, there is an alternative notion of necessity of fuzzy events which is
commonly used in Possibility Theory as a measure of pattern matching (Dubois
and Prade, 1998a), and which corresponds with the necessity measure proposed
by Dubois et al. (1996,1998b) for computing the partial matching between
fuzzy events in PLFC (see Section 3.3.3). Thus, to define

N(l] | 7) = nf max(l = 7(MD),) (VD).

This definition obviously extends the standard notion of necessity degree when ¢
is crisp, and we have that N([¢] | 7) = 1 only when every plausible interpretation
M (i.e. 7(M) > 0) makes ¢ totally true (i.e. uj,)(M) = 1). Now, the condition
N([¢] | ™) > a becomes equivalent to the inequality

(M) < max(1 — a, ., (M)) for each M € M,

68 On the semantics and automated deduction for PLFC

where [p], denotes the a-cut of [¢], i.e. [pla = {M € M | pp](M) > a}. In
Section 4.4 we show that using this semantics a sound refutation by resolution
proof method for PLFC clauses can be defined. Moreover, there is a nice axiom-
atization for the above defined necessity measure for fuzzy sets. Namely, let
be a set and let N : [0,1]® — [0, 1] be a measure on the set of fuzzy sets of ().

Consider the following postulates:

N1 Q) =
N2 @ =0
N3 N(ANB)=min(N(A),N(B))
(N(Nijerd;) = inf;er N(A;))
N4 if A is crisp, then N(AU a) = max(a, N(A))

=

1

=

where panp(w) = min(pa(w), pp(w)) for each w € Q, and A U a denotes the
fuzzy set defined by the membership function paus(w) = max(a, pa(w)), for
each w € (.

Theorem 4.1 If N satisfies the above postulates, then there exists m: Q — [0, 1]
such that, for all fuzzy subset A of Q,
N(A) = ug) max(1l — 7(w), pa(w)).

Proof: Let A be an arbitrary fuzzy subset of Q. Define n(w) = 1 — N({w}).
Since A can be put as A = Nyeo{{w} U pa(w)}, by N3, we have N(A4) =
infyeq N({w} U pa(w)), but, by N4, N({w} U pa(w)) = max(pa(w), N({w}).
Hence, N(A) = inf,,cq max(pua(w), N({w}), that is, N(A4) = inf,cqmax(1l —
m(w), pa(w)). L

4.3 Formalizing PLFC

According with Section 3.3, in general, PLFC clauses are pairs of the form

(v (2), f(@)),

where Z (respectively §) denotes a set of variables z; (respectively y;), for in-
stance, (p(4,z) V q(y), min(e, u(y), uc(y))). The left-hand side of the pair
»(Z) is a disjunction of literals with classical predicates, free variables Z and

possibly with fuzzy constants. The right-hand side f(7), § D Z, consists of a

4.3. Formalizing PLFC 69

valuation function, defined for a superset of the free variables in the left-hand
side, denoting a (variable) lower bound for the necessity value of the formula of
the left-hand side.

In the next section we describe the language and the many-valued semantics
of logical formulas appearing in the left-hand side of PLFC clauses. We refer to
them as base formulas, and their language, base language, denoted hereafter as
PLFC*. This is needed in the rest of the section where we define a possibilistic

semantics of PLFC clauses.

4.3.1 The base language of PLFC: Syntax and many-

valued semantics

The basic components of the language PLFC* are:

e Sorts of variables and object constants. We distinguish a basic sort o from

its corresponding (fuzzy) extended sort fo. A type is a tuple of sorts.

o A set X of object variables and a set C of object constants, each having its
sort. We distinguish a precise object constant ¢ of a basic sort ¢ from an
imprecise and a fuzzy constant A of an extended sort fo. Furthermore, if
FC is the set of fuzzy constants, then there is a set FCytg of imprecise
constants corresponding to the a-cuts of the fuzzy constants of FC, i.e. if
A € FC, then [A], € FCiytg, foreach 0 < a < 1.

e A set Pred of regular predicates, each one having a type.

e Connectives — and V.

Definition 4.1 (term) A term is either an object variable from X or an object

constant from C (precise, fuzzy or imprecise constant).

Definition 4.2 (atomic formula) An atomic formula is of the form
p(z1, ..., x,), where p is a predicate symbol from Pred and ti,...,t, are terms

such that the sorts of t1,...,t, correspond to the type of p.

Definition 4.3 (literal) A literal is of the form p(x1,...,z,) (positive) or

—p(x1, .., Tn) (negative).

70 On the semantics and automated deduction for PLFC

Definition 4.4 (PLFC* formula) A PLFC* formula is a disjunction of lit-
erals, either positive or negative, such that all variables are free and implicitly

universally quantified.

Next we define the semantics of PLFC* formulas, which, due to the presence

of fuzzy constants, is many-valued, instead of Boolean (two-valued).

Definition 4.5 (many-valued interpretation) A many-valued interpreta-

tion M = (U,i,m) maps:

1. each basic sort o into a non-empty domain U, and each extended sort fo
into the set F(U,) of fuzzy sets of U, ;

2. o predicate p of type (01,---,0k, fOk+1,---, fon) into a crisp relation
i(p) CUy X ---x U, ; and

3. a precise object constant ¢ of sort o into a value m(c) € Uy, a fuzzy object
constant A of sort fo into a (normalized) fuzzy set m(A) € F(U,), and
an imprecise object constant [A], corresponding to the a-cut of a fuzzy
constant A into the a-cut of m(A). We denote by piy,(.) the membership
function of m(-). The value m(c) € U, is also represented by a fuzzy set

given by

1, if u=m(c)

mic u) =
Hm () (w) { 0, for each u € U, such that u # m(c).

Remark that a PLFC many-valued interpretation M = (U,i,m) is a
conjunctive interpretation in the sense that if p is a predicate of type
(01y+-+50ky fORt1,-- -, fon), then for each value u € U,, there can exist multiple
values (ua,...,un) € Uy, X -+- x Uy, such that (u,us,...,u,) € i(p).
Conjunctive interpretations are needed in PLFC to model the semantics of
conjunctive information expressed by both variable weights and negative literals
with fuzzy constants. For instance, to define a formal semantics for the following

statements:
“Mary speaks Spanish, French and Italian”
and

“If Mary speaks Spanish, French and Italian, Mary has visited Europe”,

4.3. Formalizing PLFC 71

which are respectively represented in PLFC as:
(speaks(Mary,z),{Spanish, French, Italian}(z))
and
(—speaks(Mary, {Spanish, French, Italian}) V visited(M ary, Europe), 1),

we need that interpretations (or possible states of the real world) enable Mary
to speak more than one language; otherwise, for instance, the conjunctive infor-

mation
“Mary speaks Spanish, French and Italian”

would be false in each possible state of the world. Moreover, since in PLFC a
variable weight is interpreted as a fuzzily restricted universal quantifier, variables
of PLFC* formulas have to be mapped (or evaluated) into atomic values of the

domain U.

Definition 4.6 (evaluation of variables) An evaluation of object variables is
a mapping v assigning to each object variable x € X, of sort o or fo, an element
v(z) € U,.

As above, we denote by fi,(,) the membership function of v(z), where v(z) is

always an element of U,, i.e.

1, if u=ov(z)

V(T u) =
fro(a) () { 0, for each u € U, such that u # v(z).

Definition 4.7 (truth value of a PLFC* formula) We define the truth value
of a PLFC* formula under an interpretation M = (U,i,m) and an evaluation

of variables v by cases:

1. For positive literals:

||p(“'J$7"'JCJ“‘)||MaU =

sup min("'7uv(w)(u)7'-'7/1’m(c)(v)7"')'
(- stty-.yv,..) Ei(p)

2. For negative literals:

I=p(- sz)l =

sup min(' - Moy(z) (’LL), <oy Mm(c) (’U), .-)
(cosyeny,..) i)

72 On the semantics and automated deduction for PLFC

3. For disjunctions of literals:
ILy V-V Ly|lmpe = max(||Lalv,s - - -5 1 LrllM,0),
where Ly, ..., L. are (positive or negative) literals.

Finally, the truth value of a PLFC* formula ¢ under an interpretation M is
defined as

llellm = inf{||¢llm,» | v is an evaluation of variables}.

It is clear that ||¢||m may take any intermediate value between 0 and 1 as soon
as ¢ contains some fuzzy constant. Moreover, notice that the negation in this

semantics is not truth-functional.

Example 4.1 Let price(-,-) be a binary predicate of type
(product_name, fproduct_price), let trousers, coat and shoes be three
object constants of type product name, and let about_85 be an object constant
of type fproduct_price. Further, let M = (U,4,m) be an interpretation such
that:

1. U = { Uproduct_name = {trousers, coat, shoes},
Uproduct_price = [0, 200](euros) };

2. i(price) = { (trousers,80),
(trousers, 83),
(coat, 150),
(shoes, 75) };

3. m(trousers) = trousers,
m(coat) = coat,

z) = z, for each real z € [0,200], and

m(about_85) = [80; 85; 85; 90].

3

(
(
m(shoes) = shoes,
(
(

Consider the atomic formula price(trousers, z) and the following two evalu-

ations of variable z:
v1(z) =80 and wvo(x) = 85.

Then, we have the following truth value of the formula price(trousers,z) in M

under the corresponding variable evaluations:

4.3. Formalizing PLFC 73

o ||price(trousers,)||m,v,

= SUP(y,w)ci(price) MR (Bm(trousers) (W), Bos () (W))
= max(min(Lm(trousers) (trousers), pusoy (80)),
MiN (L (trousers) (trousers), pisoy (83)),
Min (K (trousers) (coat), pigoy (150)),
MiN (U (trousers) (Shoes), pigoy (75)))
= max(min(1,1), min(1,0), min(0, 0), min(0, 0))
= 1.

o |[price(trousers, z)||m,vs

= max(min(1,0), min(1,0), min(0, 0), min(0, 0))

Now consider the ground atomic formula price(trousers,about_85). In this
case, we do not have any free variable and the truth value in M of the corre-

sponding positive and negative literals are the following ones:

o ||price(trousers, about_85)||m

= SUP(y,w)ci(price) TN (Um (trousers) (U); fm(about_s5) (W))
= max(min(fim (trousers) ((rousers), tm(about_ss)(80)),

i (L (trousers) ((rOUSETS), Wm(about_s85)(83)))
= max(min(1, pgo;85;85;90] (80)), min(1, p1[g0;85;85;90] (83)))
= max(min(1,0), min(1,0.6))
= 0.6.

o ||-price(trousers,about_85)||m

= SUDP(y,w)gi(price) PN (Hm(trousers) (U); m(about_s5) (W)

= SUP,¢(80,83} TN (K (trousers) ((rousers), fim (about_ss) (2))
miﬂ(la H[80;85;85;90] (85))

= min(1,1)

= 1.

and thus, |—price(trousers,about85)||nm cannot be computed just from
||[price(trousers, about_85)||m (i-e. negation in PLFC is not truth-functional).
O

74 On the semantics and automated deduction for PLFC

4.3.2 Possibilistic semantics for PLFC

A PLFC clause is a pair of the form

(0 (2), £(9)),

where T and y denote sets of free and implicitly universally quantified variables
such that § D , (%) is a PLFC* formula, and f(7) is a valid valuation function
which expresses the certainty of ¢(Z) in terms of necessity measures. Basically,
valuation functions f() are either constant values in the real interval [0,1],
or membership functions of fuzzy sets, or max-min combinations of them, or
necessity measures on them. We refer to them as wvalid valuation functions.

In this section we define a possibilistic semantics of PLFC clauses, first with

constant weights, and later with variable weights.

Semantics for PLFC clauses with constant weights

Let us consider PLFC clauses of the form (¢, «), where « is a constant weight,
ie. @ € [0,1]. Assume that ¢ contains fuzzy constants, for instance take ¢
to be p(A), where A is a fuzzy constant. Now according to Section 4.3.1, the
truth value of the literal p(A) under an interpretation M = (U,4,m) depends
not only on the crisp relation i(p) assigned to p, but on the fuzzy set m(A).
In order to measure the certainty of p(A) in a possibilistic model, we need to
assume that A has a fixed interpretation, in terms of its membership function,
otherwise we would not be able to compute its necessity degree. Therefore, when
defining the possibilistic models as possibility distributions over interpretations,
we cannot take into account all possible interpretations, but only those which
share a common and particular interpretation of the fuzzy constants, and hence

they also have to share the domain. This leads us to define the notion of context.

Definition 4.8 (context) Let U be a collection of non-empty domains and let
m be an interpretation of object constants over U (or over [0,1]V in the case
of fuzzy constants). We further assume that U and m are such that m inter-
prets each precise constant into o different element of the domain U, and each
fuzzy constant into a fuzzy set with a normalized and left continuous member-
ship function over U. We define the context determined by U and m, denoted

Muym, as the set of many-valued interpretations having U as domain and m as

4.3. Formalizing PLFC 75

interpretation of object constants. Thus,
Mym ={M e M|M = (U,i,m)},
where M is the set of all many-valued interpretations.

Let us briefly discuss the reason for defining the notion of context by means

of an example.

Example 4.2 Let age(-,-) be a binary predicate of type
(person name, fyears old), let Mary be an object constant of type
personname, and let around-19 be an object constant of type fyears_old.
Further, let My = (U, 4,mg¢) and M; = (U,i,m;) be two interpretations such
that

1. U = { Uperson_name = {Mary},
Uyears_old = [0, 120](years) };

2. i(age) = {(Mary,20)};

3. mo(Mary) = mi(Mary) = Mary,

mo(around-19) = [17; 18; 20; 21], and
my (around-19) = [18;19; 19; 20].

Although Mary’s age is the same value in both interpretations, we have a differ-
ent truth value in each interpretation depending on the membership function of

the fuzzy set assigned to the fuzzy constant around_19. Thus,
||ag€(M0ﬂ°y, around-lQ)HMo = H[17;18;20;21] (20) =1
and
llage(Mary, around-19)|lm, = H[18;19;19;20] (20) = 0.

Then, for instance, the possibility distributions 7 on the set of all many-valued
interpretations M that satisfy the PLFC clause

(age(Mary,around-19),1),

i.e. that satisfy the constraint N ([age(Mary,around-19)] | 7) > 1, are those

such that 7(Mg) < 1 and w(M;) = 0, and thus, Mg can be fully plausible while

M, is inadmissible, however, Mary is twenty years old in both interpretations.
O

76 On the semantics and automated deduction for PLFC

Therefore, when fixing a particular context we are ensuring that belief states
modeled by normalized possibility distributions on a set of possible interpre-
tations (or possible states) are consistent, in the sense that possible states are
sharing a common view of the real world.

Now we are ready to introduce the notion of possibilistic model and possi-

bilistic satisfiability of a PLFC clause in a context My, .

Definition 4.9 (possibilistic model) Given a context My, a possibilistic
model is a normalized possibility distribution © : My, — [0,1] on the set of

many-valued interpretations My, p,.

Definition 4.10 (necessity evaluation) Let 7 : My, — [0,1] be a possi-
bilistic model on a context My, . The necessity evaluation of a PLFC* formula

p given by w is defined as:

N(lg] | m) = inf . max(1 — (M), [||m)-

MeMy

Definition 4.11 (possibilistic satisfiability) Given a context My, m, o pos-
sibilistic model w : My, — [0,1] satisfies a PLFC clause with a constant weight
(¢, @), written © =p7we (@), iff N([¢] | 7) > a. Thus,

T Eprrc (¢,0) iff 1(M) < max(l - a, py,, (M)
for each interpretation M € My ,,,, where

Lo if [lellm > o

gl M) = {

0, otherwise.

Example 4.3 Consider the context My, ,, where U and m are as in Exam-

ple 4.1, i.e.

1. U = {Uproduct_name = {trousers, coat, shoes},

Uproduct_price = [0,200] (euros) };

2. m(trousers) = trousers,
m(coat) = coat,
m(z) = z, for each real z € [0,200], and

(
(

m(shoes) = shoes,
(

m(about_85) = [80; 85; 85; 90].

Now consider the following predicate interpretation mappings:

4.3. Formalizing PLFC 7

io(price) = {(trousers, 83), (coat, 150), (shoes, 75)}
i1(price) = {(trousers, 85), (coat, 145), (shoes, 70)}
ia(price) = {(trousers,90), (coat, 150), (shoes, 80)}

and denote My = (U, ig,m), My = (U,i1,m), and Ms = (U,i2,m). Finally,

consider the following possibilistic model m on the context My, ,:

0.6, if M =M,
1, ifM=DM,
0.2, if M =M,

0, otherwise

(M) =

Let us now compute how much 7 makes the atomic formula
price(trousers, about_85) certain. For each interpretation M;, i = 0,...2, we

have the following truth values:
|[price(trousers, about 85)||v, = Mm(about_s5)(83) = 0.6
|[price(trousers, about 85)|lv, = tm(about_s5)(85) = 1
||price(trousers, about 85)|lM, = tm(about_ss5)(90) = 0
Then,

N([price(trousers, about_85)] | m)
= infmemy,, max(l — 7(M), ||(price(trousers, about_85)||nm)
= min(0.6,1,0.8,1)
= 0.6.

Therefore, for instance, in the current context
7r |:Z{"FC (price(trousers, about_85),0.6),

but

7 U™ . (price(trousers, about_85),0.7).
O
Some very interesting and remarkable consequences of the above definition

of possibilistic satisfiability of PLFC clauses with constants weights are the fol-

lowing ones.

78

On the semantics and automated deduction for PLFC

Proposition 4.1 In each context My, under general continuity conditions®

of the interpretation m of fuzzy constants, it holds that:

(i) m PLFC((A),a) iff m |=PLFC’ (4la),)

(i) m PLFC((A, B),a) iff ':PLFC' ([Alas [Bla), @)

(iii) ™ S (0(A)V a(B), @) iff 7 e 0([Ala) V a([Bla), @)

where p and q can be positive or negative literals, and [A], and [B], denote the

imprecise constants corresponding to the a-cuts of the fuzzy constants A and B,

respectively.

Proof:

(i)

(i)

(iii)

According to Definition 4.11, 7 '_PLF(* (p(A), a) iff, for each interpre-
tation M = (U,4,m) € Mym, 7(M) < max(l — a, (4, (M)), where
Pp(a). M) = 1, if [|[p(A)[lm > a; and pppea)y, (M) = 0, otherwise. But
lp(A)|lmM = sup.e;(p) #m(a)(c). Now, assuming a continuity condition on
Pm(a), from ||p(A)|lM > a, we can infer that there exists ¢ € i(p) such
that pin(4y(c) > a. Then, we have [|p(4)||m > « iff there exists ¢ such
that ¢ € [m(A)]q. Hence, iff ||p([4]a)|lMm = 1.

It easily follows from (i) by noticing that, under the continuity condition
of the interpretation m of fuzzy constants, ||p(A, B)||m > « iff there exists

(c1,¢2) € i(p) such that pim,(ay(c1) > a and py(p)(c2) > a.

It follows from (i) as well as due to the fact that u(a)vem). (M) =

max(p((p()]. M), Big(B)). (M))-
[|

These properties have important consequences since it means that in PLFC with

(only) fuzzy constants we can in a way forget about fuzzy constants as such and

focus only on imprecise but crisp constants.

11t refers to the assumption that m interprets fuzzy constants into left continuous member-

ship functions. This is the case, for instance, when using trapezoidal membership functions

and their cuts.

4.3. Formalizing PLFC 79

Semantics for possibilistic clauses with variable weights

PLFC clauses with variable weights are of the general form

(0 (2), (7)),

where p(Z) is a PLFC* formula with free variables Z and f(7) is a valid valuation
function with values on [0, 1] depending on a set of variables g, ¥ D Z, in the
sense that it becomes computable in a given context as soon as the variables y

are instantiated. As an example, consider the general PLFC clause

(p(4,2) V q(y), min(e, B(z), C(y))),

where A, B and C are fuzzy constants. But to be meaningful, first of all, such a
PLFC clause has to be understood under a particular context determined by a
collection of non-empty domains U and an interpretation of object constants m
such that m provides meaning not only to the fuzzy constant A of the PLFC*
formula but also to the fuzzy constants B and C of the valuation function by
assigning them membership functions pi,,(g) and pn,(c), respectively. Second,
as already noted, free variables are assumed to be universally quantified. Thus,
we should understand the above PLFC clause as the following collection of in-

stantiated clauses with constant weights:
{(p(4,¢) V q(d), min(a, B(c),C(d))) |c€ X andd € Y}

where ¢ and d vary on the set of precise object constants X and Y (of the
corresponding sort), inducing on possibilistic models m : My, — [0,1] the set

of constraints:

N([p(A;0) V g(d)] | 7) = min(e, pim(s) (M(€)), lim(c) (M(d)))-

Notice that pm,g)(m(c)) € [0,1], for each precise object constants ¢ of sort of
variable z, as well as pp,c)(m(d)).

PLFC clauses of the form (¢(z1,...,2n),a), i.e. PLFC clauses with constant
weights, can be considered as a special kind of variable weight clauses if we

establish the convention of considering
1. an implicit set
{X; object constant of sort of variable z; | i =1,...,n}

such that m interprets each object constant X;, for ¢ = 1,...,n, as

Mm(X,-)(U) =1 for each u € Ugqrt, of variable zi and

80 On the semantics and automated deduction for PLFC

2. an implicit variable weight min(a, X1(21),..., Xn(2,)) such that the re-

sulting clause is of the form
((p('rla te 7$n)7 min(a7Xl($l)7 ey Xn(mn)))

This convention can be extended to PLFC clauses with variable weights such
that some variables of the base formula do not appear in the valuation function,
which allows us to ensure that PLFC clauses are of the general form (¢(Z), (7))

with § D Z. For instance, following this convention, the PLFC clauses
(p(z),) and (p(z,y), min(a, A(z)))
respectively correspond with
(p(z), min(e, X(z)) and (p(z,y), min(e, A(z),Y (y))),

where X and Y are object constants of sort of variables x and y, respectively.

Definition 4.12 (possibilistic satisfiability) Given a context My, a pos-
sibilistic model w : My, m — [0,1] satisfies a PLFC clause with a variable weight

(p(x), A(x)), written © =97 (p(x), A(x)), iff 7 EDree (9(c), A(c)) for each
precise object constant ¢ € X (of the corresponding sort). Thus,

m Epire (@), A@) iff N([@(0)] | 7) > tim(ay(m(c))
for each object constant c € X.

Proposition 4.1 extends to variable weight clauses in the following way.

Proposition 4.2 In each context My, m, under general continuity conditions of

the interpretation m of fuzzy constants, it holds that:

(i) The PLFC clause (p(A,z),min(a, B(z))) is semantically equivalent to
(p([Almin(a,B(2)), ©), min(a, B(z))).

(i) The PLFC clause (p(A)Vr(zx), min(a, B(x))) is semantically equivalent to
(p([A]min(a,B(ac))) \Y ’I'(JI), min(a, B(IL'))) -

(iii) If 7 e (0([Ala, 2), min(a, B(2))), then

m Epire (p(A,z), min(a, B(2))).

4.4. Resolution and refutation in PLFC 81

Proof:
(i) Direct consequence of (ii) of Proposition 4.1.

(ii) Again it is an easy consequence of Proposition 4.1, taking into ac-
count that, for each precise object constant ¢ € X (of the correspond-

ing sort) and for each interpretation M € My, [[p(A) V r(c)llm =
max([|(p(A)lm, [Ir(c)llm)-

(iii) It follows from (i) by noticing that, for each precise object constant ¢ € X,

[A]a g [A]min(a,B(c)) .
| |

4.4 Resolution and refutation in PLFC

In this section we define a sound refutation by resolution proof method for PLFC
clauses. The possibilistic entailment relation between a PLFC knowledge base
and a PLFC clause is defined as in standard possibilistic logic, but is related to

a particular context.

Definition 4.13 (possibilistic entailment) Let K be a set of PLFC clauses,
i.e. a PLFC knowledge base K = {(yi, f;) | i =1,...,n}. We say that K entails
a PLFC clause (¢, f) in a context My, written K |=%£"FC (¢,), iff, for each
possibilistic model T on My m, ™ |=Z*£”FC (p, f) whenever w |=Z{”FC (i, fi) for

eachi=1,...,n.

From now on, we assume a particular context My, to be given, and thus,
the notion of soundness is relative to the context. Furthermore, we assume
that My, provides interpretations of fuzzy constants fulfilling the previously
mentioned general continuity conditions.

In Section 3.3 we showed that when applying a resolution mechanism to
PLFC clauses with variable weights, involved variables may disappear in the
logical-part of a clause, but still appear in its valuation side. The fusion rule
proposed by Dubois et al. (1996,1998b) to deal with this situation can be

generalized in the following way:

(p(2), f(Z,9))

(90('7_3)5 maXeey f(a_:a C)

82 On the semantics and automated deduction for PLFC

where ¢(Z) is a PLFC* formula involving variables Z, f(Z,y) is a valid valuation
function involving variables Z and y, and ¢ vary on the set of precise object
constants Y (of the corresponding sort).

The generalized fusion rule GF is obviously sound with respect of the notion
of PLFC entailment in a particular context My, ,,,. However, this is not the case
of the resolution-like rule 3.4 proposed by Dubois et al. (1996,1998b). Instead,
given a context My, it can be shown that in PLFC the following general

resolution rule holds:
(_'p(.'li', ba y) \Y ¢($7 y)a min(ﬂa A(m)a B(y)))
(p(C,z,7) V ¢(z,7), min(a, D(z), E(r))
(¢(Ca ’f') \% QO(b, T), min(ﬂa &, bm (D) (m(b))7 6(7.)

where

6(r) = min(B(r), E(r), N (m(A)[[m(C)lmin (o stmp) (m(®)) . EG)))-

Obviously, d(r) becomes computable in a given context My, as
soon as variable r is instantiated to some object constant, and
then, N (m(A)|[m(C)lmin(aum(m) (m(®)).B(r))) 18 the necessity measure of the
fuzzy event m(A) based on the imprecise, but non-fuzzy, information

[m(c)]min(a,um(D)(m(b)),E(r)) computed as

N (m(A)[[m(C)]min(aspam () (m(5)), B(r)))
= inf,cy max(1l — u[m(c’)]min(a,um(D)(m(b)),E(T)) (U)aﬂm(A) (w))

= lnfue[m(c)]min(a,pm(D)(m(b)),E(r)) Hm(A) (u).

Theorem 4.2 (soundness of the GR inference rule) The general resolu-
tion rule GR is sound in a context My ,,, with respect the possibilistic entailment
of PLFC clauses.

Proof: Given a context My, ,,, we want to show that, for each possibilistic model
e MU,m — [0; 1]; if = g,},nFC (ﬁp(ﬂf,b, y) \ w(x,y),mln(ﬂ,A(x),B(y))) and
™ ':g’{,nFC’ (p(ca Z, T‘) \Y (P(Z, ’f’), min(a, _D(Z), E(T)))a then

™ ':g’finFC (¢(Ca 7’) \ QD(b, T)a min(ﬂ: Q, um(D) (m(b))a 6(7.)))7

where (5(7’) = min(B(r), E(T), N(m(A)|[m(c)]min(a,um(p)(m(b)),E(r))))-

4.4. Resolution and refutation in PLFC 83

Therefore, suppose that?

max(1 —x(M), 1 — [[p(c1, b, e2)lIm; [[¢(e1, e2)l[m) > min(B, A(er), B(cz)),

for each precise object constants c; of sort of variable x, denoted hereafter as
oa,c, and ¢y of sort of variable y, denoted hereafter as op g, and for each
interpretation M € My ,, and that

max(1 — (M), ||[p(C, V', c2)llm; [l9(¥', e2) lm) > min(er, D), E(c2)),

for each precise object constants b’ of sort of variable z, denoted hereafter as
op, and ¢ of sort op g, and for each interpretation M € My p,.

Let M = (U, i, m) be an interpretation of My ,,. Taking b’ = b, we have that
Ip(C. b, c2)[IM = SUP (4, m (b),m(ca)) €i(p) Hm(c) (1), for each precise object constant

cp of sort op g. Now,
e if |p(C, b, c2)||m < min(a, D(b), E(cz2)), then
max(1 — w(M), [lo(b, ¢2)|lm) > min(a, D(b), E(cz)).
Thus,

max(1 — w(M), [[¢(b, c2)lln1, [0 (b, ¢2)lIn)
>

min(,B, a, D(b)7 B(CQ)a E(CQ)a N(m(A) | [m(c)]min(a,D(b),E(cz))))7

for each precise object constant ¢y of sort o, g such that ||p(C, b, c2)||m <
min(a, D(b), E(c2)).

o if ||p(C, b, c2)||m > min(a, D(b), E(c2)) and we assume general continuity
conditions of the interpretation m of fuzzy constants, we can infer that
there exists (m(c1), m(b),m(c2)) € i(p) such that

lp(C, b, c2)|lm = sup Pm(c) (W) = pim(cy(m(c1))-
(u,m(b),m(c2))€i(p)

Thus: Hm(C) (m(cl)) > min(aa D(b): E(C2))7 ie.

m(c1) € [M(C)]min(a,D(b),E(c2)) and [|p(cr, b, e2)lm = 1.
2For the sake of a simpler notation, and since a context My, m is assumed, we simply write

A(+), B(:), D(:) and E(-) instead of tirm(a) (m(-)), tim(B) (M(-)); B (D) (m()) and pir gy (m(-)),
respectively, in valuation functions.

84

On the semantics and automated deduction for PLFC

When ||p(c1,b, c2)||m = 1, the first constraint turns into
max(1 — w(M), (1, ¢2)lln) > min(B, A(er), Blez)).
Now,
— if (m(e1),m(c2)) € i(v), then

14(C; e2)llm

= SUP(ym(ca))€i(w) Hm(C) (W)
= max(um(c) (m(c1)), SUP (4, m(cs))€i(y) With uztm(ci) Bm(C) (u))
> min(a, D(b), E(cs)),

which implies that max(1 — 7(M), |[«(b,c2)||lMm, lle(b, c2)|lm) >
min(a, D(b), E(cy)).

— if (m(cy),m(e2)) & i(v), then 1 — 7(M) > min(8, A(cy), B(cs)). We
know that m(cl) S [m(C)]min(a,D(b),E(cz))a then

ma)(m(c1)) > inf m(A)(u),
o (A)(()2 uE[m(C)]min(a,D(b),E(cznu (A)()

where

inf mia)y (1) = N(m(A)|[m(C)]min(a M)
wemon B R (a)(u) (m(A)[[m(C)]min(a,D(),E(r)))

Thus,

1— (M) min(8, A(c1), B(ca))

>
> min(B8, N(m(A)|[m(C)lmin(a,n(b),B(r)), B(c2)),

which implies that max(1 — (M), |[(b, c2)|ln, 0B, e2)llm) >
min (B, N (m(A)|[m(C)]min(a,D(5),E(r))), B(c2))-

Merging both constraints we get that

max(1 — m(M), [[¢ (b, ¢2) Im, [l (b, ¢2)lIm)
>

min(f, a, D(b), B(ca), E(ca), N (m(A)|[m(C)]min(a,D(8), E(c2))))5

for each precise object constant ¢z of sort o, g such that ||p(C, b, c2)||m >
min(a, D(b), E(c2)).

4.4. Resolution and refutation in PLFC 85

Then, we have that

max (1 — (M), [[¢(b, c2)lIm, [l¢(b, ¢2)l|m)
>

min(ﬂ: a, D(b)7 B(C2)7 E(02)7 N(m(A)l[m(c)]min(a,D(b),E(cz)))):

for each precise object constant cs of sort o g and interpretation M € My p,.

Hence, we have that, for each precise object constant c» of sort op. g,

Q Izg’[T,nFC (1/1((7, 62) \% Qp(ba 02)7 min(ﬂ: Q, D(b)a 6(02)))7

where 6(co) = min(B(cz), E(c2), N(m(A)|[m(C)]min(a,D(5),E(c2)))), and thus, we
have showed that 7 |:ng0 (W(C,r) V p(b,r), min(B, @, i (p) (M(b)),4(r))), as
desired. [|

It is easy to see that GR inference rule recovers possibilistic logic resolution
rule 3.1 when fuzzy constants and variable weights are not present. Moreover,
given a context My, a couple of particular interesting cases of GR inference

rule are the following ones:

(=p(x) V ¢(z), min(B, A(z)))
(p(B),a)
(4 (B), min(B, a, N(m(A) | [m(B)]a)))

(=p(x) V ¢, min(8, A(z)))
(p(y) V ¢(z), min(a, B(y), C(2)))
(¥ V ¢(2), min(B, o, A(y), B(y), C(2)))

[GR4]

[GRo]

Notice that GR; inference rule is the analog of the resolution-like rule 3.4
proposed by Dubois et al. (1996,1998b) when considering a context My, but

differs from it in the term
N(m(4) | [m(B)]a),

which in pattern 3.4 was
N(m(A) | m(B)).

On the other hand, if we apply the generalized fusion rule GF to the resolvent
of GRa, what we get is just

(¥ V ¢(2), min(B, a, C(z), Pos(m(A) | m(B))),

86 On the semantics and automated deduction for PLFC

where

Pos(m(A) [m(B)) = sup min(pm(a) (), ftm() (w)-

One of the main advantages of the present semantics for PLFC is that pro-

vides a sound refutation mechanism based on the following properties.

Theorem 4.3 (refutation) Let K be a set of PLFC clauses. In each con-
text My, m, under general continuity conditions of the interpretation m of fuzzy
constants, it holds that:

(i) K U{(-p(2), A@))} Epipc (L. 8) if K Epirc (p(A),5).

(i) If A is an imprecise but non-fuzzy constant, then

KuU{(-p(4),1)} IZPLFC (L,8) iff K '_PLFC’ (z), min(3, A(z))).

(iii) If K U {(-p(As0),1)} I—PLFC (L,B), then
K‘_PLFC (z), min (B, A())),

where Asq denotes the support of A, i.e.

fo ae (1) = 1, ime(A)(u) >0
m{4>0) 0, otherwise

Remark that in this case we have that

K Pl (0(@),min(B, Aso(x))).
(iv) If K U{(=p(z, B>o), A(x))} Epipe (L,8), then
K EZlro (p(A,2),min(8, B(z))).
(v) If K U{(-p(x), A(2)), (-q(Bs0), 1)} Eprpe (L, B), then
K Eplve (0(A) V q(z), min(8, B(z))).
Proof:

(i) Let 7 be a possibility distribution on My .

4.4. Resolution and refutation in PLFC 87

(=) Suppose that 7 =%, K and © =97, (-p(z), A(z)). This
means that 7 —ZFFC (-p(c), A(e)), for each precise object con-
stant ¢ of sort of variable x, denoted hereafter as o4, and thus,
max(1 —7(M),1 — [|p(c)||m) > pm(a)(m(c)), for each precise object
constant ¢ of sort 04 and interpretation M = (U,i,m) € My, or
equivalently, 1 — 7(M) > fi,,,(4)(m(c)), for each m(c) € Uy, such
that m(c) € i(p), that is, 1 — (M) > Sup,,(c)ci(p) Bm(a)(Mm(c))-
Now, if this condition has to imply that =« g’i”Fc (L,8), ie
1—7(M) > 8 for each interpretation M, it must be that 1 —7(M) >
max(3, SUP,y,(c)ei(p) Mm(4)(M(c))) for each interpretation M, which is

equivalent to force that = =% Prrc ((A),B).

(<) Suppose now that |:PLFC (A),). Moreover, suppose that
T |—PLFC K and « —PFFC (=p(z), A(z)). Analogously to above,
this means that, max(1 — w(M), ||p(4)|lm) > B, for each interpreta-
tion M = (U, 4,m) € My, . Therefore,

— if |p(A)|l]m < B, it must be that

1—7m(M) >8> sup pp(a)(m(c)).
m(c)€i(p)
— if ||p(A)|lm > B, by general continuity conditions, it must exist
¢ € oa such that m(c) € i(p) and p,a)(m(c)) > B. Hence,
lIp(c)llm = 1, and thus,

max(1 — w(M), 1 = [p(e)) = 1 = 7(M) > fry(m(c)) > 6.
Therefore, in both cases it holds that = =9/ (L, 8).

(ii) Let m be a possibility distribution on My, and let A be an impre-
cise but non-fuzzy constant, i.e. pna)(m(c)) € {0, 1} for each pre-
cise object constant c¢ of sort o4. Assume that « PLFC K. Now,
T |=g’£”FC (-p(A),1) iff (M) = 0 for each interpretation M € My,
such that ||-p(A)|lm = 0, that is, for each interpretations M € My, n,
such that [|p(c)|lm = 1 for each ¢ € g4 such that pi,,,4y(m(c)) = 1. Thus,
this condition implies « |—PLFC (L,B8) (i.e. (M) < 1 — 3 for each in-
terpretation M € My,,,,) iff one has 7(M) < 1 — 8 for each interpreta-
tion M € My, such that there exists ¢ € ga, with i, (m(c)) = 1,

88 On the semantics and automated deduction for PLFC

such that ||p(¢)|lm = 0. But this is exactly the condition for hav-
ing |:ng0 (p(z), min(B, A(x))), namely, for each ¢ € o4 such that
Bm(a)(m(c)) = 1, max(1 — 7(M), ||p(c)[lm) > B, and thus, 1 — 7(M) > 3
if there exists ¢ € o4, with pp,4y(m(c)) = 1, such that ||p(c)|lm = 0.

(iii) It is a direct consequence of (ii), taking into account that ji,,(a,,)(m(c)) >

Um(a)(m(c)) for each precise object constant ¢ of sort o 4.
(iv) It is a consequence of (i) and (iii).

v) Again it is an easy consequence of (i) and (iii), taking into account that
g g
[lp(A) Vg(c)|lm = max(||p(A)||m, ||g(c)|Im) for each precise object constant

c of sort o4 and interpretation M € My . -

Based on these soundness results, in the next section, we define a refutation
by resolution proof method that checks whether a PLFC knowledge base K
entails, in a given context My ,, a PLFC clause (¢, f). Roughly speaking,
the method, as usual, consists of negating the query (g, f), adding it to the
knowledge base K, and checking to what degree the contradiction is deduced by
applying some inference rules. Hence, in order to extend refutation by resolution
to PLFC, negation of PLFC queries is first defined.

Definition 4.14 (PLFC query) A PLFC query is a PLFC clause of the form

(v(2), f()),

where T denotes a set of free and implicitly universally quantified variables, ©(T)
is a PLFC* formula, and f(Z) is either a constant value in the real interval [0, 1],

or membership functions of fuzzy sets, or min combinations of them.

Remark that a PLFC clause of the form (¢(Z), f(¥)), with § D Z, can be trans-
formed into (¢(Z), f(Z)) by applying the GF inference rule.

Definition 4.15 (negation of a PLFC query) We define the negation of a
PLFC query (o, f) by cases:

1. When ¢ is a ground literal:
—(p(A4), f) is (-p(x), A(z)),

—(=p(A), f) is (p(z), A2)),
'(p(Ala - 7Ap)7 f) is ('p(xh B 7'Z'p)7min(‘41 (wl)a .- JAp(mp)))7
S(-p(Ar,. ., Ap), f) is (p(z1, ..., 2p), min(A; (21), ..., Ap(2p))).

4.4. Resolution and refutation in PLFC &9

2. When @ is a literal with free variables:

—(p(y), min(C(y), f)) is (=p(C>0),1),
=(=p(y), min(C(y), f)) is (P(C>0),1),
~(p(4,y), min(C(y), f)) is (=p(z,Cs0), A()),

—(=p(4,y),min(C(y), f)) is (p(z,C50), A(z)),

ﬁ(p(1417 RN} Apa Yiy--- 7111)7 mln(cl(yl) Cl(yl)7 f))
18
(=p(x1,-- s 2p,C150,- - > Cr>0), min(Ay (1), . . ., Ap(zp))),
'('p(A17"'7Ap7y17"'7yl)7m1n(cl(y1)7 7Cl(yl)))
18
(p(.’El, . ,.’Ep, Cl>0, ceey Cl>0), min(Al(xl), feey Ap(xp)))
where Cso and Cisg, for i = 1,...,1, denote the support of C and C;,

respectively.

3. When ¢ is a disjunctions of literals:
~(LyV---V L. f) is {=(Li, f)|i=1,...,r},
where Ly, ..., L. are (positive or negative) literals.

In cases 1 and 2 the valuation function f can be assumed to be a constant value,

while in case 3 it denotes a general query valuation function.

Example 4.4 Let us consider five particular but illustrative cases. Namely, if
we want to check whether a knowledge base K entails (satisfies), with a necessity

of at least B (threshold), the following information (statements):
(i) “Mary speaks Spanish, French or Italian”
(ii) “Mary speaks Spanish, French and Italian”

(iii) “For each language y in {Spanish, French,Italian}, Mary or Peter
speak y”

(iv) “[Mary does not speak Spanish, French or Italian] or [Mary speaks Spanish,

French and Italian]”

(v) “[For each language y in {Spanish, French,Italian}, Mary or Peter do

not speak y] or [Mary speaks Spanish, French or Italian, as well as Peter]”

90

we have to

On the semantics and automated deduction for PLFC

1. negate, respectively, the following PLFC queries:

(i)
(i)
(ii)
)

(iv

—(ii)

(i)

(speaks(Mary,{Spanish, French, Italian}), §)

(speaks(Mary,y), min(B, {Spanish, French, Italian}(y)))
(speaks({Mary, Peter},y), min(8, {Spanish, French, Italian}(y)))
(—speaks(Mary, {Spanish, French, Italian}) V

speaks(Mary,y), min(8, {Spanish, French, Italian}(y)))
(—speaks({Mary, Peter},y)Vspeaks(z, {Spanish, French, Italian}),
min (S, {Spanish, French, Italian}(y), {Mary, Peter}(z)))
respectively, to K the following PLFC clauses:

(—speaks(z,y), min(Mary(z), { Spanish, French, Italian}(y)))
Since Mary is a precise object constant, this PLFC clause is seman-

tically equivalent to

(nspeaks(Mary,y), {Spanish, French, Italian}(y)).

(—speaks(Mary, {Spanish, French, Italian}), 1)
(—speaks(z,{Spanish, French, Italian}),{ Mary, Peter}(x))
Remark that this PLFC clause expresses that

“Mary does not speak Spanish, French or Italian, as well as Peter”

which does not exactly correspond with the “logical negation” of state-
ment (iii), i.e.
“for some language y in {Spanish, French, Italian},

neither Mary nor Peter speak y”,

which cannot be expressed in PLFC (see Section 3.3).
However, if K U {~(iii)} entails (L, 8), intuitively, K should entail,
with a necessity of at least 3, the “logical negation” of statement
—(iii), i.e.

“Mary speaks Spanish, French and Italian, or Peter does”

which, again, cannot be expressed in PLFC, but which, obviously,

entails statement (iii).

4.4. Resolution and refutation in PLFC 91

= (iv)

{ (speaks(Mary,y), {Spanish, French, Italian}(y)),
(nspeaks(Mary,{Spanish, French, Italian}),1) }
Remark that these PLFC clauses express the following contradictory

statements:
“Mary speaks Spanish, French and Italian”
and
“Mary does not speak Spanish, French or Italian”,

respectively. On the other hand, applying the resolution rule GR to
—(iv), we get (L,1). Hence, by the soundness of the GR inference
rule and Theorem 4.3, we have that (v) is absolutely certain in any

context.

{ (speaks(z,{Spanish, French, Italian}, { Mary, Peter}(z)),
(nspeaks({Mary, Peter},t), {Spanish, French, Italian}(t)) }
Remark that statement (v) is certain in any context, and thus, the
“logical negation” of (v) should express contradictory information.
But, like in case (iii), —(v) does not exactly correspond with the

“logical negation” of (v). However, when variable ¢ of
—speaks({Mary, Peter},t)
takes the value {Spanish, French, Italian}, we get
dz € {Mary, Peter}, —(speaks(z, {Spanish, French, Italian}))
which is interpreted as:
Az € {Mary, Peter} Yy € {Spanish, French, Italian}, —~speaks(z,y).

Hence, —(v) PLFC clauses (with variable ¢ instantiated to
{Spanish, French, Italian}) express the following contradictory

statements:
“Mary speaks Spanish, French or Italian, as well as Peter”
and

“Mary or Peter do not speak neither Spanish nor

French nor Italian”,

92 On the semantics and automated deduction for PLFC

respectively. On the other hand, applying the resolution rule GR to
—(v), we get (L,1). Hence, by the soundness of the GR inference
rule and Theorem 4.3, we have that (v) is absolutely certain in each

context.

3. and, finally, Theorem 4.3 guarantees that if the knowledge base K aug-
mented with —(i) (respectively, with —(ii), —(iii), —(iv) and —(v)) derives,
by applying some (sound) inference rules, (L, (), then (i) (respectively,
(ii), (iii), (iv) and (v)) is a logical consequence of K. However, nothing is

said about the converse.

4.5 Automated deduction

In this section we define an automated deduction method for PLFC based on
refutation through resolution. We then need an algorithm that let us know when
two literals p(t1,...,t,) and —p(s1,...,s,) can be resolved. Moreover, we need
an algorithm that automatically computes a set of substitutions that must be
applied on the resolvent clause. But, in this framework, we cannot borrow the
unification concept used in classical first-order logic programming systems. Let

us consider one illustrative example. For instance, from
(<p(A)V$,1) and (p(4),1),
which, if A is not fuzzy, are interpreted respectively as
“[Fz € A, -p(x)]Vy” and “Jz € A, p(z)”,

we can infer ¢ iff A is a precise constant. Then, resolution for —p(A4) and p(A)
must fail unless A is a precise constant, even though, obviously, p(A)8 = p(A)8
for each (classical) substitution of variables §. Therefore, from now on, we
refer ourselves to a most general substitution of two literals in a resolution step.
The first part of this section is about the formalization and computation of a
most general substitution of two literals in a resolution step, the second one
extends the calculus of the logic with a merging and a transformation inference
rules, and the last one describes a proof procedure by refutation through (i) the

general resolution rule GR; (ii) the generalized fusion rule GF already proposed

45. Automated deduction 93

by Dubois et al. (1996,1998b) and applied to a resolvent clause when some
variables have disappeared in its base formula but still appear in its valuation

side; and (iii) the new merging and transformation rules.

4.5.1 Most general substitution

In the following we formally define a most general substitution of two literals
in a resolution step, we describe how it must be applied to a PLFC clause and,

finally, we give an algorithm for its automatic computation.

Definition 4.16 (substitution term) A substitution term of a variable is ei-

ther a variable, a precise constant or an imprecise but non-fuzzy constant.

Notice that fuzzy constants are not substitution terms. This is due to Proposi-

tions 4.1 and 4.2 which safely allow us to focus only on crisp constants.

Definition 4.17 (substitution) A substitution is a mapping from variables to
substitution terms, and is written as 0 = {1 [t1, ..., 2, [t }, where the variables

T1, .y Ty are different and x; #t;, fori=1,...,n.

Substitutions operate on expressions. By an expression we mean a term, a

PLFCx formula, or a PLFC clause with a constant or a variable weight.

Definition 4.18 (instance of an expression) Let E be an expression and let
0 be a substitution. The instance of E given by 0, written E, stands for the result
of applying 8 to E which is obtained by simultaneously replacing each occurrence
in E of a variable from the domain of 6 by the corresponding substitution term.
After applying o substitution to a PLFC clause we can obtain in the valuation
side expressions like f1(B) or fo(Bi,...,By), where fi and f2 are valid valuation
functions in the model and B, By, ..., B, are imprecise but non-fuzzy constants.
Then, given a context My m, f1(B) is computed as

Nn(f2) | m(B) = _inf max(l = fn(s) (0); () (@)

B

and fQ(Bl, e ,Bn) as
N(m(fz2) | min(m(By),...,m(By)))

= inf(ul,...,un)EUaBl X xUsp max(1 — min(pm(Bl)(ul), een,
Pn(By) (Un))s m(fa) (W15 - - - s Un))
= inf(u17~~~,Un)€UaB1 X xUsp max(1 — ,Um(Bl)(Ul); cee,

1- KB, (un)a:u/m(fg)(ula v ,Un)),

94 On the semantics and automated deduction for PLFC

where fiy 5,y and pm(s,) are the membership function of the fuzzy set that results
from applying the interpretation function m to the object constants involved in
f1 and fa, respectively, and op and op;, fori =1,...,n, are the basic sorts of

B and B;, respectively.

Definition 4.19 (composition of substitutions) Let 8 = {1 /t1, ...,z /t,}
and 1 = {y1/s1,-sYm/Sm} be two substitutions. The composition of
0 and n, written 6, is a substitution defined by removing from the set
{z1/tam, ooy T [tnN, Y1 /515 -y Ym /[Sm } those pairs z;/t;n for which x; = t;n and
those pairs y;/s; for which y; € {z1,...,2n}.

Definition 4.20 (most general substitution) Let 6 and n be two substitu-

tions. 0 is more general than n if for some substitution v we have n = 6.

Definition 4.21 (substitution of two atomic formulas in a context) Let
@ and ¢ be two atomic formulas with predicate symbol p of arity n, let 6 be a
substitution and let My, be a context. If ©8 is of the form p(s1,...,s,) and
@0 is of the form p(t1,...,tn), we say that 6 is a substitution of ¢ and ¢ in the
context Muy,m if for each pair (s;,t;), i =1,...,n, it holds that either s; = t;, or
s; and t; are object constants and iy (s;) = Pm(t;)- Furthermore, we say that 6 is
a most general substitution of ¢ and ¢ in the context My, (or mgs for short) if
it is more general than any other substitution of ¢ and ¢ in the context My .
In fact, mgs’s are unique modulo renaming of variables and object constants (i.e.

object constants with a same interpretation,).

The next algorithm takes two PLFC literals and a context, and produces
an mgs of the atomic formulas in the context if the literals can be resolved
(i-e. if literals express contradictory information); otherwise, reports an error
message. We follow the presentation of Apt (1990), based upon Herbrand’s
original algorithm, first presented by Martelli and Montanari (1982), which deals

with solutions of finite sets of term equations.
Algorithm 4.1 mgs of two literals in a resolution step

Input:
e Two literals with predicate symbol p of arity n of the form
-p(s1,---,8,) and p(t1,- .., t,), where each term is either a variable,
a precise constant, or an imprecise but non-fuzzy constant, and such

that they do not have any variable in common.

45. Automated deduction 95

e A context determined by a collection of non-empty domains U and

an interpretation m of object constants over U.

Output: An mgs 0 of p(s1,...,8,) and p(t1,...,t,) in the context determined

by U and m if the literals can be resolved; otherwise, an error message.

Initialization: From p(si,...,s,) and p(t1,...,t,) we construct a set of substi-
tutions S of the form {s1/t1,...,5n/tn}.

Method: Choose a substitution {s;/t;} from S and perform the associated
action until either S remains unchanged or the algorithm fails:
1. If s; and ¢; are object constants, then

® if fiy(s;) = Hm(s;) and s;,t; are precise constants then, delete the
substitution {s;/t;} from S;
e otherwise, fail.
2. If s; is an object constant and ¢; is a variable, then replace {s;/t;} by
{ti/si} in S.
3. If s; is a variable, then
o if s; = t; then delete the substitution {s;/t;} from S;
e else, if s; has another occurrence in S, then
— if s; appears in t;, then fail;
— otherwise, perform the substitution {s;/t;} in every other

term in S.

Final treatment: If {s}/t,...,s}./t})} is the resulting set of substitutions,
then 6 := {s}/t},...,s,./t} }.

Example 4.5 Let us consider the PLFC clauses used in the general resolution
rule GR of Section 4.4:

sl: (-p(z,b,y) V¢(z,y), min(8, A(z), B(y)))
s2: (p(C,2,7) V ¢(2,7), min(a, D(z), E(r)))
By Proposition 4.2, s2 is equivalent to:

2t (p([Cly(z), 257) V #(2,7), f(2,7))

96 On the semantics and automated deduction for PLFC

where
f(z,r) =min(a, D(z), E(r)).

The initial set of substitutions computed by Algorithm 4.1 for —p(z,b,y) and
p([C]f(z,’r): Z,T) is:
S = {m/[c]f(z,’r): b/z,y/r}.

Since b is an object constant and z is a variable, the substitution {b/z} is replaced
by {z/b} in S, and thus,

S = {-’E/[C]f(z,r): Z/b,y/T}.

Since {z/b} € S and variable z has another occurrence in S, the substitution
{z/b} is performed in every other term in S, and thus, {z/b} is performed over
the substitution term [C]y .). Hence, the output of Algorithm 4.1 for —~p(z, b,y)
and p([C]t(z,ry,2,7) is an mgs

0 =A{z/[Clsb,m),2/b,y/7}-
On the other hand, the resolvent of s1 and s2’ before applying the mgs 6 is
s3: (Y(z,y) V @(2,7),min(8,a, A(z), B(y), D(2), E(r)))
Now, applying 6 to s3 we get
3’ (Y([Cly(p,ry, 1) V (b, 7), min(B, o, A([Clys,r)), B(r), D(b), E(r)))
where, in a particular context My, p,,
D(b) = N(m(D) | m(b)) = pm(p) (m(b))

and
A([Clyb,ry) = N(m(A) | [m(C)]min(a,pm) (m (b)), E(r)))-

Finally, by Proposition 4.2, s3’ is equivalent to

$37: (¢(Ca T) \ QO(b, T)a min(IBa &y m (D) (m(b))a 6(T)))a

where

(5(’!‘) = min(N(m(A)|[m(0)]min(a,um(p)(m(b)),E(r)))a B(T‘), E(’I’)),

which is exactly the resolvent of GR when applied to s1 and s2. m|

45. Automated deduction 97

Example 4.6 Suppose that we are interested in resolving the following two
PLFC clauses:

sl: (-p(z, B) V ¢(z), min(B, A(z)))

s2: (p(C,y), min(a, D(y)))

By Proposition 4.2, s1 and s2 are equivalent, respectively, to
s1’: (=p(@, [Blmin(s,A(2))) V ¥(z), min(B, A(z)))

52’ (P([Clmin(a,D(y))>¥), min(a, D(y)))

The initial set of substitutions computed by Algorithm 4.1 for
(@, [Blmin(8,4(z))) a0d P([Clmin(a,D(y)),Y) is:

S = {2/[Clmin(a,D())> [Blmin(s,a()) /¥ }-

Since [B]m;n(gy A(z)) 1s an object constant and y is a variable, the substitution

{[B]min(ﬁ,A(a)))/y} is replaced by {y/[B]min(B,A(w))} in S; and thus,
S = {2/[Clmin(a,D(v))> Y/ [Blmin(s,A(z)) }

Choosing {z/[Clmin(a,n(y))} € S, since variable z has another occurrence in
S, the substitution {#/[Clmin(a,D(y))} is performed over the substitution term

[B]min(ﬁ,A(z)); and thus,

S = {2/[Clmin(a,D(y)), ¥/ [Blmin(8, A((Cluinte poy)) -

Now, taking {y/[Blmin(s, A([Clmint.0()) } € S since variable y has another oc-

currence in S, the substitution {y/[B]min(s,4([c] should be performed

mine)}
in every other term in S. However, the substitution term of y depends on y itself.

Therefore, the algorithm halts with failure in this case. O

4.5.2 Generalized merging rule

We have seen that in PLFC, due to the disjunctive interpretation of fuzzy con-
stants, the unification (in the classical sense) between fuzzy constants is not
allowed. However, as variable weights are interpreted as conjunctive informa-
tion, (fuzzy) unification is allowed between variable weights and fuzzy constants
and it is implicitly performed by the general resolution rule GR and computed
through a necessity measure of matching between fuzzy events. For instance,

given a context My ., applying the GR inference rule to

98 On the semantics and automated deduction for PLFC

(-p(z) Vo, A(z)) and (p(B),a),
we conclude
(¢, min(a, N(m(A) | [m(B)]a))),

where

N(m(A) | [m(B)]a) = ue[i?(%)]a Fim(a) (w)-

Hence, as already pointed out by Dubois et al. (1996,1998b), resolution in
PLFC produces conclusions which are all the stronger as variable weights are

large. Indeed, with the resolution rule GR

N(m(4) | [m(B)la) > N(m(A") | (n(B)]a)
if
Pm(A) (©) > pim(ary (u) for each u € [m(B)]q.
Before developing the refutation by resolution proof procedure, we stress
that in PLFC an extension of the merging rule 3.5 proposed by Dubois et al.
(1996,1998b) holds. Let us first introduce two new definitions about substitu-

tions.

Definition 4.22 (renaming) A substitution of the form 6 = {x1/t1,....,zp[tn}

is called a renaming if the substitution terms t1,...,t, are different variables.

Definition 4.23 (variant) Let Ey = (p(T), f1) and Ex = (¢(¥), f2) be two
PLFC clauses, where fi and fo are valid valuations functions involving at least
the set of variables T and Y, respectively. E, is a variant of Es if there exits a
renaming 6 such that no variable of E1 omitted in the domain of 0 appears in

the range of 0, and o(Z)0 = (7).

The following generalized merging rule is an extension of the one proposed
by Sandri and Godo (1999) and it corresponds to the following pattern:
(‘p(f)a fl): (So(y)a f2)

(¢(y), max(f10, f2))
where 6 is a renaming such that (¢(T), f1) is a variant of (¢(7), f2)- It can be

[GM],

proved that this inference rule is sound, but we can show more.

Proposition 4.3 If 0 is a renaming such that (o(T),f1)) is a wvari-
ant of (p(), f2), then, for each context My, the set of PLFC
clauses {(o(%), f1), (0(@), f2)} is semantically equivalent to the PLFC clause

(¢(¥), max(f10, f2)).

45. Automated deduction 99

Proof: If 8 is a renaming, then, for each possibilistic model 7 : My, — [0,1],
© Epire (0@, 5) i m ERfpe (9@), 00 iff 7 ERipe (9(@)6, /10) iff
© Epirc (9@): £16).

Now, m =3 1we {(0@), £16), (@), f2)} iff, for each M € My, max(1 —
(M), lp(@)llv) > max(f16, f>). Thus, iff 7 =570 (9(7)), max(f10, f2)). ™

The usefulness of the GM inference rule can be verified by means of a simple

example.

Example 4.7 Let A, B and C be three imprecise object constants of sort o,
and let My, be a context such that

1. U={U, =N}

2. m(A) ={1,2},
m(B) = {2,3}, and
m(C) ={1,2,3}.

Let us suppose we have the following PLFC clauses:
sl: (p(z), A(z))

s2: (p(y), B(y))

s3: (=p(C),1)

Resolving s1 and s3 we conclude (L, 0), which is the same result we obtain when
we resolve s2 and s3. Therefore, without the use of the merging rule, we only
obtain (L,0) as final result. However, sl is a variant of s2 then, if s1 and s2

are fused together we obtain

(p(y), F(y)), with f(y) = max(A(y), B(y))

which resolved with s3 finally yields

(L, f(ICh)),

where,
f([Cl1) = N(max(m(A),m(B)) | [m(C)]1)
= infyem(o) max(fima) (), tm(B)(w))

= infue{l,z,s} max(llf{l,Z}(u)a H{2,3} (u))
= 1.

100 On the semantics and automated deduction for PLFC

Notice in the previous example that s1 and s2 can be either clauses of a knowl-
edge base, or the resolvents from a previous resolution step. Therefore, the
generalized merging rule GM must be applied over each pair of clauses of a
knowledge base, before starting the refutation proof procedure, and after each
resolution step during the proof procedure.

Finally, precise object constants appearing in the logic component of PLFC
clauses can be transformed into variable weights. Indeed, a PLFC clause of the

form
(¢(z,0a), £(9)),

where a is a precise object constant and Z C g, is semantically equivalent to the
PLFC clause

(¢(2,1), min(f(g), a(t))),

where t is a variable such that ¢t € §. On the other hand, we have seen that in
PLFC (i) unification (in the classical sense) between precise and non-precise ob-
ject constants is not allowed; (ii) (fuzzy) unification is performed between object
constants and variable weights; and (iii) the merging rule GM can be used to get
larger variable weights. This points out that before applying the GM inference
rule to a knowledge base, it is interesting to transform each precise object con-
stant (appearing in the logic component of clauses) into variable weights. Hence,

given a context My ,, we define the following transformation rule:

(v(z,a), £(9))
(p(Z,t), min(f(y), a(t))) [TR],

if ¢t is a variable such that ¢ ¢ § and a is a precise object constant, i.e.

Pm(a)(w) = 0, for each u € U such that u # m(a), and fiy,(q)(m(a)) = 1.
The usefulness of the TR inference rule can be verified by means of a simple

example.
Example 4.8 We extend Example 4.7 with a precise object constant a of sort

o such that
1, ifu=1
Hm(a) (U) =

0, otherwise.

Suppose now that we have the following PLFC clauses:

45. Automated deduction 101

s3: (-p(C),1)
where, in the context of Example 4.7,
m(B) ={2,3} and m(C)={1,2,3}.

On the one hand, Algorithm 4.1 fails for p(a) and —p(C), and thus, s1 and s3
cannot be resolved. On the other hand, resolving s2 and s3 we conclude (L, 0),
and clauses s1 and s2 cannot be merged. However, s1 is semantically equivalent

to the variable weight clause:
s1’: (p(z),a(x))
Now merging s1’ with s2 we obtain
(p(y), max(a(y), B(y))),

which resolved with s3 finally yields (L, 1). |

4.5.3 Refutation procedure

Given a context My, refutation by resolution proof method is extended to
PLFC as follows. Let K = {(g;, fi) | i =1,...,n} be a set of PLFC clauses and
let (¢, f) be PLFC query.

1. Negate (¢, f) as stated in Definition 4.15; let (C1, f1),-- ., (Cm, f1,) be the
obtained PLFC clauses.

2. K'+— KU{C1,f]),--,(Cm, f1)}-

3. Search for a deduction, in the context context determined by U and m,
of (L,0), by applying the GR, GF, GM and TR inference rules from K’
repeatedly.

4. K |=%£“FC (p, min(B, f)), where 8 € [0, 1] can be seen as a proof threshold.

We design the PLFC refutation proof procedure as a function described next:

function Refutation_Procedure

input
K : Set of PLFC clauses

102 On the semantics and automated deduction for PLFC

U : Collection of non-empty domains

m : Interpretation of object constants over U /* context My, */
(¢, f) : PLFC query

B : Necessity degree /* proof threshold */

output

entails : boolean

auxiliary variables
K': Set of PLFC clauses /* K extended with —(yp, f) */
RL : Set of PLFC literals /* set of resolved literals x/

begin
K':= K U Negation((, f));
K' := Fusion(K');
K' := Threshold(K', U, m, B);
K' := Equivalent(K');

K' := Transformation(K');

K' := Merging(K");

RL := (;

entails := Proof-Procedure(K', U, m, 8, RL);
return(entails)

end function Refutation_Procedure

where function Negation returns the set of clauses obtained by negating the
query (¢, f) following patterns of Definition 4.15; function Fusion applies the
generalized fusion rule GF to those clauses of the knowledge base such that
some variables appear in the valuation side but not in the base formula; func-
tion Threshold eliminates from the knowledge base the clauses such that the
valuation function cannot be evaluated to a value § > 3; function Equivalent
transforms, following Propositions 4.1 and 4.2, each fuzzy constant of a base
formula of the knowledge base into a imprecise but non-fuzzy constant; function
Transformation transforms all precise constants present in base formulas of the
knowledge base into variable weights; function Merging applies the generalized
merging rule GM over the knowledge base; and finally, function Proof Procedure
verifies, by successively applying the GR, GF, GM and TR inference rules, if

the necessity of obtaining the contradiction L from the knowledge base is > f.

45. Automated deduction 103

Hence, if the function call
Refutation_Procedure(K, U, m, (v, f), B)

returns true, we have that the necessity of the query (i, f) being true, given the

knowledge in K and the context My, is > 3, i.e.

K EYve (o, min(B, f)).

Notice that the Refutation_Procedure function can be easily adapted for provid-
ing the highest necessity degree of the query being true given the knowledge in
K.

As already pointed out (see Example 4.7), during the refutation process
the GM inference rule must be applied after each resolution step. Therefore,
the Proof Procedure function cannot be oriented to a resolvent clause, and
thus, the search space consists of all possible orderings of the literals in the
knowledge base. Next we describe the Proof Procedure function which, for each
resolution step, is based on chronological backtracking and the search strategy
is depth-first.

function Proof Procedure

input
K : Set of PLFC clauses
/* knowledge base extended with the negation of the query */
U : Collection of non-empty domains
m : Interpretation of object constants over U /* context My, */
B : Necessity degree /* proof threshold */
RL : Set of PLFC literals /#* set of resolved literals */

output

derives : boolean

auxiliary variables
Ci, Cy, C' : PLFC clause
Ly, Ly : PLFC literal
0 : mgs
RL' : Set of PLFC literals
K' : Set of PLFC clauses

104 On the semantics and automated deduction for PLFC

begin
if ((L,0) € K and § >) then derives: = true;
else
for (each clause Cy € K) do
for (each literal Ly € C; such that Ly ¢ RL) do
/* assume that C; has the general form (L; Vy, fi),

where f; is a valid valuation function */

for (each clause C; € K) do
for (each literal Ly € C;) do
/* assume that (3 has the general form (La V4, f2),

where fy is a valid valuation function x/
if (0 = mgs(Ly1, Ly, U, m) and 0 # fail) then

C = ((¢ V)8, min(f1, f2)0);

C := Fusion_r(C);

if (Threshold_r(C, U, m,)) then

/* even some variables of (' have not been instantiated,

function Threshold_r returns false as soon as the
valuation function of C cannot be evaluated, in the

context My ,,, to a necessity degree > [*/
C := Equivalent_r(C);

C := Transformation_r(C);
K' := Merging_r(K, C);
RL' := RLU{L;};
if (Proof-Procedure(K', U, m, 8, RL'")) then
derives : = true;
end if
end if
end if
end for
end for
end for
derives : = false;
end if
return(derives)

end function Proof Procedure

45. Automated deduction 105

where function Fusion_r applies, if necessary, the GF inference rule to the re-
solvent clause of C; and Cy; function Threshold_r determines if the valuation
function of the resolvent clause can be evaluated to a value > 3; function Equiv-
alent_r transforms, following Propositions 4.1 and 4.2, each fuzzy constant that
should be present in the base formula of the resolvent clause into an impre-
cise but non-fuzzy constant; function Transformation_r transforms each precise
constant of the base formula of the resolvent clause into a variable weight; and
finally, function Merging_r applies the GM inference rule over the knowledge

base and the resolvent clause. Hence, if the function call
Proof_Procedure(K, U, m, 3, 0)

returns true, we have that (L,d), with § > 3, can be derived from K, in the
context determined by U and m, by successively applying the GR, GF, TR and

GM inference rules.

Proposition 4.4 Given a particular context My,,,, the notion of proof in
PLFC by refutation using the GR, GF, TR and GM inference rules, written
l—g’z"Fc, is sound wrt the PLFC semantics, that is, for each set of PLFC clauses
K, a PLFC query (p, f) and a threshold 8

if K F5lee (o,min(f, B)), then K 9 we (¢, min(f, 8)).

Proof: Direct consequence of the soundness of refutation in PLFC and the sound-
ness of the GR, GF, TR and GM inference rules.]

Example 4.9 PLFC can be used for temporal reasoning. Let us consider a rule
for the diagnosis of a disorder called Brucellosis described by Godo and Vila
(1995) and already used in the context of PLFC by Sandri and Godo (1999). To

facilitate comprehension, the following abbreviations are used:

BI for Begin of the Inoculation

EI for End of the Inoculation

B.IP for Begin of the Initial Period

E_IP for End of the Initial Period

B_.OFP for Begin Undulating Fever Period
E_.OFP for End of the Undulating Fever Period
B_IA for Begin of the Intervertebral Affection
EIA for End of the Intervertebral Affection

106 On the semantics and automated deduction for PLFC

We represent in PLFC the rule diagnosing Brucellosis as:

r: (=FuzzDist(B_I,B_IP,z) v
—FuzzDist(B_IP,E_IP, z) v
—FuzzDist(B.IP,B_.OFP, z3) \Y
—FuzzDist(B.OFP,E_OFP,z,) V
~FuzzDist(B.OFP,B_IA, zs5) Y
~FuzzDist(B.IA,E_IA,z) v

Brucellosis, min(0.9, f(21, 22, 23, 24, 25, 26)))

where FuzzDist(-,-,-) is a predicate expressing the “fuzzy temporal distance”

between two events, z;, for i = 1,...,6, are variables of sort days, and

(21, 22,23, 24,25, 26) = min(less_.month(z1),less_hal f_month(zs),
some_period(z3), between_week _two-month(zys),

less_two_years(zs), between_month_year(zg)).

Let us now suppose that we have a patient with the following data: “It is
almost sure that the initial period of his disease began about 20-25 days after
the inoculation and it lasted 10 days. The patient remembers he went through
an undulating fever period of approximately one month, starting more or less
one month after the initial period. Finally, the patient began to suffer from an
intervertebral pain approximately one year and a half after the fever began and
he is sure it went on for almost 1 year”.

This data can be represented in PLFC as follows:
sl: (FuzzDist(B_I, B_IP,about 20 — 25_days),0.9)
s2: (FuzzDist(B_IP,E_IP,about_10_days),1)
s3: (FuzzDist(B.OF P, E_OF P, approx_-one_month),0.8)
s4: (FuzzDist(BIP,B.OF P, more_or_less_one_month),0.7)
s5: (FuzzDist(B_OFP, B_IA,approx_one_year_and_a_half),0.7)
s6: (FuzzDist(B_IA,E_IA,almost_one_year),1)

Now, taking the knowledge base K = {r,s1,s2,s3,s4,s5,s6}, the query

(Brucellosis, 1), and the context

LU= {Udays = [0,1080]};

45.

Automated deduction 107

. m(less_month) = [1,30],

m(less_hal f month) = [1,15],

m(some_period) = [1,1080],

3

(

(

(

(between_week _two_month) = [7,60],
(lesstwo_years) = [1,660],
(between_month_year) = [30,360],
(about_20 — 25) = [17; 20; 25; 28],
(
(
(
(
(

3

3

3

3

about_10) = [8;9;11;12),
approx_one_month) = [20; 25; 35;40],

more_or_less_one_month) = [12; 25; 50; 63],

3

3

approz_one_year_and_a_hal f) = [500; 520; 560; 580], and
m(almost_one_year) = [325; 340; 350; 365].

m

The Refutation_Procedure function return true for each threshold g < 0.7. This

means that from K and (—Brucellosis,1), in the context determined by U

and m, the Proof-Procedure function derives (L,0.7), where 0.7 stands from
min(0.9,0.9,1,0.7,0.8,0.7,1,) with

0

= min(N([1,30] | [17; 20; 25; 28]0.0), N([1, 15] | [8;9; 11;12],),
N([1,1080] | [12;25; 50; 63]0.7), N([7,60] | [20; 25; 35; 40]o.5),
N([1,660] | [500; 520; 560; 580]0.7), N ([30, 360] | [325; 340; 350; 365]))

= 1

We then have proved that Brucellosis explains the patient’s symptoms with a

necessity of at least 0.7. a

Chapter 5

A fuzzy possibilistic logic
based on Godel

infinitely-valued logic

5.1 Introduction

PLFC provides a powerful framework for reasoning under possibilistic uncer-
tainty and representing disjunctive and conjunctive vague knowledge (see Sec-
tion 3.3), but, due to variable weights, has some computational limitations. On
the one hand, the current proof method for PLFC (refutation by resolution) is
not complete (see Section 4.4), and does not allow us to define an efficient proof
procedure (see Section 4.5). Indeed, during the proof process, in order to get
higher unification degrees, a merging rule must be applied after each resolution
step, and thus, the proof procedure cannot be oriented to a resolvent clause and
the search space consists of all possible orderings of the literals in the knowl-
edge base. On the other hand, since unification (in the classical sense) between
fuzzy constants is not allowed and it is performed through variable weights,
clauses with variable weights are strictly necessary in PLFC. And finally, in case
we transform PLFC clauses into a Horn-rule syntax-style, the interpretation of
object constants depends on whether they appear in the antecedent or in the

consequent of a rule. For instance, the PLFC clauses

109

110 A fuzzy possibilistic logic based on Godel infinitely-valued logic

s1: (—qVp(B),1)

s2: (-p(B)Vgq,1)

which, if B is an imprecise but non-fuzzy constant, are interpreted as
sl: “~qV[Iz € B, p(z)]”

s2: “dz € B, —p(z)] V'

have to be represented in a Horn-rule syntax-style as
s1’: (¢ = p(B),1)

s2’: (p(B) = ¢,1)

and thus, they are interpreted as:

sl “¢g— [z € B, p(z)]”

s2: “Vz € B, plx)] = q”

Therefore, in this case, (fuzzy) constants are interpreted as conjunctive informa-
tion if they appear in the antecedent of a Horn-rule, and as disjunctive informa-
tion, otherwise.

Due to these limitations, we turn our attention to a possibilistic language
based on definite clauses with fuzzy constants expressing (disjunctive) vague
knowledge. Within this restricted framework our aim is to define a logic pro-
gramming language for reasoning under possibilistic uncertainty and represent-
ing vague knowledge, but, as in classical logic programming systems, this lan-
guage enables us to define an efficient proof procedure based on a complete
calculus and oriented to goals.

In this chapter we first define a general fuzzy possibilistic logic based on the
propositional Godel infinitely-valued logic (called PGL). Then, we focus our at-
tention on the possibilistic logic programming language with fuzzy propositional
variables that results from considering the Horn-rule fragment of PGL. In the
next chapter, we extend this fragment of PGL with both fuzzy constants and a
fuzzy unification mechanism based on a necessity-like measure which preserves
completeness for a particular class of formulas. In our opinion, this is a key

feature that justifies by itself the interest of such a logic programming system.

5.2. The underlying fuzzy logic: Godel logic 111

The chapter is organized as follows. In Section 5.2 we recall the syntax and
the many-valued semantics of the underlying fuzzy logic, i.e. the propositional
Godel infinitely-valued logic. In Section 5.3 we extend the language of proposi-
tional Godel logic to allow possibilistic reasoning. In Section 5.4 we describe the
uncertainty sublogic that our proof method can deal with. Finally, in Section 5.5
we prove that the proof method is complete for determining the maximum degree

of possibilistic entailment of fuzzy propositional variables.

5.2 The underlying fuzzy logic: Godel logic

Our aim in this chapter is to define a propositional logic programming language
for reasoning under possibilistic uncertainty and vague knowledge. Moreover,
such a language must enable us to define an efficient proof method, based on
a complete calculus, for determining the maximum degree of possibilistic belief
with which a fuzzy propositional variable can be entailed from a knowledge base.

On the one hand, fuzzy propositional variables provide us a suitable rep-
resentation model in situations where there is vague, incomplete or imprecise
information about the real world. For instance, the fuzzy statement “Peter
is about_35 years old” can be represented by a fuzzy propositional variable
Peter_is_about_35. Thus, if about_35 denotes a crisp interval of ages, say [30, 40],
the fuzzy propositional variable Peter_is_about_35 is interpreted in possibilistic

terms as
“J z € [30,40] such that Peter is z years old.”

So, as fuzzy constants in PLFC, fuzzy propositional variables can be seen as
(flexible) restrictions on an existential quantifier.

On the other hand, since we want to deal with fuzzy propositional variables
in the language, the truth evaluation of formulas cannot be Boolean but many-
valued, and thus, again as in PLFC, the possibilistic logic programming language
has to be based on a many-valued logic. We take Gddel logic us underlying fuzzy
logic.

The reason for choosing Goédel logic as the underlying many-valued logic
where to model fuzziness is two-fold: first, truth-functions of Gdodel logic are
purely ordinal, that is, they are definable just from the ordering of the truth

scale (see Section 2.2), no further algebraic operations are required, and thus,

112 A fuzzy possibilistic logic based on Godel infinitely-valued logic

the use of this logic is in accordance with the simplest understanding, in terms
of an ordering, of what a fuzzy, gradual property can be; and second, and non
negligible at all, we show that Gddel logic is fully compatible with an already
proposed and suitable extension of necessity measures for fuzzy events, in the
sense that Godel logic allows us to define a well behaved and featured possibilistic
semantics on top of it.

Next we briefly recall the syntax and the many-valued semantics of proposi-
tional Goédel fuzzy logic (see Section 2.2 for an extended overview).

The language of propositional Godel fuzzy logic is built in the usual way from

e a (countable) set of (fuzzy) propositional wvariables, for instance,
Peter _is_about_35;

e connectives A and —; and
e the truth constant 0.

The semantics of propositional Goédel fuzzy logic is given by interpretations
I of propositional variables into the unit interval [0,1] which are extended to
arbitrary formulas by means of the following rules:
1(0) = 0,
IpAy) = min(I(p),I(¢)),

_)L it I(e) <I(y)
We—=v) = { I(y)), otherwise.

5.3 Possibilistic reasoning over Godel logic:
PGL

We have seen that fuzzy propositional variables are suitable for representing
vague information as in the statement “Peter is about_35 years old”. Now,
we are interested in extending the fuzzy propositional language to allow fuzzy
reasoning under possibilistic uncertainty which leads us to a more expressive

language. For instance, the statement
“it is almost sure that Peter is about_35 years old”
is represented in this setting by a certainty-weighted fuzzy proposition

(Peter_is_about_35,0.9),

5.3. Possibilistic reasoning over Godel logic: PGL 113

where the certainty value 0.9 expresses how much the fuzzy statement “Peter is
about_35 years old” is believed in terms of necessity measures.

As in PLFC, certainty weights are employed to model statements of the form
“p is alpha-certain”,

where ¢ represents vague, incomplete or imprecise knowledge about the real

world. In this framework, this is formalized as
“p is certain with a necessity of at least a”

and is represented by a certainty-weighted Godel logic formula (¢,). We refer
to Godel fuzzy logic extended with certainty-weights as possibilistic Godel logic,
denoted hereafter as PGL.

Definition 5.1 (PGL formula) A PGL formula is a pair of the form (p,a),
where @ is a Gddel logic formula and a € [0,1] is a lower bound on the belief on

@ in terms of necessity measures.

Within the standard possibilistic model of uncertainty, belief states are mod-
eled by normalized possibility distributions on a set of Boolean interpretations.
However, as in PLFC, the truth evaluation of a Godel logic formula ¢ in each
interpretation I is a value I(p) € [0, 1], and thus, each formula does not induce
a crisp set of interpretations, but a fuzzy set of interpretations [¢], defining
pe1(I) = I(yp), for each interpretation I. Therefore, in this setting, possibilis-
tic models are normalized possibility distributions on the set 7 of all possible
interpretations I of propositional variables into the unit interval [0,1]. Then,
to measure the uncertainty induced on a Gdodel logic formula ¢ by a possibilis-
tic model 7 : Z — [0,1], we have to consider some extension of the notion of
necessity measure for fuzzy sets.

In order to provide PLFC with a formal possibilistic semantics, in Section 4.2,
we considered two different extensions of the standard notion of necessity mea-

sure. Namely,

(i) the necessity measure for fuzzy sets proposed by Dubois and Prade (1991c),
i.e.
N*([¢] | m) = inf 7(T) = i (D),
where = is the reciprocal of Gédel’s many-valued implication defined as

z=>y=1if x <y, and x = y =1 — z, otherwise; and

114 A fuzzy possibilistic logic based on Godel infinitely-valued logic

(ii) the necessity measure commonly used in Possibility Theory as a measure

of pattern matching of fuzzy events (Dubois and Prade, 1998a), i.e.
N(lg] | 7) = inf max(1 - 7(D), 1 (1).

In Section 4.2 we showed that N* is not a good candidate semantics® for PLFC.
However, it allows us to define a well behaved and featured possibilistic semantics
on top of Godel logic, in the sense that it allows us to define a complete modus
ponens-style calculus for the Horn-rule fragment of Gddel logic (see Section 5.5).
It is not difficult to see that the necessity measure N* on fuzzy sets is char-

acterized by the following set of axioms. Namely, let Q be an arbitrary set and
let N*:[0,1] — [0,1] be a measure on the set of fuzzy sets of 2. Consider the
following postulates:

N*1 N*(Q)=1

N*2 N*0)=0

N*3 N*(AN B) =min(N*(A4), N*(B))

(N*(NierA;) = infier N*(4;))

1, if 1 —a < N*(A)

N*4 if A is crisp, then N*(AU a) =
N*(A), otherwise

where panp(w) = min(pa(w), ps(w)), for each w € Q, and A U o denotes the
fuzzy set defined by the membership function pgyue(w) = max(a, pa(w)), for
each w € Q.

Indeed, the characterization of the necessity measure N* differs from the

characterization of N just in axiom IN*4 (see Section 4.2), which for N is
N(AU a) = max(a, N(A)).

Theorem 5.1 If N* satisfies the above postulates, then there exists
m: = [0,1] such that, for all fuzzy subset A of Q,

N*(4) = inf n(w) = pa(w),

where = is the reciprocal of Gédel’s many-valued implication.

Proof: Let A be an arbitrary fuzzy subset of Q. Define w(w) =1 — N*({w}).
Since A can be put as A = Nyea{{w} U pa(w)}, by N*3, we have that

N*(4) = Inf N*({w] U pa(w),

1Recall that the possibilistic semantics for PLFC is based on N.

5.3. Possibilistic reasoning over Godel logic: PGL 115

but, by N*4,

L if 1—pa(w) < N*({w})

N*({w} U pa(w)) = { N*({w}), otherwise.

But, N*({w}) = 1 — n(w), then

1 if m(w) < pa(w)

1 —m(w), otherwise

N*({w} U pa(w)) = {

and thus, N*({w} U pa(w)) = 7(w) = pa(w). Hence, N*(A) = inf,cq m(w) =
pa(w).]

Now let us go into formal definitions.

Definition 5.2 (possibilistic model) Let T be the set of (many-valued) Gédel
interpretations over a given (countable) set of fuzzy propositional variables. A
possibilistic model is a normalized possibility distribution m : T — [0,1] on the

set of interpretations T.

Definition 5.3 (necessity evaluation) Let # : T — [0,1] be a possibilistic
model. The necessity evaluation of a Gédel logic formula ¢ given by 7 is defined

N*(fg] | m) = jnf () = gy (D),

where i, (I) = I(p) and = is the reciprocal of Gidel’s many-valued implication.

Definition 5.4 (possibilistic satisfiability) A possibilistic model m : T —
[0,1] satisfies a PGL formula (¢, @), written 7 =paL (¢, @), iff N*([¢] | 7) > a.
Thus,

T Eprcr (p;a) iff 7(I) < max(l — a, p,)(T))

for each interpretation 1 € T.

Definition 5.5 (possibilistic entailment) Let K be a set of PGL formulas.
We say that K entails another PGL formula (p,), written K |=par (p,),
iff every possibilistic model m : T — [0,1] satisfying all the formulas in K also
satisfies (p,).

We refer to a possibilistic model 7 satisfying all the PGL formulas in a set K as
a model of K.

116 A fuzzy possibilistic logic based on Godel infinitely-valued logic

We propose now a Hilbert-style axiomatization? of possibilistic Gddel logic.
Axioms of PGL are:

e azioms of Gddel logic weighted by 1 (see Section 2.2) plus
e the triviality axiom (y,0); and

PGL inference (deduction) rules are:
e generalized modus ponens:

(p =, 0a)
(¢, B)
(¢, min(a, B))

o weakening:

(p,a) .
(0.p) 1P

Then, the notion of proof in PGL is as usual (deduction relative to PGL axioms
and rules) and it is denoted as Fpgr. The soundness of this axiomatic system

is given in the next theorem.

Theorem 5.2 (soundness of PGL) PGL is sound with respect the possibilis-

tic entailment. Thus,

if K FpgL ((,0,(1) then K IZPGL (cp,a).

Proof: Soundness of the axioms and the weakening rule is straightforward, and
thus, we only prove the soundness of the modus ponens rule. This reduces to
check, for each possibilistic model 7 on Z, that if N*([o = 9] | 7) > «a and
N*([g] | 7) > 8, then N*([¢] | m) > min(a,).

The two conditions amount to, for each interpretation I € Z, n(I) = I(¢ —
) > a and w(I) = I(y) > . Thus, 7(I) = min(I(y = ¥),I(p)) > min(e, B).
But, by Godel semantics, min(I(p — ¢),I(¢)) = min(I(¢),I(e)) < I(¥).

Therefore, 7(I) = I(1)) > min(a, 3), for each interpretation I € Z, and thus,
N*([¢] | 7) > min(e, B). n

Unfortunately we have not been able so far to prove whether PGL is complete

or incomplete. So it remains as an open question to be solved in the near future.

2Notice the analogy with the classical possibilistic logic (Dubois et al., 1994c). Indeed,
here we have just replaced the axioms of classical propositional logic with those of Goédel fuzzy

logic.

5.4. A possibilistic logic programming language 117

5.4 A possibilistic logic programming language

In the previous section we have defined PGL, a general possibilistic logic over
Godel fuzzy logic. Our aim in this section is, as in classical propositional logic
programming systems, to define a sublanguage for logic programming which en-
ables us to design an efficient proof algorithm, based on a complete calculus for
computing the maximum degree of possibilistic entailment of a fuzzy proposi-
tional variable, called goal, from a set of formulas.

To this end, we restrict ourselves to a Horn-rule sublanguage of Godel fuzzy

logic, i.e. to formulas of the form:

LA NApr—q

with k > 0, where py,...,pg,q are (fuzzy) propositional variables, in the tradi-
tional logic programming style. As usual, we refer to the conclusion ¢ and the
set of premises p1,...,pr as the head and the body, respectively. We distinguish
between two types of formulas in this sublanguage: facts when k¥ = 0 (empty
body) and are simply written ¢, and rules, otherwise. Finally, we define a PGL
clause as a PGL formula (¢,) such that ¢ is either a fact or a rule.

For PGL clauses we develop a simple and efficient calculus which does not
need the whole logical apparatus of the general possibilistic logic PGL of the
previous section. But before, we need to introduce some extra definitions and

results.

Definition 5.6 (maximum degree of possibilistic entailment) The maz-
imum degree of possibilistic entailment of a goal q from a set of PGL clauses P,
denoted as ||q||p, is the greatest lower bound o € [0,1] on the belief on g such
that P |=pgr, (q,a). Thus,

llgllp = sup{a € [0,1] | P Fpar (¢, @)}-

Proposition 5.1 The mazimum degree of possibilistic entailment of a goal q
from a set of PGL clauses P is the least necessity evaluation of q given by the
models of P. Thus,

llgllp = inf{N*([g] | 7) | = FpcrL P}.

Proof: We define oy = sup{a € [0,1] | P EpcL (¢,a)} and az = inf{N*([q] |

7T) | ™ |:PGL P}

118 A fuzzy possibilistic logic based on Godel infinitely-valued logic

az > ar: Asag =sup{a € [0,1] | P EpcL (g,a)}, we have that P E=per (g,)
for each & < ay. Then, for each model 7 of P, N*([q] | m) > « for each
o < a1. Thus, ap = inf{N*([g] | 7) | # Epar P} > a for each a < a;.

Hence, as > a;.

as < ar: As as = inf{N*([q] |) | # Epar P}, we have that N*([¢] | 7) > an
for each model m of P, that is, P [Epgr (¢, a2), and thus,

ay <sup{a € [0,1] | P |=par (¢, @)} = oa.
|

Corollary 5.1 Let P be a set of PGL clauses and let s be a propositional vari-
able. Then, P Epat (s, ||s]lp)-

Proof: By Proposition 5.1, ||s||p = inf{N*([s] | =) | # Epgr P}, and thus,
N*([s] |) > ||s||p for each model 7 of P. Therefore, P EparL (s, ||s||p)- |

To provide our possibilistic logic programming language with a complete
calculus for determining the maximum degree of possibilistic entailment we only
need the triviality axiom and a particular instance of the generalized modus

ponens rule introduced in the previous section:
Aziom: (p,0).
Generalized modus ponens:

(p1 A== Apr = ¢,Q)
(p17131)7 LR (pkaﬂk)
(QJmin(aaﬂla EER JBk))

[MP).

Obviously, the axiom is a valid PGL clause and the M P rule is sound as already

proved in the previous section.

Definition 5.7 (degree of deduction) A goal q is deduced with a degree of
deduction a from a set of PGL clauses P, denoted as P+, (g,), iff there
exists a finite sequence of PGL clauses C1,...,Cp, such that C,, = (q,a) and,
for each i € {1,...,m}, it holds that C; € P, C; is an instance of the aziom or

C; is obtained by applying the M P rule to previous clauses in the sequence.

Next, we define the syntactic counterpart of maximum degree of possibilistic

entailment.

5.5. Completeness of the proof method 119

Definition 5.8 (maximum degree of deduction) The mazimum degree of
deduction of a goal q from a set of PGL clauses P, denoted |q|p, is the greatest
a € [0,1] such that P Fpegp (g,0).

As the only inference rule of our proof method is the generalized modus ponens,
within the framework of logic programming in which P is always a finite set of
PGL clauses, there exists a finite number of proofs of a goal ¢ from P, and thus,

the above definition turns into

|q|P = maX{Oé [S [0, 1] | P |_};G'L (qaa)}

5.5 Completeness of the proof method

In this section we prove that the PGL deduction mechanism, based on the trivi-
ality axiom and the generalized modus ponens rule, is complete for determining
the maximum degree of possibilistic entailment of a goal ¢ from a set of PGL

clauses P. But before, we need to prove some extra results.

Proposition 5.2 If the only formulas in P with head q are recursive®, then

llgll> = |g|p = 0.

Proof: Let Iy be an interpretation such that In(¢) < 1 and Iy(p) = 1 for each
propositional variable p # ¢. Now, let m be a possibility distribution with the

1, ifI=1
W(I)Z{ ’ 1 0

0, otherwise.

following definition:

Since the only formulas in P with head ¢ are recursive, we have that 7 Epgr P
and N*([q] | @) = 0. Therefore, by Proposition 5.1, ||g||p = inf{N*([¢] | =) |
m Epar P} = 0. On the one hand, for each propositional variable s, |s|p > 0,
and thus, |g|p > 0 and |g|p > ||¢||p.- On the other hand, by the soundness of
the modus ponens rule, ||s||p > |s|p for each propositional variable s, and thus,

llallp > lglp- Then, [lgllp = |g|lp =0. n

Proposition 5.3 Let (p,3) and (p — q,7) be two PGL clauses such that p # q.
Then, ||q||{(p,6),(p—>q,'y)} = min(ﬂa’)/)'

3A recursive formula, is of the form p; A -+ Apg A g — g with k& > 0.

120 A fuzzy possibilistic logic based on Godel infinitely-valued logic

Proof:

L |ldll{@.8),(p—>a,v)} = min(B,7): By the soundness of the modus

ponens rule, {(p7 /8), (p - q, '7)} 'ZPGL (qamin(ﬁﬂ’)): and thus,
lallt(p.8),(p—a,m3 = sup{a € [0,1] | {(p, B), (» = ¢,7)} Ercr (¢,@)} > min(B,7).

2. llalli@s),+amy < min(B,7): By Proposition 5.1, llallx.6),0—am} =
inf{N*([q] | m) | 7 Erar {(»,B),® = q,7)}}. We show that for some
model 7 of {(p,3), (p = ¢,7)}, we have that N*([g] |) = min(5,~), and
thus, [|qll¢(p.8),(p—q,y)} < min(B,7). We distinguish two cases.

Case v < 8. Let Iy and I; be two interpretations such that Io(p) = 1 and
In(g) < 1 -+, and I;(p) = I;(¢) = 1. Now, let m be a possibility
distribution with the following definition:

1, ifI=1I
7)) =< 1—v, ifI=1Ig
0, otherwise.

It is easy to check that © Epar (p,8) and © =par (p = ¢,7) and
N*(lg] |) = v = min(B,7).
Case g <. Let us consider a further interpretation I, such that

L(p) < Ix(¢) < 1— . Now, let us define the following possibility dis-

tribution:
1, ifI=1,
) =< 1-8, f I=1,
0, otherwise.

Again it is easy to check that 7 Epgr (p,8) and 7 Epar (p = ¢,7)

and N*([g] |) = B = min(B, 7). .

Proposition 5.4 Let P be a set of PGL clauses, let v be a value of the real
interval [0,1], and let Iy and I be two interpretations such that, for each propo-
sitional variable s,

03 if ||s P S;—y

ey = { & i s

1, if [|sllp >~
and 11 (s) = 1. If is a possibility distribution with the following definition:
1, ifI=1I
M) =4 1—v, ifI=1I,

0, otherwise

5.5. Completeness of the proof method 121

then w IZPGL P.

Proof: Suppose that m Epgr P. If m fpgr, P, it must exist at least a clause of

P, say (p, /), such that = fEpar (¢, 8). We distinguish two cases:

Case (¢,8) = (¢,8). On the one hand, because of the definition of =, if
7 Epar (¢,0), it must be that 7(Ip) = Io(g) < B, and thus, it must be
that Ip(¢) = 0 and v < 8. On the other hand, as (¢, 3) € P, we have that
P [=pgr (g,8) and ||gl[p = sup{a € [0,1] | P Epgr (¢,)} > B. Now, as
B > ~, we have that ||q|]|p > . Therefore, because of the definition of Iy,
we get that Ip(q) = 1, i.e. 7 Epar (¢, 5)-

Case (¢,8) = (r = ¢,8). On the one hand, because of the definition of , if
T ¥par (r = ¢,B) it must be that 7(Iy) = Io(r — ¢) < B, and
thus, In(r) = 1 and Iy(q) = 0 and v < B. On the other hand, be-
cause of the definition of Iy, if Io(r) = 1, ||r]lp > . If we define
o, = ||r||p, by Corollary 5.1, P =pgr (r,ar) and a, > . Moreover,
as (r = ¢,B) € P, we have that P Epgr (r — ¢,8). Therefore, by the
soundness of the modus ponens rule, P Epgr, (¢,min(a,,)), and thus,
llgllp = sup{a € [0,1] | P =pcL (¢,)} > min(a,, 8). Now, as a;, > 7 and
B > 7, we have that ||¢||p > min(a,, 8) > 7. Then, because of the defini-

tion of Iy, we get that In(¢) =1, i.e. 7 =par (r — ¢,0).
|

Proposition 5.5 Let P be a set of PGL clauses and let (r — q,7) be a clause
of P. If llalle > llgllp\{(r=qi)ys then llalle = llalle i p) rsam)-

Proof: We define o, = ||r||p.

L llglle > llgll{r,am),(r—q,)3: On the one hand, as a, = ||r||p, by Corol-
lary 5.1, P E=pgr (r,a,). On the other hand, as (r — ¢,7v) € P, we have
that P =pgr (r = ¢,7). Then, # E=pgr {(r,a;),(r = g,7)} for each
model 7 of P. By Proposition 5.1, ||¢||p = inf{N*([¢] |) | = Epcr P}

and |lgll{(r,an),(roq,m3 = If{N*([q] | 7) | 7 EpPar {(r,ar), (r = ¢,7)}}
Therefore, we get that [lg|lp > [|gll{(r,an),(r— a3 -

2. llglle < llall{(rar),(r—amy: By Proposition 5.3, [lall{(ra.).(rsam) =
min(a,,7). Then, we must prove that ||¢||p < min(a;,~). To this end,

we define P’ = P\{(r — ¢,~v)} and we prove first that min(a,,7y) > [|¢||p'.

122

A fuzzy possibilistic logic based on Godel infinitely-valued logic

(a) ar > |lgllp: Suppose that a. < |[lg]lpr. As P'= P\{(r = ¢,7)},
Irllp = llrllp and |Irllpr < llgllp- Then, defining a, = [|r||pr,
we have that min(a,,v) < |lg||lpr- Now by Proposition 5.3,
lallcra,),(r—sq,m3 = minaz, 7).

Then, if a, < ||q||p, we have that ||q||{(r,a,.:),(r—>q,'y)} < |lg||pr, and
thus, max(|lgl|p, [1gll{(r,00),(r—am3) < llallpr; i (lgllprogrosgmy <
llgllpr- Therefore, a, > ||q||p:-

(b) v > |lgllp: If |lgllp > |lgl|pr, there must exist at least a possibility
distribution 7 such that 7 Epgr P’ and 7 FEpgr (r — ¢,7). If
m Epar (r — g,7), there must exist at least an interpretation I
such that I(r) > I(q¢) and #(I) > I(q) and 1 — w(I) < 7. Now, by
Proposition 5.1, ||¢||pr = inf{N*([¢] |) | # Epcr P'} = inf{l —
7() | 7 Epgr P' Aw(I) > I(q)}, and thus, ||q||pr < 7.

Now, let Iy and I; be two interpretations such that, for each propositional

variable s,
0, if ||S||P’ < min(aT';’Y)
Iy(s) = . .
la if ||8||P’ > mln(aTa’Y)

and I, (s) = 1. And, let 7 be a possibility distribution with the following

definition:
1, lf 1= Il
7(I) = ¢ 1 —min(a,,v), if I=T
0, otherwise.

Because of the definition of = and Proposition 5.4, 7 =pgr, P'. And, as
llgllpr < min(a,,y), we have that Io(¢) = 0 and N*([q] | 7) = min(a,,).
Finally, if v < a,, it is easy to check that 7 E=pgr (r — ¢,7) even though
Io(r) = 1. And, if o, < v, then ||r||pr < @, and Iy(r) = 0, and thus,
m Epar (r = gq,7) as well.

Therefore, 7 |=pgr, P and N*([¢] | 7) = min(a,,7v). And, by Proposi-

tion 5.1, ||¢||lp = inf{N*([¢] | 7) | * =pcr P} < min(a,,7).
|]

Proposition 5.6 Let P be a set of PGL clauses and let (g — p,~y) be a clause
of P. 1t holds that ||q||lp = llgl| P\ {(g—p,)}-

Proof: We define P' = P\{(¢ = p,~v)}. Then, we must prove that ||¢||p = [|¢||p'.

5.5. Completeness of the proof method 123

1. |lgllp > llgllp': By Proposition 5.1, ||q||p = inf{N*([¢] | 7) | # EprcL P}
and ||¢||pr = inf{N*([g] |) | # Epcr P'}. Now, as P' = P\{(q = p,7)},
if m Epgr P then m Epgr P', and thus, inf{N*([q] | 7) | # Epcr P} >
nf{N*(ia) |) | 7 Fopas P'h

2. |lgllp < |lgllpr: We proceed by induction on n, where n is the number of

clauses of P'.

If n = 1, then it must be that P’ contains only either one
certainty-weighted fact or rule. We assume that ¢ occurs in P’ as
the head of a non recursive formula; otherwise, by Proposition 5.2,
laller = llallprugg—pmy =0

Suppose that P’ contains only the the certainty-weighted fact (g, 8). Then,
llgllpr = sup{e@ € [0,1] | P’ Epar (¢,@)} > 8. Now, let Iy and I be two
interpretations such that Io(¢) < 1— 4 and Io(p) = 1 for each propositional
variable p # ¢, and I, (s) = 1 for each propositional variable s. And, let 7

be a possibility distribution with the following definition:

1, ifI=1;
Ty =< 1-p8, ifI=1I,
0, otherwise.

It is easy to check that 7 Epgr (¢,8) and @ Epgr (¢ = p,v) and
N*([g] |) = 8. Then, by Proposition 5.1, ||lg|lp = inf{N*([q] | =) |
7 Epar {(¢,8), (¢ = p,7)}} < B, and thus, |lgllp < |lgl|p-

Suppose that P’ contains only the the certainty-weighted rule (r — ¢, 8).
Let Iy be an interpretation such that Io(r) < Ip(g) < 1 and Io(p) = 1.
And, let 7 be a possibility distribution with the following definition:

1, ifI=1
7T(I) — ’ 1 0
0, otherwise.

It is easy to check that 7 =pgr (r = ¢,8) and © Epar, (¢ — p,7y) and
N*([q] | #) = 0. Then, by Proposition 5.1, ||¢/|lp = inf{N*([q] | =) |
T Epar {(r = ¢,0),(¢ = p,7)}} = 0 and |lgllpr = inf{N"([q] | 7) |
™ f=par (r = ¢,)} = 0, and thus, |lq/|p = [lgllp = 0.

Suppose now that for each set P" that contains n clauses it holds that

l7llp > [Ir[lprug(r—ss,6) for each propositional variable r, and sup-

124

A fuzzy possibilistic logic based on Godel infinitely-valued logic

pose that the program P’ contains n + 1 clauses. Then, we prove that
llgllp > |lqllp, where P = P'U{(¢ — p,7)}

Since we are assuming that ¢ occurs in P’ as the head of a non recursive
formula, let (p,) be a non recursive clause of P’ such that ¢ is the head
of p and B > 4, for each non recursive clause (,d) of P’ such that ¢ is
the head of 1. We distinguish two cases:

Case (¢,3) = (q,8). As (¢,B8) € P', we have that ||q||pr = sup{« € [0,1] |
P’ Epar (g,0)} > 8. Now, let Iy and I be two interpretations such
that In(q) < 1-2, In(p) = 1 for each propositional variable p # ¢, and
I, (s) = 1 for each propositional variable s. And, let 7 be a possibility

distribution with the following definition:

1, ifI=1;
M) =< 1-8, ifI=1,
0, otherwise.

On the one hand, we know that 8 > ¢ for each non recursive clause
(1,0) of P’ such that ¢ is the head of 1, and thus, 7 Epgr P'.
On the other hand, it is easy to check that = =per (¢ = p,7) and
N*([g] | ®) = B. Then, 7 Epgr P and, by Proposition 5.1, we
have that ||q||p = inf{N*([¢] |) | # =pcr P} < B, and thus,

lgllp < llallp-
Case (p,) = (r — ¢,). For each program P’ it follows that ||g||pr >
lgllp\i(r—q.8)}- Now,
o If [lgllp = llgllp\{(r—q,8)}> by the induction hypothesis, [|q||p: >

||Q||P’U{(q—>p,’y) -

o If |lgllpr > |lgllp\{(r—q,8)}> by Proposition 5.5, [lg|lpr =
llallt(r,a),(r—q,8)}, Where a. = ||7||pr, and, by Proposition 5.3,
||Q||{(r,ar),(rﬂq,ﬂ)} = min(ar,,@). Now, let Iy and I; be two inter-

pretations such that, for each propositional variable s,

Lo(s) = { 0, if [|s]|p < min(ay,)

1, if ||s|]|p» > min(a,,)

and I;(s) = 1. And, let 7 be a possibility distribution with the

5.5. Completeness of the proof method 125

following definition:

1, ifI=1I;
7(I) = ¢ 1—min(a,,B), f I=1I
0, otherwise.

Because of the definition of m and Proposition 5.4, we have

that 7 |Epgr P'. And, as ||g||pr = min(a,,), we have that

Io(g) = 0 and Io(¢ — p) = 1, and thus, 7 EpaeL (¢ — p,7) and

N*([¢q] | #) = min(a,,8). Therefore, 7 Epgr P and, by Propo-

sition 5.1, ||¢|lp = inf{N*([¢] | 7) | 7 Erer P} < min(a,,S),

and thus, [lgllp < min(ay, 8) =[]l .
Theorem 5.3 (completeness) Let P be a set of PGL clauses and let g be a
goal. Then, ||q||p = |g|p-

Proof: By the soundness of the modus ponens inference rule, ||g||p > |g|p- There-
fore, we must prove ||q||p < |¢|p and we proceed by induction on n, where n is
the number of clauses of P.

If n = 1, then it must be that P contains only either one certainty-weighted
fact or rule. We assume that ¢ occurs in P as the head of a non recursive formula;
otherwise, by Proposition 5.2, ||¢|lp = |g|lp = 0.

Suppose that P contains only the certainty-weighted fact (¢,v). Let Io and
I; be two interpretations such that Iy(q) < 1 — v and I;(q) = 1. Now, let 7 be
a possibility distribution with the following definition:

1, ifI=1I,
7I) =< 1—7v, ifI=14
0, otherwise.

It is easy to check that # =pgrL (¢,7) and N*([g] | #) = 7. Then, by Propo-
sition 5.1, ||¢|lp = inf{N*([¢] | =) | # ErcL (¢,7)} < 7. On the other hand,
lalp = max{a € [0,1] | (¢,7) Fpes, (@50)} = 7 and thus, lgllp < lqle-

Suppose that P contains only the certainty-weighted rule (r — ¢,7). Let
Iy be an interpretation such that Io(r) < Ip(¢) < 1 and let m be a possibility

distribution with the following definition:

1, ifI=1
T('(I):{ ;1L 0

0, otherwise.

126 A fuzzy possibilistic logic based on Godel infinitely-valued logic

It is easy to check that m Epgr (r — ¢,v) and N*([g] | #) = 0. Then, by
Proposition 5.1, ||g||lp = inf{N*([q] | 7) | # Eper (r = ¢,7)} = 0, and thus,
lallp < lalp-

Suppose now that for each set P’ that contains m clauses it holds that
||s|lp < |s|pr for each propositional variable s, and suppose that P contains
n + 1 clauses. Since we are assuming that ¢ occurs in P as the head of a non
recursive formula, let (¢,) be a clause of P such that ¢ is a non recursive for-
mula with head ¢ and v > 4, for each clause (¢,d) of P such that v is a non

recursive formula with head ¢g. We distinguish two cases:

Case (¢,7) = (g,7). Let Iy and I be two interpretations such that Ip(g) < 1—y
and Iy(p) = 1 for each propositional variable p # ¢, and I;(s) = 1 for each
propositional variable s. Now, let = be a possibility distribution with the

following definition:

1, ifI=1;
@)= 1—y, fI=1I,
0, otherwise.

Since v > § for each non recursive clause (1,d) of P such that ¢ is the
head of v, we have that = =pgr P and N*([q] |) = . Therefore, by
Proposition 5.1, ||g||lp = inf{N*([¢] | 7) | 7 Eprar P} < 7. On the other
hand, |g|p = max{a € [0,1] | P Fpq (¢,a)} > v, and thus, ||¢||p < |g|p.

Case (,7) = (p = ¢,7)- We define P' = P\{(p = ¢,7)}. Then, [lgllp >
llgllp - Now,

o If |lg|lp = |lgllp, by the induction hypothesis, ||¢||lpr < |g|pr, and
thus, [lg|lp < |q|p-

e If{|gllp > [lgl|p', by Proposition 5.5, [|lg[|p = [lgll{(p,a,),(»—q,7)}» Where
ap = ||pl|lp, and, by Proposition 5.3, ||q||{(p,ap)’(p_>qm} = min(ap, 7).
Now, by Proposition 5.6, ||p||p = ||p||p and, by the induction hypoth-
esis, [|pllpr < |p|p:. Since |p|p < |p|p and (p — ¢,7) € P, applying
the modus ponens inference rule, we get P 5, (¢, min(|p|p,7)),
with min(|p|p,y) > min(a,,7). Then, |¢g|p = max{a € [0,1] |

Prpar (¢,)} 2 min(|p|p,7), and thus, |g|p > min(ap,) = l4||p-
|

5.5. Completeness of the proof method 127

In the particular case that we do not allow recursive formulas in the language,
the underlying uncertainty logic of our logic programming system is syntactical
equivalent to the family of infinitely-valued propositional logics the interpreter
defined by Escalada-Imaz and Manya (1995) can deal with. The interpreter is
based on a backward proof algorithm for computing the maximum degree of
deduction of a propositional variable from a set of formulas whose worst-case
time complexity is linear in the total number of occurrences of propositional
variables in the set of formulas. We show below an example of PGL clauses the

interpreter can deal with.

Example 5.1 The maximum degree of deduction of the goal
friend_Mary_John from the set of PGL clauses

P = { (Mary_-is_young,0.8),
(John_is_young,0.9),
(Mary_-is.young N John_is_young — friend_-Mary_John,0.6) },

is 0.6 which corresponds with the deduction degree computed by the interpreter
when taking as triangular norm the min-conjunction function and as implication

Godel’s many-valued implication function. O

Chapter 6

A complete calculus for
PGL extended with

fuzzy constants

6.1 Introduction

In Chapter 5 we defined PGL, a general possibilistic logic with fuzzy propo-
sitional variables based on Gddel infinitely-valued logic, and we provided the
Horn-rule fragment of PGL with a complete modus ponens-style calculus for de-
termining the maximum degree of possibilistic entailment of a fuzzy propositional
variable from a set of clauses. Now in this chapter we extend the Horn-rule frag-
ment of PGL with both fuzzy constants and a semantical unification mechanism
based on a necessity evaluation of fuzzy events which preserves completeness for
a particular class of set of clauses. We refer to this extension as PGL™T.

In this framework, we formalize the notion of non-recursive and satisfiable
PGLT program and we prove, for this restricted class of programs further satis-
fying a context constraint, that the modus ponens-style calculus extended with
the semantical unification mechanism is complete for determining the maximum
degree of possibilistic belief with which an atomic formula with fuzzy constants

can be entailed.

The chapter is organized as follows. In Section 6.2 we present the syntax,

129

130 A complete calculus for PGL extended with fuzzy constants

the semantics and the logical inference of PGL*T. In Section 6.3 we formalize
the notion of non-recursive and satisfiable PGLT program. In Section 6.4 we
prove that the PGL* calculus is complete for determining the maximum degree
of possibilistic entailment of an atomic formula with fuzzy constants for the
mentioned class of programs satisfying a context constraint. And, in Section 6.5,
we define an efficient proof algorithm for determining the maximum degree of
deduction of an atomic formula with fuzzy constants from a non-recursive and
satisfiable PGL* program, which is the the maximum degree of possibilistic

entailment whenever the program satisfies the context constraint.

6.2 Adding fuzzy unification: PGL™

As we have already pointed out, our aim in this chapter is to extend the modus
ponens-style calculus of PGL to allow a semantical matching between fuzzy
knowledge based on a necessity evaluation of fuzzy events. For instance, given
the set of PGL clauses

P = { (Mary-is-middle_age,0.8),
(Peter_is_about_35,0.9),
(Mary_is-middle_age N Peter_is_middle.age — friend, 0.6) },

where Peter_is_about_-35 and Peter_is_middle_age are two fuzzy propositional
variables, the maximum degree of deduction of the goal friend from P is 0 unless
we were able to compute the necessity evaluation of a person to be middle_age
from the fact that the person is about_35 years old.

In this setting, for the sake of a more clear notation, we represent fuzzy
propositional variables by means of typed unary regular predicates' and sorted
fuzzy constants. Indeed, as object variables and function symbols are not allowed
in PGL™, the language still remains propositional and unary predicates give us a
more simple representation model without loss of expressiveness. For instance,
the fuzzy propositional variable Peter_is_about_35 is represented in PGLT by
the atomic formula

age_Peter(about_35),

where age_Peter is a classical predicate of type (years_old) and about_35 is a

fuzzy constant defined over the domain years_old. Hence, if about_35 denotes

1Tn the next chapter we extend PGL™ to the first-order case, and thus, as we did for PLFC,

we consider typed regular predicates of arity m.

6.2. Adding fuzzy unification: PGL™ 131

the crisp interval of ages [30, 40], the certainty-weighted atomic formula
(age_Peter(about_35),0.9)

is interpreted in possibilistic terms as “Jz € [30,40] such that age_Peter(z)” is
certain with a necessity of at least 0.9. So, as in PLFC, fuzzy constants can be
seen as (flexible) restrictions on an existential quantifier.

In the next section we formalize the syntax and the semantics of PGL™,
while in Section 6.2.2 we develop an inference mechanism for PGL*' based on
a possibilistic pattern matching measure which preserves completeness for a

particular class of clauses.

6.2.1 The PGL™ language: Syntax and semantics

The basic components of PGL™T are:

e Sorts of constants. A type is a tuple of sorts.

A set C of object constants (crisp and fuzzy constants), each having its

sort.

A set Var of primitive propositions.

A set Pred of unary regular predicates, each one having a type.

Connectives A and —.

Definition 6.1 (PGL* atomic formula) A PGLt atomic formula is either
a primitive proposition from Var or of the form p(A), where p is a predicate
symbol from Pred, A is an object constant from C and the sort of A corresponds

to the type of p.

Definition 6.2 (PGL™ clause) A PGL™ clause is a pair of the form (p,a),
where @ is either a fact or a rule built on PGL™ atomic formulas, and a € [0,1]
is a lower bound on the belief on ¢ in terms of necessity measures. We talk of a

unit PGLT clause when ¢ is a fact and of a general PGLt clause, otherwise.

With respect the underlying fuzzy logic described in Section 5.2, the main
differences are that now we extend the language with fuzzy constants and regular

predicates, and that we attach fuzzy constants with a sort. In doing so, we

132 A complete calculus for PGL extended with fuzzy constants

are introducing some minor changes in the semantics. Namely, interpretations
should map a sort into a non-empty domain, a fuzzy constant into a fuzzy set,
and a predicate symbol into a value of the domain attached with its type. Hence,

we need to provide a new notion of interpretation.

Definition 6.3 (PGL* interpretation) A PGL*% interpretation M =

(U,i,m) maps:
1. each sort o into a non-empty domain U,;
2. a primitive proposition into a truth value of the unit interval [0,1];
3. a predicate p of type (o) into a value i(p) € Uy; and

4. an object constant A (crisp or fuzzy constant) of sort o into a normalized
fuzzy set m(A) : Uy — [0,1]. We denote by pin,(a) the membership function
of m(A). When A is a precise constant, m(A) is a value of the domain U,

and it is also represented by o fuzzy set given by

1, if u=m(A4)

m u) =
fom(4) (1) { 0, for each u € U, such that u # m(A).

Remark that a PGL™ interpretation M = (U, 4,m) is a disjunctive interpretation
in the sense that i(p) is a unique value of the domain for each predicate symbol p.
Indeed, in contrast to PLFC, in PGLT fuzzy constants always express disjunctive

information. For instance, the following rule:
speaks_Mary({Spanish, French}) — visited_Mary({Spain, France})

is interpreted in PGL™T as

“if Mary speaks either Spanish or French,

then Mary has visited either Spain or France”,

and thus, in PGLT each imprecise constant is interpreted as disjunctive infor-

mation. However, in PLFC the above rule should be interpreted as:

“if Mary speaks Spanish and French,

then Mary has visited either Spain or France”,

and thus, conjunctive interpretations are needed in PLFC but have no sense in
PGL*.

6.2. Adding fuzzy unification: PGL™ 133

Definition 6.4 (truth value of a PGL" atomic formula) The truth value
of a PGLT atomic formula ¢ under an interpretation M = (U,i,m), denoted
by ||lellm, is just the truth value i(q) if ¢ is a primitive proposition q, and it is

computed as i, (4)(i(p)) if ¢ is of the form p(A).

The truth value of PGL*T atomic formulas extend to rules in the usual way by

means of the min-conjunction and the Gédel’s many-valued implication:

1, if min({|p1[In, - - - llpellv) < llgllm

lpr A~ Apr = gllm = .
llgllm, otherwise.

Remark that the truth value of a PGL™ atomic formula p(A) under an inter-
pretation M = (U, i,m) depends not only on the value i(p) assigned to p, but on
the fuzzy set m(A) assigned to the object constant A. Therefore, as in PLFC,
in order to measure the certainty of an atomic formula with fuzzy constants in
a possibilistic model, we cannot take into account all possible PGL™T interpreta-
tions, but only those which share a common interpretation of object constants,
and hence which also share their domain. This leads us to define the notion of
PGL™ context (cf. Section 4.3.2).

Let U be a collection of non-empty domains and let m be an interpretation
of object constants over U (or over [0,1]V in the case of fuzzy constants). We
define the PGL* contezt determined by U and m, denoted by My, as the set
of PGLT interpretations having U as domain and m as interpretation of object
constants.

Now we are ready to introduce the notion of possibilistic model and possi-
bilistic entailment in a PGL* context My, .

Given a PGL™ context My, a PGL™ possibilistic model is a normalized
possibility distribution 7 : My, — [0,1] on the set of PGL™ interpretations
Muy,m. A possibilistic model 7 : My,m — [0,1] satisfies a PGL* clause (¢, a),
written 7 |=g’énL+ (p,), iff N*([¢] | m) > a, where

Nl [m) = | dnf 7 (M) = il
= being the reciprocal of Gédel’s many-valued implication?.
Finally, a set of PGL™ clauses P entails another PGL™ clause (p,a) in the

context determined by U and m, written P |:g’g”L+ (p, @), iff every possibilistic

2Remember that z = y = 1, if £ < y, and £ = y = 1 — z, otherwise.

134 A complete calculus for PGL extended with fuzzy constants

model 7 : My m — [0, 1] satisfying all the clauses in P also satisfies (¢, a). We
refer to a possibilistic model 7 : My, — [0, 1] satisfying all the clauses in a set
P as a model of P.

As in PGL, our aim is to provide PGL™ with a complete calculus for de-
termining the maximum degree of possibilistic entailment of a PGL™' atomic
formula, called PGLT goal, from a set of PGL* clauses. The notion of maxi-
mum degree of possibilistic entailment of PGL can be easily extended to PGL*
in the following way.

Given a PGL™ context My, .m,, the mazimum degree of possibilistic entailment
of a PGL™ goal ¢(C) from a set of PGL" clauses P, denoted by [|¢(C)||%™, is
the greatest lower bound « € [0,1] on the belief on ¢(C) such that P entails
(¢(C),a) in the context determined by U and m. Thus,

lg(@)IZ™ = sup{a € [0,1] | P =500+ (9(C),)}
Then, Proposition 5.1 and Corollary 5.1 extend to PGLT in the following way.

Proposition 6.1 Given a PGL' context My, m,

g™ = mt{N*([a(O)] | ™) | 7 s P}

Corollary 6.1 Given a PGL* context My,m, P |=g’gL+ @(C), lg)%™).

6.2.2 Extended inference with possibilistic pattern

matching

To provide PGL™' with a fuzzy unification mechanism we need a measure for
computing the necessity evaluation of a fuzzy constant B based on a different
fuzzy constant A, both of a same sort. Furthermore, this measure must enable us
to extend the modus ponens-style calculus of PGL in order to keep completeness
for determining the maximum degree of possibilistic entailment of a PGL* goal
form a set of PGL™ clauses in a particular context.

Again there are several alternatives. After a careful analysis we have chosen
the same type of measure used when defining the possibilistic semantics for
PGL*. Namely, given a PGL* context My, the necessity evaluation of B

based on a fuzzy constant A, both of a sort o, is defined as

N*(m(B) | m(A)) = nf (1) = iz (),

6.2. Adding fuzzy unification: PGL™ 135

where = is the reciprocal of Gddel’s many-valued implication.

At this point we are ready to extend the modus ponens-style calculus to al-
low a semantical unification of fuzzy constants through the above possibilistic
pattern matching measure. On the one hand, one can prove that the semanti-
cal unification between fuzzy constants can only be performed on unit PGL*
clauses. On the other hand, the possibilistic pattern matching measure pro-
duces unification degrees which are all the stronger as p,,(p) is large and pi,,(a)

is small. Indeed, given a PGL* context Mum
N*(m(B) | m(A)) > N*(m(B') | m(A)) if pms) > tim(sr)

and
N*(m(B) | m(4)) = N*(m(B) | m(A)) if pn(a) < fmar)-
This points out that it is interesting to have PGL™ clauses with the largest
possible body and the smallest possible head. Therefore, although there may
exist several approaches, we have finally decided to extend the calculus with the
following inference rules.
Given a PGL™ context My, the calculus for PGL* has the following triv-

iality axiom and inference rules:
Aziom: (p,0).

Generalized resolution:

(pAs—q(A)a)
(¢(B) At =1, [5)

(pAsAt— r,min(a,B)) [RE]
if fhn(ay < (B -
Fusion:
(p(4) As = q(D),)
(p(B) Nt — q(E),B) (FU]

(p(C) As At — q(F)min(a, §))
if Hm(C) < ma‘x(p’m(A)a/J’m(B)) and Hm(F) > ma'x(:u’m(D)a /J/m(E'))

Semantical unification:

(p(4), 0)
(), min(a, N+ (m(B) [m(A))) 0

where N*(m(B) | m(A)) = infucv, ftma)(v) = pmp)(u), = being the

reciprocal of Godel’s many-valued implication.

136 A complete calculus for PGL extended with fuzzy constants

Intersection:
(p(4),)
(p(B), B)
#(C),min(a, B) |
if Um(c) > min(pm(a), Bm(B))-
Resolving uncertainty: (b(A), 0)
p ,
®(®),D N

if By > max(l — a, fim(a))-

The following generalized modus ponens inference rule is the result of repeat-
edly applying the RE inference rule to a general PGL* clause and a set of unit
PGL* clauses, which can be obtained from a different set of unit PGL™T clauses

by applying the SU inference rule.

(pr A=+ Apr = g,0)
(pla/Bl)a trey (pkaﬁk)
(Q7 min(aaﬂh s 7/3/9))

Theorem 6.1 (soundness of the PGL* inference rules) For each PGL*
context Muy,m, the RE, FU, SU, IN and UN inference rules are sound with

respect to the possibilistic entailment of PGLT clauses.

[MP].

Proof:

RE: Given a PGL™ context My, ,,,, we must prove, for each possibilistic model
7 Mym — [0,1], that if = |:g’(";L+ pAs = q(A),a) and 7 gé"L+
(@B) At = 7,B) with fi,(a) < fmp), then @ |:g’(TL+ (pAsAt —
r,min(a, 8)).

Assume that 7 |:1€’<T;HL+ (pAs— q(A),a) and 7 |:g’g‘L+ (¢(B) At = 1,B).
This means that N*([p A s = ¢(A)] | 7) > a and N*([¢(B) At —
r] |) > B. The two conditions amount to, for each PGL™ interpre-
tation M € My, M) = [[pAs = ¢(A)|m > a and 7(M) =
llg(B) At = r||s > B. Therefore, 7(M) = min(|lpA s = ¢(A)||m, ||g(B) A
t = rllm) > min(a,), and thus, 7(M) = min(min(||p||lm, [|s|lm) —
la(A) g, min(lla(B)lise, [Hlse) = [Irlae) > min(a, B). As pimeay <
pm(By, we have that [lg(A)[lm < [lg(B)llm for each PGLT inter-

pretation M € My,,. Hence, #(M) = min(min(||p||lm,||s|m) —

6.2. Adding fuzzy unification: PGL™ 137

llg(B)|Inm, min([lg(B)||m; [ltllzva) = lIrllm) > min(a, 8). But, by resid-
uation®, min(||g(B)|lm, [[tllv) = lIrllv = [la(B)llm — (It = Irlln)
and min(min(||pl[n; [Isllm) = llg(B)lIm; la(B)llv — ([t = [lr{ln)) <
min(||pllm, [|s[lm) = ([t = [Irllm) = min(([plla, [s]lms [[Ellv) —
Irlm = [lpAsAt = r|lm. Then, 7(M) = |[pAsAt = r||m > min(a, 3)
for each PGL™ interpretation M € My,,,,. Hence, N*([pAsAt — r] |
) > min(a, §), and thus, 7 Izg’é"L+ (pAsAt— r,min(a,B)) as well.

FU: Given a PGL™T context My, ,, we must prove, for each possibilistic model
7 : Mym — [0,1], that if = |=g’gL+ (A)As = g(D),a) and = g’gLJr
(p(B) At = q(E),B), then 7 E=piy . (p(C) As At = ¢(F)min(a,)
whenever pin,cy < max(fm(a), bm(B)) AN fm(Fy > MaX(Lm (D), bm(E))-

Assume that 7 g’g;"L+ (p(A) As = ¢(D),a) and 7 |:g’gL+ (p(B) A
t — ¢(E),B). This means that N*([p(A) A s = ¢D)] | m) > a
and N*([p(B) At — ¢q(E)] | m) > p. The two conditions amount
to, for each PGL™ interpretation M € My, 7(M) = |[p(A) As —
¢(D)|[|m > @ and #(M) = ||p(B) At — ¢(E)||m > B. Therefore, 7(M) =
min(||[p(4) A s = ¢(D)||lm, |lp(B) At = ¢(E)||m) > min(a, 8), and thus,
m(M) = min(min([[p(4)|m, [[sllm) = llg(D) v, min([lp(B)|Inm, [[Ellv) —
llg(E)lIm) > min(a, B).

Now,

min (min(||[p(A)||m; [[s[lm) = llg(D)lm,
min(|[p(B)||am; [[t]lm) = llg(E)]lm)

< min(min(|[p(A)llm; [[sllv) = max((lg(D)llm; [lg(E)),
min([|p(B)m, [[tlm) = max({lg(D)lIm, llg(E)lIn))
max (min([[p(A4)[[m; [|s|nm),
min(|[p(B)|lm; [[t]lm)) = max(ll¢(D)llm; llg(E)lm)-

IN

Then, as

max(min(|[p(A)[|m, [|sl|n), min(([p(B)||nm, [It]lm))
>

min(max(||p(A)[|m; [p(B)lIm), lIslln; [[£]]n1),

3If (®, =>) is a residuated pair, it holds that: (i) ((z ® y) = z) = (z = (y = 2)); and
[(r=>y@Hy=2<z==2

138

A complete calculus for PGL extended with fuzzy constants

we have that

max(min(||p(A)||nm, lIsllv), min((lp(B)|ln, lItlln)) —

max([lg(D)lIm, [lg(E))
<

min(max([|p(A)|n, [p(B)lm), lIslim, [[Elln) —
max(|¢(D)|lm, [lg(E)lIm),

and thus, w(M) = (min(max([|p(A)llm, [[P(B)llm), lIsllm, [[tllv) -
max([|g(D)||m; [|g(E)||m)) > min(e, 5).

Finally, as [[p(C)llm < max(||p(A)llm, [[p(B)llm) and [lg(F)llm =
max([|g(D)llm, [|g(E)llm), we have that

(M) = (min(|[p(C)lIm; lIslim, lItlm) = [lg(F)[lm) 2> min(e, 5).

Hence, 7(M) = ||p(C)AsAt = q(F)||m > min(a, B) for each PGL™T inter-
pretation M € My, and thus, 7 |:g’gL+ (p(CYNsAt — q(F), min(a, 5))

as well.

SU: Given a PGL*t context My,,,, we must prove, for each possibilistic

model 7 : My, — [0,1], that if 7 ES7 . (p(A), @), then = ST .
(p(B), min(a, N*(m(B) | m(4)))).

Assume that = |=g’gL+ (A),a). This means that, N*([p(4)] | 7) > a,

and thus, 7(M) = ||p(A)|lm > a for each PGL* interpretation
M = (U,i,m) € My, . Then, we have the following consecutive inequali-

ties:

L (M) = pm(a)(i(p)) > «

2. min(7(M) = fm(a)(i(P)); ttm(a)(i(P)) = pm(m)(i(p))) >
min(e, fim(4)(i(p)) = m(B)(i(p)))

3. min(m(M) = pm(4)(((P)); tm(a) (i(P)) = pm(B)(i(D)))
(M) = pm(s)(i(p))

4. m(M) = fn(p) (i(p)) > min(a, pim(a) (i(p)) = tm(s) (i(p)))

5. infMemy,, (M) = pim(s)(i(p)) >
infmeny,,, MIN(Q, fhon(4) (1(D)) = pm(s) (((D)))

6. infmermy,,, 7(M) = pm(m)(i(p)) >
min(e, infMemy,, Hm(a)(i(P)) = pm () (i(P)))

IA

6.2. Adding fuzzy unification: PGL™ 139

7. N*([p(B)] | 7T) > min(a,infueuo ,um(A)(u) = Pm(B) (u))
8. N*([p(B)] | m) > min(a, N*(m(B) | m(A)))

Thus, 7 Izg’g‘LJr (p(B), min(a, N*(m(B) | m(A)))) as well.

IN: Given a PGL™T context My,m,, we must prove, for each possibilistic model

T Mum — [0,1], that if 7 =27 . (p(A),a) and 7 =9my . ((B),B),
then 7 =570 . (p(C), min(a, B)) whenever fiy(cy > Min(fm (), fm(B))-

The two conditions amount to, for each PGL* interpretation
M = (U,i,m) € My, (M) = [[p(A)llm > @ and (M) = [|p(B)|lm >
8. Therefore, #(M) = min(||p(A)||m, |[[p(B)|lm) > min(e,8) and thus,
(M) = min(pm(a)(i(p)), km(p) (i(p))) > min(e,). Then, 7(M) =
Pm(c)(i(p)) > min(a, B), and thus, m |=PGL+ (C), min(a, 8)) as well.

UN: Given a PGL* context My, ,,, we must prove, for each possibilistic model
T Mym — [0,1], that if 7 |_PGL+ (p(A),a), then 7 |=PGLJr (p(B),1)
whenever fi,,,(g) > max(1l — @, ftm(4))-

Assume that 7 |—PGL+ (A),). This means that, N*([p(4)] | n) > a,
and thus, m(M) < max(1 — @, fism(a)(i(p))) for each PGL' interpreta-
tion M = (U,i,m) € Mym. Therefore, 7(M) < ppm(B)(i(p)), and thus,

™ |:g’é"L+ (p(B),1) as well.
||

As for the Horn-rule fragment of PGL, the PGL™ proof method is defined by
derivation but relative to the PGLT inference rules. Thus, given a PGL™T context
Mu,m, a fact or rule ¢ is deduced with a degree of deduction o from a set of
PGL* clauses P, denoted by P +¥; e+ (9,), iff there exists a finite sequence of
clauses C1,...,Cp, such that Cp, = (p,a) and, for each i € {1,...,m}, it holds
that either C; € P, C; is an instance of the triviality axiom or C; is obtained by
applying the RE, MP, FU, SU, IN or UN inference rules to previous clauses in
the sequence.

Finally, the syntactic counterpart of maximum degree of possibilistic entail-
ment is defined as follows. Given a PGL* context My, the mazimum degree of
deduction of a PGLT goal ¢(C) from a set of PGL* clauses P, denoted |¢(C)|%™,
is the greatest a € [0,1] for which there is a proof of (¢(C), @) from P. Thus,

g(C)[2™ = sup{a € [0,1] | P FLT , (4(C),)}

140 A complete calculus for PGL extended with fuzzy constants

Example 6.1 Let around_16, between_14_16 and between_16_18 be three fuzzy
constants of sort years_ old, and let age_John be a predicate symbol of type
(years_old). Furthermore, let My, be a PGL* context such that

LU= {Uyears_old = [0, 120](years)};

2. m(around_16) = [13;15;17;19],
m(between_14_16) = [12;14; 16; 18], and
m(between_16_18) = [14;16; 18; 20].

Now, given the set of PGL™ clauses

P = { (age_John(between_14_16),1),
(age_John(between_16_18),1) },

we have that
N*(m(around-16) | m(between_14_16)) =0

and
N*(m(around-16) | m(betweenl6_18)) = 0,

and thus, applying the SU inference rule to the clauses of P we can only prove
the PGL* goal age_John(around_16) with a necessity degree of 0. However,
each model 7 : My, — [0,1] of P verifies that

m(M) < min(||age-John(between_14_16)||m, ||lage_-John(between_16_18)||m),
for each PGL™T interpretation M = (U,4,m) € My,p,, and thus,
7T(M) S min(,um(between_léi_lﬁ) (Z (age—JOhn))a /J/m(between_16_18) (Z(age—JOh”)))

Therefore, aS Km(around-16) (U) > min(ﬂm(between_m_lﬁ) (u);,u/m(between_lﬁ_lS) (u))
for each u € [0, 120](years), we have that

ﬂ-(M) < HFm(around_16) (Z (age—JOhn))
for each PGL™" interpretation M = (U,4,m) € Muy,,,. Hence,

P =55+ (age-Tohn(aroundss), 1),

%™ = 1.

and thus, ||lage_-John(around-16)|p On the other hand, applying

the IN inference rule to the unit clauses (age_John(between_14_16),1) and

(age_John(between_16_18),1) we can conclude
(age_John(around-16),1),

and thus, |age_John(around_16)|%™ = ||age_John(around_16)||%™. O

6.3. PGL™ programs 141

6.3 PGL™ programs

As already mentioned, the PGLT proof method defined in the last section is
complete for determining the maximum degree of possibilistic entailment of a

PGL™ goal in the frame of a particular class of sets of clauses or programs.

Definition 6.5 (PGL™ program) A PGL" program is a triple P = (P,U,m),
where P is a finite set of PGLT clauses; U is a collection of non-empty domains;
and m is an interpretation of object constants over [0,1)V such that for each
object constant B appearing in P there exist u,v € U,, o being the sort of B,
such that pi,p)(v) = 0 and py,py(v) = 1.

Notice that U and m determine a particular PGL™ context My, in the sense
of Section 6.2.1. Moreover, given a PGL* program P = (P,U,m) and a PGL™
atomic formula p(B) appearing in P, there exist at least two interpretations
My, M, € My, such that ||p(B)|lm, = 0 and ||p(B)||m, = 1.

Definition 6.6 (non-recursive program) Let P = (P,U,m) be a PGL" pro-
gram. We say that P is a non-recursive program if P does not contain recursive
formulas. A recursive formula is of the form p1 A --- A pp A g(B) — ¢q(C),
with k > 0, or is the result of combining two or more formulas of the form
S1A - ANsym Ap(A) = g(B) andri A--- A1 A g(C) = p(D), with m,l > 0.

Definition 6.7 (satisfiable program) Let P = (P,U,m) be a PGL™ program.
We say that the set of clauses P is satisfiable in the context determined by U
and m if there exists a normalized possibility distribution m : My, — [0,1] that

satisfies all the clauses in P.

The idea is that we restrict ourselves to non-recursive and satisfiable PGL*
programs. Next we justify this choice.

On the one hand, given a program context My ,, in the next sec-
tion we prove that the sets of clauses P = {(p(A),a), (p(A) — ¢(B),3)} and
P' = {(¢(B), min(8,a))} are equivalent as far as we are interested in the entail-
ment degree of a goal ¢(C), i.e. [|g(C)[|%™ = [|g(C)||%™. However, this intuitive

behavior may be lost when we consider programs with recursive formulas, i.e.

Um _ Um
2O (gay,00.ata)=a8).8)) = 19O ()00, (a(B) min(s,0)}

142 A complete calculus for PGL extended with fuzzy constants

iff either 8 < « or for each u € Uy, such that pi,(p)(u) <1 - a, (0,) being the
type of g, it holds that p,(4)(v) < ftmm)(u). Thus, let My, be a program
context and let A, B and B’ be three object constants of sort o, such that, for

each u € U,,,

1, if frm(a) (W) < pan(B) (1)
it

pm(B)(u), otherwise.

Then, the PGL™T clause (q(4) — ¢(B),B) is logically equivalent to the unit
PGL* clause (q(B'), (), and thus,

U,m _ Um
2O ¢atay,m.aar=a).80r = 14O (g(a),0),(a(B),0))

Moreover, for any object constant E of sort o,

Um _ Um
2O ta(my,00.aa)—aB).801 = MO g(m),0), 008,001
and thus, the recursive clause (g(4) — ¢(B),B3) does not depend on

||q(A)||?(’;T(‘E))}- Let us see this result by means of an example which can be

easily computed.
Example 6.2 Consider the set of PGLT clauses

P = { (age-Mary(young) A Mary_studies(university) —
age_M ary(between_1926), 0.6),
(age-M ary(between_35.40),1),
(Mary_studies(university),1) },

and the PGLt goal age Mary(about 40), where young, between 1926,
between_35-40 and about 40 are object constants of sort years_old. Further,
consider a PGL™ context My, such that

LU= {Uyears_old = [0, 120](years) };

2. m(young) = [14;17; 35; 40],
m(between_19_26) = [18; 19; 26; 27],
m(between_35_40) = [34; 35; 40; 41], and
m(about_40) = [39;40; 40; 41].

Now, if extended_between_-19_26 is an object constant of sort years_old and

1, ifu<14 or u>40

Nm(eztended_between_19_26) (u) = .
Hm(between_19_26) (u)y otherwise,

6.3. PGL™ programs 143

we have that
llage_Mary(about_40)||5™ = ||age_Mary(about_40)|| %™,

where
P' = { (Mary_studies(university) —
age_Mary(extended_between_19_26), 0.6),
(age_Mary(between_35.40), 1),

(M ary_studies(university), 1) }.

And, in Section 6.4.2 we prove that
llage_Mary(about_40)||5™ = |lage_M ary(about_40)|| %" = 0.6,

where
P" = { (age_M ary(extended_between_19_26),0.6),

(age_M ary(between_35_40),1) }.

What happens here is that, a recursive Horn-rule of the form ¢(4) A p = ¢(B)
is logically equivalent, in G6del’s logic, to the formula p — (q(4) — ¢(B)) and,
in our framework, this is equivalent to p — p(B’), where the fuzzy constant B’

is point-wisely defined as

Hm(Br) (U) = Km(A) (U) =G Hm(B) (U),

with =g being G6del’s many-valued implication, and thus, each recursive clause

can be transformed into a non-recursive one. Then, as

Hm(extended_between_19_26) — Mm(young) =a Hm(between_19_26) >

the recursive clause is logically equivalent to the clause
(M ary_studies(university) — age_M ary(extended_between_19_26),0.6),

and thus, the fact that

Um —
||age—MaTy(young)”{(age_Mary(between_35_40),1)} =0
is not considered for determining ||age_Mary(about_40)||%™. However, our in-
tention was to express that “Mary can be assumed to be between 19 and 26

years old (with a necessity > 0.6) whenever we know (with a necessity > 0.6)

144 A complete calculus for PGL extended with fuzzy constants

she is young and studies at the university”, and thus, to be able to compute

llage_M ary(about_40)||%™ solely from the set of clauses
P* = {(age-Mary(between_19_26),0), (age_-M ary(between_35-40),1)},
hence to obtain
|lage_Mary(about_40)||%™ = ||lage_M ary(about_40)||%" = 0.

O

Therefore, even though it would be possible to define an inference pattern for
transforming recursive formulas into non-recursive ones based on the above re-
sult, the system user could be negatively surprised by some of the computations
done by the system, as we have seen in the example.

On the other hand, satisfiable PGLT programs enjoy the following result.

Proposition 6.2 Let P = (P,U,m) be a satisfiable PGLT program and let
(p,a), with a > 0, be a PGLT clause. If P entails (p,a) in the context de-
termined by U and m, there exists at least an interpretation M € My, such
that ||¢|lm = 1.

Proof: On the one hand, if P is satisfiable there exists at least a normalized
possibility distribution on the set of PGL* interpretations My, say mo, that
satisfies all the clauses in P, and thus, there exists at least a PGL™ interpretation
in My m, say My, such that mo(Mg) = 1. On the other hand, if P |:ggL+ (p,)
with @ > 0, we have that mo |:g’gbL+ (p, @), and thus, ||p||Mm, = 1. [

In contrast to the classical case, PGLT programs are not always satisfiable.
Moreover, as we show in the next example, the satisfiability of a set of PGL*

clauses depends on the interpretation of object constants.
Example 6.3 Let P = (P,U,m) be a PGL™ program such that

P = { (age_-Mary(about_18) — age_Peter(around_19),0.7),
(age_Peter(about_18),0.8),
(age_M ary(about_18),0.9) }

and m(about_18) = [17;18;18;19](years). Then, for instance, P is satisfiable
in the context determined by U and m if the object constant around-19 is
interpreted as the trapezoidal fuzzy set [17;18;20; 21](years), but it is not if its
interpretation is [17;19; 19; 21](years). O

6.4. Completeness of the PGL* proof method 145

Hence, in order to define a sound and coherent logic programming system,
we restrict ourselves to non-recursive and satisfiable programs, simply refereed

in the rest of the chapter as PGL™T programs.

6.4 Completeness of the PGL™ proof method

In this section we describe and discuss two kinds of constraints we argue our
PGL* programs must satisfy so that the modus ponens-style calculus extended
with the semantical unification mechanism to be complete. First, we focus on
what we call modularity constraint, which, in contrast to PLFC, we show it can
be fulfilled by a pre-processing step of programs by means of the GR and FU
inference rules. Then, we provide the completeness result for programs satisfying
what we call context constraint.

For the sake of simplicity, from now on, we assume that given a collection
of non-empty domains U and an interpretation m of object constants, for each
normalized fuzzy set F' : U, — [0, 1] there exists an object constant A of sort o
such that m(A) = F. However, only a numerable set of normalized fuzzy sets is

needed.

6.4.1 Modularity constraint

The satisfaction of the modularity constraint by a PGLT program ensures that
all (explicit and hidden) clauses of programs are considered. Indeed, since fuzzy
constants are interpreted as (flexible) restrictions on an existential quantifier,
PGL* atomic formulas clearly express disjunctive information. For instance,
when A = {a4,...,a,}, p(A) is equivalent to the disjunction p(a1) V- --V p(a,).
Therefore, when parts of this (hidden) disjunctive information occur in the body
of several program formulas we also have to consider all those new formulas that
can be obtained through a completion process of the program which is based on
the RE and FU inference rules. Let us briefly discuss this requirement by means

of one example.
Example 6.4 Let P = (P,U,m) be a PGL™ program such that
o P={(p(4) = ¢,1),(p(B) = r(C),1),(r(C") = ¢,1), (p(D), 1) };

e m(A) ={ay,...,an},
m(B) ={b1,...,bm},

146 A complete calculus for PGL extended with fuzzy constants

m(C) ={c1,..., ¢k},

m(C") = {c1,---Chy Cht1,---,C1},
m(D) = {a1,b1}, and

m(AU B) = m(A) Um(B).

We can easily check that the maximum degree with which ¢ can be deduced from
P by applying the MP and SU inference rules is 0. However, by the soundness

of the RE and FU inferences rules, we have that

{(p(B) = r(C), 1), (r(C") = ¢, 1)} Fpay+ (p(B) = ¢, 1)

and
{(p(4) = ,1), (p(B) = ¢, 1)} EGy+ (P(AUB) = g,1).

Hence, (p(A U B) — ¢,1) can be seen as a valid (hidden) clause of P and can
be obtained through the RE and FU inferences rules. When completing P with
(p(AUB) — ¢,1), the maximum degree with which ¢ can be deduced by applying
the MP and SU inference rules is 1. O

Therefore, the requirement of the modularity constraint of a PGL™T program can
be seen as a requirement of a completion process of the set of PGL* clauses which
can be performed as a pre-processing step based on the RE and FU inference
rules.

At this point we are ready to formalize the modularity constraint of a PGL*

program.

Definition 6.8 (valid clause) Let P = (P,U,m) be a PGL" program. We
recursively define the set of valid clauses of P, denoted by PT, in the following
way:

1. P C P+.

2. If (p = q(A4),a) and (¥ A q¢(B) = r(C),B) are two clauses of Pt such
that fiyma) < tm(B), then (p Ay = r(C),min(a, §)) is a clause of P+ as

well.

3. If (p(A) A ¢ = q(D),a) and (p(B) ANy — q(E),B) are two clauses
of Pt such that UPma) & PmB) ond pmB) £ HBma), ond C and
F are two object constants such that pm,(c)y = max(lm(a), bm(B)) ond
Pm(F) = MaX(lm(D)s bm(E)), then (p(C) A Ap — q(F), min(a, B)) is a
clause of Pt as well.

6.4. Completeness of the PGL* proof method 147

4. Only the clauses obtained by 1, 2 or 8 belong to PT.

Definition 6.9 (modularity constraint) Let P = (P,U,m) be a PGL' pro-
gram. P satisfies the modularity constraint if P = PT.

Definition 6.10 (basic clause) Let P = (P,U,m) be a PGL" program. A
clause (p,a) € P is a basic clause of P if (PT\{(p,a)})T = PT\{(p,a)}.

The following propositions establish the relationship between a PGL™ pro-

gram and its set of valid clauses.

Proposition 6.3 Let P = (P,U,m) be a PGL* program. If (p,a) € Pt, then

Pl_gg[,+ (‘P: Oé)-

Proof: For each clause (¢,a) € P, either (p,a) € P or there exists at least
a finite sequence C1,Cs,...Cy, of valid clauses of P such that Cp, = (¢,a),
Ci € P, Cy € P and, for each i € {3,...,m}, it holds that either C; € P or C;
can be obtained by applying the RE or FU inference rules to previous clauses in
the sequence. Hence, for each clause (p,a) € Pt, we have that P I—gCTLJr (p,a).

|

Proposition 6.4 Let P = (P,U,m) be a PGL* program. Then,

la@)IIF™ = lla(C)lIp"

Proof: On the one hand, by Proposition 6.3, P FY PG,L+ (p,a) for each clause
(p,a) € Pt. Therefore, by the soundness of the inference rules, P |=g’gLL+ (p,)
for each clause (p,a) € P*. On the other hand, we have that P C P*, and
thus, P* PGL+ (¢, B) for each clause (v,3) € P. Hence, w |_PGL+ P iff
T EYm per+ P for each possibilistic model 7 : MUm — [0,1]. Then, by Proposi-
tion 6.1, [lg(C)|&™ = inf{N*([(C)] | =) | 7 =52 . P} = inf{N*([q(C)] | m) |

'ZPGL+ Pt} = ||¢1(C)||g’fl u

Proposition 6.5 Let P = (P,U,m) be a PGLT program. Then, for each pred-
icate symbol q appearing in P in the head of a formula, there exists at least a

clause (p,a) € P such that the head of ¢ is q and (p, @) is a basic clause of P.

Proof: As the predicate symbol ¢ appears in P in the head of a formula, there
exists at least a clause (p,a) € P such that the head of ¢ is ¢. If (p,a) is

148 A complete calculus for PGL extended with fuzzy constants

a unit PGL* clause, obviously (PT\{(¢,a)})* = Pt\{(p,a)}, and thus, the
unit PGLT clause is a basic clause of P. If (p,a) is a general PGL™T clause
and it is not a basic clause of P, by Proposition 6.3, there exists at least
a finite sequence C1,Cs,...C,, of valid clauses of P such that C,, = (¢, a),
Ci € P\{(p,)}, Cy € P\{(p,a)} and, for each i € {3,...,m}, it holds that
either C; € P\{(y,a)} or C; can be obtained by applying the RE or FU in-
ference rules to previous clauses in the sequence. Therefore, as the head of
¢ is ¢, there exists at least a clause C;, with ¢ € {1,...,m — 1}, such that
C; = (¢,8) € P\{(¢, @)} and the head of ¢ is q. Moreover, as P does not con-
tain recursive formulas and the FU inference rule stretch the body of formulas,
the clause (1, 8) cannot be obtained by applying the RE or FU inference rules
to the clause (p,). Now, if (,3) is not a basic clause of P, we repeat the
previous process over the clauses of P\{(yp,a), (¢, 3)}. Hence, as P is a finite
set of PGL* clauses, we finally find some clause (¢,5) € P such that the head
of ¢ is ¢ and (¢, 0) is a basic clause of P. [|

6.4.2 Context constraint

Now let us consider another kind of constraint we want our programs to satisfy.
The idea is that in a PGL*T program satisfying the so-called context constraint
the use of the SU and MP inference is enough to attain a degree of deduction

equal to the degree of possibilistic entailment. And for this we need that

(R1) the possibilistic entailment degree of a goal be univocally determined by
those clauses in the program having the goal in their head or leading to

one of these clauses by resolving them with other clauses, and that
(R2) the SU and MP rules work in a, we can say, locally complete way.

Next we argue the need for these requirements.

R1: As for the first one, the objective is to ensure that, given a PGLT program
P = (P,U,m) and a PGL* goal ¢(C), ||¢(C)||%™ can be determined only from
the subset P, of clauses (¢, a) in P for which either g is in the head of ¢ or ¢

depends* on the head of ¢. Roughly speaking, with this requirement one wants

4We say that ¢ depends on p in P, if P contains a set of clauses {(¢1,a1),--., (¢, ar)},
with k£ > 1, such that p appears in the body of ¢;, the head of ¢ is ¢, and the head of ¢;
appears in the body of p;41, with ¢ € {1,...,k — 1}.

6.4. Completeness of the PGL* proof method 149

to avoid having formulas of the form (¢(4) — #(B),a) and (¢(B),) together
in a program since, due to the disjunctive interpretation of fuzzy constants, we
would have that a formula of the form (g(4),6) should be derivable, where A
and B denote the complement of A and B, respectively, and thus, we should
enable a kind of modus tollens inference mechanism.

Given a program context My ,,, what happens here is that for any pair of

object constants E and A of sort g4, and B and F of sort oy,
U7 — U’
1O am), 00,0188, Ry 0y = 1O gy 11
where D is an object constant of sort o, such that, for each u € U,
[max(1 — @, i (E)(w)), if there exists v € Uy, such that

and either fi,(4)(u) < pim(B)(v) or
Hm(D) (u) =9 max(l — &, Um(E) (u)) < max(l - /Ba Hm(B) (U))

SupveU‘,t mln(ma‘x(l -7 IU/m(F) (’U)),

| max(1 — B, pm(ay(w) = pmp)(v))), otherwise.

Hence,
Um _ U,m
1a(OMN g8y, (aa)=1B).8). ey = 12O gy,
iff for each u € Uy,

max(l — &, tm(p) (1)) < sup,ey, min(max(l =7, pmr)(v)),
max(1 — B, fimay(u) = pm(B)(v))).

Let us see this result by means of an example which can be easily computed.

Example 6.5 Consider the following set of PGLT clauses:

P = { (age_-Mary(between_18_20) — weight_M ary(between_50_55),1),
(age-Mary(between_17-20),1),
(weight_-Mary(49),1) },

the PGL* goal age_Mary(17), and a particular context My, in which the ob-
ject constants between_17_20, between_18_20 and between_50_55 are interpreted
as the crisp intervals [17,20](years), [18,20](years) and [50, 55](kilograms), re-
spectively. Then, we have that

lage Mary(1T)|2™ = llage-Mary(1D)|m . rraryinyayy = 1

150 A complete calculus for PGL extended with fuzzy constants

However, in P there is no explicit information expressing that “Mary is 17

years old”, and thus, |lage_Mary(17)||%™

(age-M ary(between_17_20),1). O

should be determined just from

Even from a theoretical point of view it would be interesting to extend the
PGL* proof method with “some kind of modus tollens inference mechanism”,
the logic programming system would have some important computational limita-
tions, besides of probably surprising an unaware user with some results computed
by the system.

On the one hand, we would extend our current calculus with at least an

inference pattern of the form

(t(Em); Bm)
(¢(D),1) ’

where, in each context My, D should denote an object constant of sort o,

(6.1)

such that, for each u € U,_,

Pm (D) (u) > SUP,er,, min(max(1 — al,,um(Al)(u) — pm(Bl)(v)), eee,
max(1 — an, fim(a,) (W) = Bm(B,) (V)
max(1 — 1, fim(E,) (v)), - - ., max(1 = B, fhm(E,0) (),
(o¢) being the type of t.

On the other hand, the proof algorithm would determine ||g(C)||%™ for each
predicate symbol ¢ appearing in P, by combining ||q(C)||g;m and ||q(C)||g’\7;§q.
However, in some sense, the algorithm for determining ||q(C)||g’\7;‘,q should be
based on the previously computed degree ||q(C)||g;m Therefore, as far as we
can see, neither the membership function of the fuzzy constant D of pattern 6.1,
nor ||q(C)||g’m should be easily computed remaining as an open question to be
solved in the near future.

Hence, in order to define a complete and efficient proof procedure, we have
to consider PGLT programs satisfying that ||¢(C)||%™ = ||q(C’)||g;m, for each
predicate symbol g appearing in P. Thus, we have to define a computable con-

straint over the interpretation of object constants appearing in PGL™ programs

6.4. Completeness of the PGL* proof method 151

that enable us to ensure that, for each u € U,_,

sup{min{max(1 — a, [[¢llm) | (¢, @) € Fy} |
M = (U,i,m) € My, and i(q) = u}
<
sup{min{max(1 -, |¢[lm) | (¢,7) € P} |
M = (U,i,m) € My, and i(q) = u}.

We say a computable constraint in the sense that it must be checked just from
the previously computed information in the system, and thus, it cannot depend
on [|g(O)[14%,

R2: As for the second requirement, it is indeed needed to avoid problems of
weakening of the deduction power in simple modus ponens inference steps involv-
ing a unification process. For instance, given a context My, ,,, in Propositions 6.6

and 6.7, we respectively prove that

||p(A)||{U(;?E),a)} = min(a, d),

where § = N*(m(4) | m(E)), and

Um _ Um
19O o) mincao)),pa)am).00} = 19O (o) minca,s.60}-
However, due to the necessity measure used for computing the partial matching
between fuzzy constants, the expected equality
U, _
||Q(C)||{(;?E),a),(p(,4)_>q(3),5)} = ||Q(C)||{(q(B),min(a,6,ﬂ))}

may not hold. Actually, it strongly depends on how m interprets each object
constant. Indeed, in Proposition 6.8, we prove that the equality holds iff either
min(a, 3) < § or, for some v € U,,, pm(a)(v) = 0 and pippy(v) = 1 =146, (0p)
being the type of p.

Proposition 6.6 Let P = ({(¢(A),a)},U,m) be a PGL' program and let D be

an object constant of sort o, such that pi,(py = max(1 — a,um(A)). Then,

HaON% 1.y = 12Oy 2y = N*(m(C) | m(D)).

Proof: On the one hand, a possibilistic model © : My, — [0,1] satis-
fies (¢(4),a) iff 7 (M) < max(1 — a,||¢(4)|lm) for each PGL™ interpretation

152 A complete calculus for PGL extended with fuzzy constants

M = (U,i,m) € My,m. Thus, iff 7(M) < max(1 — «, pm(4)(i(g))), and thus,
iff 7(M) < [lg(D)llm- Then, = 7 L (a(A),0) iff 7 EDG L (a(D),1).
Hence, by Proposition 6.1, ||g(C)||{ ((A),0)} = inf{N*([¢(O)] | m) | = g’gLJr
(a(4),@)} = inf{N*([g(O)] | ™) | m =55+ (a(D), 1)} = la(C)I{ini oy 13-

On the other hand, by the soundness of the SU inference rule, we have

that ||g(C)||{(q D) 1)} > N*(m(C) | m(D)). Then, we must prove that

la(C) %00y < N*(m(C) | m(D)).

Let m : My,m — [0,1] be a possibility distribution with the following def-
inition: 7(M) = ||g(D)||m, for each PGL™ interpretation M € My, ,. As
{(a(4),)} E%2. {((D

viously, |—PGLJr (¢(D),1). Finally, N*([¢(C)] | 7)) = infuean Mm(D) (1) =

Um(c)(u) = N*(m(C) | m(D)). Hence, by Proposition 6.1, ||q(C’)||f{](’;?D)71)} =

inf{N*([g(O)] |) | 7 Epgp+ (a(D), 1)} < N*(m(C) | m(D)). u

),1)}, by Proposition 6.2, 7 is normalized and, ob-

Proposition 6.7 Let P = ({(p(4),), (p(4) = ¢(B),B)},U,m) be a PGL*
U,
program. Then, l4(C)I{3 a0, (o0a)a(8).01 = 14Ot) mincarsy-

Proof: We define P = {(p(4), a), (p(4) — a(B), A)}.

By the soundness of the MP inference rule, P |:PGLJr (¢(B), min(a, 8))}.
Therefore, by Proposition 6.1, [|g(C)||%™ = inf {N*([¢(C)] | x) | = |—PGL+ P} >
it (N[O |) | 7 ESge @B),minas 5D} = NI minceiny
Then, we must prove that ||¢(C)||%5™ < |l¢(C)||{(q(B)’mm(a’ﬁ))}

Let D be an object constant of sort o4 such that

Pm(py = max(1l — min(a, B), tim(B))-

Then, by Proposition 6.6, [l¢(O)lI{((p) min(a.en) = ||q(N{atmy.0)
N*(m(C) | m(D)). As [lg(O)lIp™ = inf{N*([g(C)] | 7) | 7 Eper+ P}, we ShOW
that for some possibilistic model 7 : My, — [0, 1] satisfying P, we have that

N*([g(0)] |) = N*(m(C) | m(D)), and thus, [¢(@)[Z™ < lg(C)ISm) 1)s-
We distinguish two cases.

Case f < a. Let m : My, — [0,1] be a possibility distribution with the fol-

lowing definition:

0, otherwise.

(M) = { la(D)l, iF llp(A4) e = 1

6.4. Completeness of the PGL* proof method 153

Case a < . Let m : My,m — [0,1] be a possibility distribution with the fol-

lowing definition:

la(D)lng, i either [[p(4)]lx = 0 and [lg(B)llm < 1 - a, or
(M) = lp(4)|lm =1 and [[g(B)||m > 1 — «
0, otherwise.

As P is a non-recursive PGL* program, p # ¢ and there exists at least
two PGL* interpretations My and M; in My, such that ||p(A4)|m, =0
and ||p(A)|lm,; = 1, and thus, in both cases we are considering each value
u € qu On the other hand, by the soundness of the UN inference rule,
pEUm pap+ (@(D),1). Then, by Proposition 6.2, 7 normalized in both cases
too. Finally, we can easily check that in both cases =« Izg’g‘LJr P and

N*([¢(C)] | m) = infueu,, pm(D)(¥) = pm(c)(u) = N*(m(C) | m(D)).

Proposition 6.8 Let P = (P,Um) be a PGLt program with
P ={(p(E),a),(p(A) = q(B),B)}. Then,

Um __ Um
la(@IP™ = la(C| (o), min(a,n+ (m(4) m(E))).(p(4) > a(B).8)}

iff either min(a, B) < N*(m(A) | m(E)) or, for some v € Us,, pim(a)(v) = 0
and pygy(v) =1 — N*(m(A) | m(E)), (op) being the type of p.

Proof: By Proposition 6.7, [1a(C){(a) min(a,n+ m(4) m(m).(o(A) a(),8)) =
(O I 5y mmin(er. v+ (m() m(1)).5)} - Them, we must prove that [|g(C)||7™
||q(C)||f{](’;T(LB),min(a’N* (m(A)|m(E)),g)) 1 either min(a, B) < N*(m(A) | m(E)) or,
for some v € Uy, pim(a)(v) =0 and pipy(g)(v) =1 = N*(m(4) | m(E)).

By the soundness of the SU and MP inference rules,

{(p(B), @)} Efays (p(4),min(a, N*(m(4) | m(E))))

and
{(p(4), min(a, N*(m(4) | m(E)))), (p(4) — a(B),B)}
|=PGL+

(¢(B), min(a, N*(m(4) | m(E)), B))-
Then, for each program context My, m,, P |—PGL+ (¢(B), min(a, N*(m(4) |
m(E)), B)). Therefore, by Proposition 6.1, ||g(C)||%™ = inf{N*([¢(C)] | =) |
|

T Epgre P} > mf{N*([@(O)] | m) | m Epgpe (a(B),min(a, N*(m(4)

154 A complete calculus for PGL extended with fuzzy constants

m(E)),B))} = ||q(C)||{U(’:ZB),min(a’N*(m(A)‘m(E))’B))}, and thus, for each program
context My m, |l¢(C)||%™ > ||q(C)||{U(’;’(LB)’min(a,N*(m(A)‘m(E))’B))}. Hence, we
must prove that [[g(C)IZ™ < 119(C)I {15 min(aN- (m(a)|m(E)).0); L either
min(a, 3) < N*(m(A4) | m(E)) or, for some v € Us,, fima)(v) = 0 and
() (v) = 1 = N*(m(4) | m(E)).

Let D be an object constant of sort o, such that

Pm(py = max(l — min(a, N*(m(A) | m(E)), B), ttm(B))-

iy Um _ Um _
By Proposition 6.6, [l¢(C)ll(y(s),min(a,n+m(aymEn.ony = 10O igp) =
N*(m(C) | m(D)). Then, lg(C)E™ < [lg(C)|Ems |\ if for each u € Uy,
sup{min(max(1—aq, [|p(E)|lm), max(1 -3, [[p(A) = ¢(B)|lm)) | M = (U,i,m) €
Muy,m and i(g) = u} > max(1 — min(a, N*(m(A) | m(E)), B), km(s) (u))-

If min(e, 8) < N*(m(A) | m(E)), we distinguish two cases.

Case < a. For each u € U,,, there exists at least a PGLt interpreta-
tion M = (U, 4,m) € My, such that i(¢) = v and ||p(E)|lm = 1, and
thus, for each u € U,,, min(max(1 — a, [|[p(E)||m), max(1 — 3, [|p(4) —
4(B)I)) = max(l — B,lIp(4) > g(B)llng) > max(l — B, () (w).
Hence, if f < min(a, N*(m(A) | m(E))), then, for each u € U,,,
sup{min(max(1 — a, [p(E)lln)smax(1 — B,Ilp(4) — q(B)lm)) | M =
(U,i,m) € My, and i(q) = u} > max(l — min(a, N*(m(4) |
m(E))a/B)aNm(B)(u))

Case o < 3. For each u € Uy, such that i, g)(u) > 1—a, there exists at least
a PGL* interpretation M = (U,i,m) € My, such that i(¢) = v and
[[p(E)llm = 1, and thus, for each u € U,, such that pm,g)(u) > 1 - a,
min(max(l — a,[|p(E)|lm), max(1 — 8,[|p(A) — ¢(B)|lm)) = max(l -
B,llp(A) = q(B)llm) > max(l — @, pimp)(u)). And, for each u € U,,
such that pn,(py(u) < 1 — a, there exists at least a PGL' interpreta-
tion M = (U,i,m) € My, such that i(¢) = uw and ||[p(4)|lm = 0, and
thus, for each u € U,, such that p,mp(v) < 1 — a, min(max(1 —
o, Ip(E)lIna), max(1 — B, [1p(4) = q(B)llw)) = max(1 — o, [Ip(E)lln) >
max(l — &, fip(p)(u)). Hence, if o <min(3, N*(m(A) | m(E))), then,
for each u € U,,, sup{min(max(1 — a, ||p(E)|m), max(1 — S, [|p(4) —
¢(B)lm) | M = (U,i,m) € Muym and i(q)
min(a, N*(m(4) | m(E)), B),fmany (1)

= u} > max(l -

6.4. Completeness of the PGL* proof method 155

If N*(m(A) | m(E)) < min(a, 8), for each u € U,, such that p,)(u) >
1 — N*(m(A) | m(FE)), there exists at least a PGL™ interpretation
M = (U,i,m) € My, such that i(¢) = v and |p(E)|lm = 1, and thus,
for each u € U,, such that pp(p)(u) >1— N*(m(A4)|[m(E)), min(max(1 —
a, ||p(E)|lm), max(1 — B, [|p(A) — ¢(B)|m)) = max(1 — 8, [|p(A) = ¢(B)|lm) =
max(1—N*(m(A) | m(E)), iy p) (v)). Hence, if N*(m(A) | m(E)) < min(a, 3),
then, for each u € Uy, such that p,y(u) > 1 — N*(m(A) | m(E)),
sup{min(max(1 - a, [|p(E)[|m), max(1 -8, [[p(4) = ¢(B)|lm)) | M = (U,i,m) €
Muy,m and i(q) = u} > max(1 —min(a, N*(m(A) | m(E)), B), tm(s) (u))-

Finally, for each u € U,, such that p,gy(u) < 1— N*(m(4) | m(E)), we

—~

—~

distinguish three cases.

1. For each PGL™ interpretation M = (U,i,m) € My, such that i(q) =
u and ||[p(E)|lm > 1 — N*(m(A) | m(E)), we have that min(max(l —
a, ||p(E)||m), max(1 — B, |lp(A) = ¢(B)lIm)) = max(1 — 5, [|g(B)|lm)-

2. For each PGL™ interpretation M = (U, i,m) € My,,,, such that i(¢) = u
and [[p(E)[lm < 1= N*(m(A) | m(E)) and [|p(A)[lm > pm(s)(i(q)), we
have that min(max(l — a, ||p(E)||Mm), max(1 — 8,||p(A) — ¢(B)||lm)) =
min(max(1 — e, [|p(E)||m), max(1 - 3, [l¢(B)||m))-

3. For each PGL™ interpretation M = (U, 4,m) € My,,,, such that i(¢) = u
and [|p(E)[lm < 1= N*(m(A4) | m(E)) and []p(4)llm < pm(m)(i(g)), we
have that min(max(l — a, ||p(E)||Mm), max(1 — 8,||p(A) — ¢(B)|lm)) =
max(1 — a, ||p(E)||m)-

Therefore, as 1 — N*(m(4) | m(E)) > max(1 — a,1 —) and, for some
u € Uy, and v € Uy, pm(p)(u) = 0 and pi,4)(v) = 0, we have that, for
each u € U,, such that pm,p)(u) < 1— N*(m(A) | m(E)), sup{min(max(1 —
a, [[p(E)|lm), max(1 - B, [[p(A) = ¢(B)llm)) | M = (U,i,m) € My,m and i(g) =
u} > max(1 — min(a, N*(m(A) | m(E)), B), pm(B)(u)), iff there exists at least
a PGL™ interpretation M = (U,i,m) € Muy,m, with i(q) = u, such that
lp(E)llm =1 — N*(m(A) [m(E)) and [|p(A)|lm = 0.

Hence, we have proved that, for each u € U, ,, sup{min(max(l —
a, [|p(E)[Im), max(1 = B, [|p(A) = ¢(B)|lm)) | M = (U, i,m) € My,m and i(q) =
u} > max(1l — min(a, N*(m(4) | m(E)),ﬂ),um(B)(u)) iff either min(a, 3)
N*(m(A) | m(E)) or, for some v € Us,, ftma)(v) = 0 and pp(g)(v)
1= N*(m(A) | m(E)).

IN

156 A complete calculus for PGL extended with fuzzy constants

Given a program context My, what happens here is that for any pair of

object constants A and E of sort o,
Um _ U,m
12N (o).,)sam,87y = 19Ol 11y
where D is an object constant of sort g4 such that

e if min(a, 8) < N*(m(A) | m(E)), then, for each u € U,,,
Hm (D) (U) = max(l - min(aa /8)5 Hm(B) (U)), and
e if min(a, 8) > N*(m(A) | m(E)), then, for each u € U,,,

(() (W), if (s () > 1= N*(m(A4) | m(E))

1 - N*(m(A) | m(E)), if Viin < ftm(p)(u) and
fm()(u) <1 = N*(m(A) | m(E))
P (D) (1) = S
max(max(1 — B, pm(p) (u)),
sup{max(1 — a, fty () (v)) | v € Uy, and
pim(E)(v) <1 — N*(m(A) | m(E)) and
{ tim(a) (V) < pm(e)(W)}), I pm(s) (W) < Vinin,

where
Vimin = inf{fiy,4)(v) | v € U,, and

fm(a)(v) < 1= N*(m(A) | m(E)) and
tm(E)(v) 2 1= N*(m(A) | m(E))}.
Let us see this result by means of an example which can be easily computed.
Example 6.6 Let P = (P,U,m) be a PGL™ program such that
o P = { (age-Mary(between_19_21) — weight_Mary(about_50),0.4),
(age_M ary(about_20),0.9) };

o m(between_19_21) = [18;19; 21; 22](years),
m(about_20) = [15; 20; 20; 25](years), and
m(about_50) = [45; 50; 50; 55] (kilograms).

As N*(m(between_1921) | m(about_20)) = 0.25 < min(0.9,0.4), for any object

constant C of sort kilograms,

lweight Mary(C)|Z™ = |lweight Mary(C)| i ions-ataryp).1))-

6.4. Completeness of the PGL* proof method 157

where D is an object constant of sort kilograms such that, for each

u € Ugilograms:

" (u) _ Hm(about_50) (U), ifue [487 52]
(D) 0.6, otherwise.
Then, by Proposition 6.6,
||weight_Mary(about_50)||{U(’;”ez.ght_MMy(D)’l)} = N*(m(about_50) | m(D))

= 04,

and thus, although ||age_Mary(between_19_21)||g’m < 04, we get that
[|weight_M ary(about-SO)Hg’m = 0.4. However, our indeed intention is to ex-
press that “Mary can be assumed to weigh about 50 kilos (with a necessity
> 0.4) whenever we know (with a necessity > 0.4) she is between 19 and 21
years old ”.

Consider now the following set of PGLT clauses:

P = { (age-Mary(between_19_21) — weight_M ary(between_49.51),0.4),
(age_-M ary(about_20),0.9) },

with m(between_49_51) = [48;49; 51; 52](kilograms). In that case, for any object

constant C of sort kilograms,

||weight_Mary(C)||g’m = ||weight_Mary(C) ||f[](’;”eight_Mwy(D)’l)},

where D is an object constant of sort kilograms such that, for each

u € Ukilogramsa

Hm (between_49_51) (u)7 if ue [48757 5125]

iy -3, if u € [48,48.75]
Hm (D) (u) = 5

—fu+5, if u € [51.25,52]

0.6, otherwise.

Then, by Proposition 6.6,

||weight_Mary(between_49_51)||?(’$ez.ght_Mary(D)vl)}

= N*(m(between_49.51) | m(D))
= 0.25,

158 A complete calculus for PGL extended with fuzzy constants

and thus,

|lweight_Mary(between_49_51)|| %™
= min(0.9, N*(m(between_-19_21) | m(about_20)),0.4)
= 0.25.

But, for instance, if around_49_51 is an object constant of sort kilograms such
that m(around_49.51) = [45;49; 51; 55], by Proposition 6.6, we have

||weight_M ary(around_49_ 51)”{(wezght Mary(D).1)}
= N*(m(around-49.51) | m(D))

= 04,

and thus, although |weight_Mary(between 49.51)]|%™ < 0.4, we get that
|lweight_Mary(around-49_51)||%™ = 0.4. However, our indeed intention was to
express that “Mary weighs C kilos (with a necessity > 0.4) whenever we know
(with a necessity > 0.4) she weighs between 49 and 51 kilos” for each object
constant C of sort kilograms such that N*(m(C) | m(between_49_51)) > 0.4.
O

It would be possible to define an inference pattern for transforming PGLT
clauses as we have done in Example 6.6. However, the logic programming sys-
tem would have some important computational limitations. In fact, after each
resolution step, the membership function of the fuzzy constant in the resolvent
clause should be recomputed from the interpretation of all fuzzy constants in
the body of the resolved clause. Moreover, at this point, some new valid clauses
should be considered since they could not be computed in a pre-processing step
(see Section 6.5). Therefore, in order to define a complete and efficient proof
procedure, we have to consider PGLT programs with well-behaved (in the above
sense) interpretations of fuzzy constants.

In order to formalize the context constraint we need the following results.

Proposition 6.9 Let P = (P,U,m) be a PGL" program, let q be a predicate
symbol of type (o4) appearing in P, and let FCp(q) = {D object constant of sort
oq| P |—PGL+ (¢(D),1)}. Further, denote by D, the object constant of sort o,
such that, for each u € U,,, pm(p,)(u) = inf{py,py(u) | D € FCp(q)}. Then,
it holds that P |:PGLJr (g(Dy),1). Therefore, we can safely write

Hm(Dy) = /\{:um(D) | P |=12,CT;”L+ (q(D), 1)}:

6.4. Completeness of the PGL* proof method 159

in the sense that)\ denotes a (point-wise) minimum.

Proof: For each object constant D € FCp(q) we have P |=g’(’;”L+ (¢(D),1) iff
N*([g(D)] | m) = 1, for each possibilistic model 7 : My, — [0,1] satisfying
P, and thus, iff 7(M) < ||g(D)||m for each PGL* interpretation M € My p,.
Then, we have that 7(M) < inf{||¢(D)|lm | D € FCp(q)} for each possibilistic
model 7 satisfying P and PGL™ interpretation M. Hence, N*([¢(D,)] | m) =1
for each possibilistic model 7 satisfying P, and thus, P |:g’é"L+ (¢(Dy),1) as

well. [|

Proposition 6.10 Let P = (P,U,m) be a PGL' program. Then, using the
above notation, [lg(C)l|z™ = la(O)I{(5ip,).1)-

Proof: We define a1 = [|q(C)[|5™ and as = [lg(O)lI(}ip,) 1)y

1. a; > as: By Proposition 6.9 P |=1[£’(7;”L+ (¢(Dy),1) then, by Proposition 6.1,

ar = nf{N*([g(O)] | m) | m Epgys P} > inf{N*([a(C)] | m) | 7 =P
(¢(Dq), 1)} = 2.

2. a1 <az: Asaq = ||q(C)||g’m, by Corollary 6.1, P |:g’gL+ (q(C),a1). Let

E be an object constant of sort o4 such that

tm(E) = max(l — a1, fm(c))-

Then, by the soundness of the UN inference rule, P |:g’é”L+ (q(E), 1),

and thus, pmp,) < Wmm)- On the other hand, by Proposition 6.6,

lONtnay = N*m(C) | m(Dy). Hence, az = N*(m(C) |

m(Dg)) = infucu,, bm(Dy)(W) = Bmc)(v) > infucu,, im(p)(u) =

Hm(c)(u) = infyey, max(l—ai, fimc)(4)) = pmo)(v) > ai. i
At this point we are ready to formalize the context constraint.

Definition 6.11 (context constraint) Let P = (P,U,m) be a PGLt pro-
gram and let Mgy = (U, igq¢,m) be a PGLY interpretation of My ,, such that
l¢lla,,, = 1 for each clause (¢,v) € P with v > 0. Further, for each pred-
icate symbol q of type (oq) appearing in P, denote by P, the set of clauses
{(¢,a)} C P such that the head of ¢ is q or q depends on the head of ¢ in P; by
Pq+ the set of valid clauses of P;; and by D, the object constant of sort o, such

that pimp,) = NMpmo) | Py |=ggL+ (¢(D),1)}. If P, = 0 for some predicate

160 A complete calculus for PGL extended with fuzzy constants

symbol q, we can safely define P, = {(q(B),0)}, B being an object constant of
sort og, and thus, Pq+ ={(¢(B),0)}, and p(p,)(u) =1 for eachu € U,,. Then,
we say that P satisfies the context constraint if, for each predicate q appearing
in P, it holds that

(C1) for each clause (q(A) — t(B),B) € P\P,, for each uw € U,,, either

Pm(a) (U) < () (isat(t)) o pm(p,)(u) < max(l = B, m(B) (isat(t)));
and

(C2) for each clause (p(E) — q(F),08) € P} either 6§ < ||p(E)||g;m or, for some

v € Usy, fn(my(v) = 0 and firn(p,)(v) =1 — Ip(B)|E", (0p) being the
type of p.

Given a PGL* program P = (P,U,m), in the next section we prove that C1
ensures ||¢(C)||%™ = ||q(C)||gqm for each predicate symbol ¢ appearing in P,
and C2 ensures the degree of deduction obtained from Pq‘|r by applying the SU

and MP inference rules to be exactly the possibilistic entailment degree.

The most important feature of the context constraint is that, in each deduc-
tion step, it can be checked just from the previously computed information. In
fact, in Section 6.5, we show that the proof algorithm for PGL™ programs can be
divided into four different and sequential steps. A satisfiability and recursivity
testing step of PGL* programs. A pre-processing step, based on the RE and
FU inference rules, which ensures the modularity constraint of non-recursive and
satisfiable PGL™ programs. A translation step, based on the MP, SU, UN and
IN inference rules, which translates a PGL™ program satisfying the modularity
constraint into a semantically equivalent set of unit PGL™T clauses, whenever the
program satisfied the context constraint. And, finally, a deduction step, based
on the SU inference rule, which computes the possibilistic entailment degree of
a PGLT goal from the equivalent set of unit PGLT clauses. Therefore, from a
computational point of view, the context constraint can be easily checked during
the translation step.

But, the bad news is that the context constraint C1 is actually stronger than
the requirement R1 listed above. Indeed, if a PGL* program P = (P,U,m)
does not satisfy C1 for some predicate symbol g appearing in P, we cannot
know whether [|¢(C)||lr = ||g(C)l||p,, and thus, in that case we should check

6.4. Completeness of the PGL* proof method 161

whether, for each u € U,,,

tm(p,)(w) < sup{min{max(1 -, [|¢[lm) | (¢,7) € P} |
M = (U,i,m) € My, and i(q) = u},

which, in turn is equivalent to determine whether

tm(ng) < N\{ttm(p) | P ESm L (¢(D),1)}.

Thus, to strongly ensure ||g(C)||%™ = ||q(C)||gqm is equivalent to extend the

PGLT proof method for determining ||q(C)||ga\T;)q_

constraint is a useful approach for ensuring that ||g(C)]||

Hence, our current context
Ym can be computed
just from the clauses of P,, and allowing us to define an efficient proof algorithm.

Finally, as we only consider non-recursive programs, for each PGL™ program
P = (P,U, m) there exists at least a predicate symbol ¢ appearing in P such that
q does not depend on no other predicate symbol in P. If P satisfies the context

constraint C1 for ¢, the proof algorithm determines [|g(C)||%™

; otherwise we
cannot ensure the computed deduction degree to be the possibilistic entailment
degree. And, for each other predicate symbol ¢ depending on ¢ in P, if P
satisfies C1 and C2 for ¢ and ¢, the proof algorithm determines ||t||g’m. Thus,
for each PGL™T goal the proof algorithm can determine if the computed degree

of deduction is in fact the maximum degree of possibilistic entailment.

6.4.3 The completeness result

In this section we prove that the PGL* proof method is complete for deter-
mining the maximum degree of possibilistic entailment of a PGLT goal from
a program satisfying the context constraint. In the following, we assume that
PGL* programs satisfy this requirement.

The following proposition establishes that the degree of deduction obtained
by applying the UN and IN inference rules is the greatest lower bound of possi-

bilistic entailment.

Proposition 6.11 Let P = ({(¢(A),), (¢(B),B)},U,m) be a PGL" program

and let D be an object constant of sort o, such that
Pm(p) = min(max(l — &, pm(a)), max(l = B, pm(m)))-

Um _ Um
Then, la(O)I (7 ay .m0 = 19Oy, 103-

162 A complete calculus for PGL extended with fuzzy constants

Proof: We define P = {(q(4), o), (¢(B),5)}.

Then, 7 : My, — [0,1] is a model of P iff 7 (M) < max(1—a, ||g(A)|lm) and
m(M) < max(1 — 8, ||g(B)|lm), for each PGL* interpretation M = (U,i,m) €
Mu,m. Thus, iff 7(M) < min(max(1—a, pm(4)(i(q))), max(1— B, pms)(i(q)))),
and thus, iff 7(M) < ||¢(D)||m. Then, = |=PGL+ Piff n g’gLJr (q(D),l).
Hence, by Proposition 6.1, ||¢(C)||P = inf{N*([¢q(C)] |) | PGL+ P} =

inf{N*([g(O)] | m) | 7 E%m . (@(D), 1)} = (O 0, 115 .

The following proposition establishes that, when considering a program satis-
fying the context constraint, the possibilistic entailment degree of a PGL* goal
¢(C) can be determined just from the set of program clauses such that their

heads are q or ¢ depends on their heads.

Proposition 6.12 Let P = (P,U,m) be a PGLT program, let q be a predicate
symbol of type (oq), and let Py = {(p,a) € P | head(yp) = q or q depends on
head(p) in P} or, if there is no clause in P with head g, let P, = {(¢(B),0)},

B being some object constant of sort o,. Then,

lg@IIF™ = llaO) 1"

Proof: As we consider satisfiable PGLT programs, if the predicate symbol q does
not appear in P, for each u € U,, there exists at least a PGL* interpretation
M = (U,i,m) € My, such that i(q) = u, and max(1l — ~,||¢||lm) = 1 for
each clause (¢,v) € P. Hence, if the predicate symbol ¢ does not appear in P,
lg(@)|%™ = |la(C)||g(’;'23)’0)} for any object constant B of sort oy.

As P |—PGL+ (¢(B),0) for any object constant B, by Proposition 6.1, we
have that ||¢(C)||%™ = [l¢(C)”PU{ (a(B),0)}- Lherefore, if the predicate symbol ¢
appears in P but, P, = 0, we can safely define P, as {(¢(B),0)} for any object
constant B of sort g,.

Then, obviously, 7 |:g’CTL+ P, for each model 7 : My, — [1] of P.
Hence, by Proposition 6.1, [¢(©)5™ = inf(N*(a(©)] | 7) | 7 (=g P) >
inf{N*([¢(C)] | m) | = PGL+ P} = |lq(C)”gm Thus, we must prove that
lg(@)|%™ < |la(C)||Pm for each predicate symbol ¢q appearing in P.

Let D,y be an object constant of sort o, such that

Hm(Dy) = /\{:U/m(D) | F, '=1[£,c7¥nL+ (q(D): 1)}

By Proposition 6.10 and 6.6, [|g(C)I2™ = [la(O)I{kp,)1; = N*(m(C) |
m(Dy)). Then, defining P, = P\P,, we must prove that, for each u € U,

6.4. Completeness of the PGL* proof method 163

Pm(D,)(v) < sup{min(min{max(1 — a,[|¢llm) | (p,a) € P}, min{max(1 —
B, 1¢lna) | (4,8) € Pr}Y) | M = (U,i,m) € Mu,m and i(g) = u}.

By Proposition 6.9, P, |:g’gLL+ (q(Dg),1), and thus, for each u € U,,
tim(pyy (W) > sup{min{max(1 — o, llgll) | (p,0) € P} | M = (Uyiym) €
Muy,m and i(q) = u}. Moreover, as fin(p,) = AMim(p) | Py Eperr+ (@(D), 1)},
for each u € U,,, fim(p,)(u) = sup{min{max(l — a,||¢|lm) | (p,a) € Py} |
M = (U,i,m) € My, and i(q) = u}, and thus, for each u € U,, there
exists at least a PGL™ interpretation M,, = (U,i,,,m) € My, such that
i0,(@) = u and pmep)(w) = minmax(l - @ llplm,,) | (p0) € P} =
sup{min{max(1 — «, ||¢[lm) | (p,a) € P} | M = (U,i,m) € My, and
i(q) = u}-

On the other hand, as P is satisfiable in the context determined by
U and m, by Proposition 6.2 there exists at least a PGL™T interpretation
M... = (U, 4.a,m) € My, such that ||@||m,.. = 1, for each clause (¢,v) € P
with v > 0. Now, for each u € Uy, let M, = (U, 4y, m) be a PGLT interpreta-
tion of My, such that

(o) iq, (D), if p appearsin P,
W\P) =19 . .
“ it (p), otherwise.

Then, for each unit PGL* clause (s(B), 3) € P;, we have that, for each v € U,_,
max(1 — 3, ||s(B)|lm,) = 1. And, for each clause (r(4) — s(B),f) € P, such
that r does not appear in P,, we have that, for each u € U, , max(1—-3, [|r(4) —

s(B)|lm,)) = 1. If r appears in P, we distinguish two cases.

Case r = ¢q. As P satisfies the context constraint, for each u € U,,, either

Pm(ay (W) < [[8(B)||M.ae OF fim(p,)(u) < max(l — B, [[s(B)||m...). Hence,
for each u € Uy, um(Dq)(u) < max(1l - g,]|lq(4) = s(B)||lm.,)-

Case r # q. Let
P. ={(¢,0) € P, | head(¢) = r or r depends on head(¢) in P,}
and let D, be an object constant of sort o, such that
pm(o,) = \Mttm(py | Pr Epape (r(D), 1)}

Again, as P satisfies the context constraint, for each v € U,,, either

tim(4) (V) < [|(B)[[Mya, OF fim(p,.)(v) < max(1—p, [|s(B)|Im.,). Therefore,

164 A complete calculus for PGL extended with fuzzy constants

for each v € Uy, , pim(p,)(v) < max(l — B, fip(a)(v) = [[8(B)||lM...), and
thus, for each u € U,,, tm(D,)(iu(r)) < max(1 — 3, ||r(4) = s(B)||m.,)-
Finally, as P does not contain recursive formulas and ¢ depends on r in
P, for each u € Uy, pm(p,)(®) < pm(p,)(iu(r)). Hence, for each u € U,
iy (1) < max(1 = B, [[r(A) - (B)ll,).

Therefore, for each v € U,,, pm(p,) (v) = min{max(l — a,ll¢|m,,) |
(p,) € P} = min{max(1 - a,lollm,) | (v,@) € B} and pmp,)(v) <
min{max(1 — 3, [|¢¥[|m,) | (¥, 8) € Pi}. Hence, for each u € U,,, fim(p,)(u) <
min(min{max(1 — a, [|¢llm.) | (¢, @) € Py}, min{max(1 — 8, [|¢llm) | (¥, 5) €
Py }). Thus, for each u € Us,, fim(p,)(u) < sup{min(min{max(1 — a, [[¢|lm) |
((P,Ot) € Pq}7min{ma*x(1 _/B7||¢||M) | (%5) € Pl}) | M = (U7i7m) €
My m and i(q) = u}. [

Given a PGLY program P = (P,U,m), in the following, for each predicate
symbol g of type (o4), we denote by

P, = {(p,a) € P | head(yp) = q or q depends on head(y) in P}

or, if there is no clause in P with head ¢, P, = {(¢(B),0)}, B being some object
constant of sort og; by P the set of valid clauses of Py; and by D, the object

constant of sort o, such that

pn(Dg) = N\ tm(p) | Py Epern+ (¢(D), 1)}

In order to prove that the SU and MP rules work in a “locally complete
way” for programs satisfying both the modularity and the context constraints,

we need the following previous results.

Proposition 6.13 Let P = (P,U,m) be a PGL™ program and let

(r(E),a) and (p(A) — q(B),B) be two walid clauses of P. Then,
Um _ Um

(M), 00 10,01 a3),80 = WO iy), a3y im0y
Proof: We define P = {(r(E),a),(p(Dy),1), (p(4) — ¢(B),B)} and P, =
{(r(E), @), (q(B), min(3, [Ip(A) 1%)}

By Propositions 6.10 and 6.6, [|p(4)[|5™ = ||p(A)||g(’zsz),l)} = N*(m(A) |
m(Dp)). Then, by the soundness of the SU and MP inference rules, P; Izg’g‘LJr
Py, and thus, = |:g’é”L+ P, for each model 7 : My, — [0,1] of Pi. There-

fore, by Proposition 6.1, ||q(C)||g;m = inf{N*([¢(C)] | =) | = |=ggL+ P} >

6.4. Completeness of the PGL* proof method 165

inf{N*([¢(C)] | m) | = |:PGLJr P} = ||g(C)||U’m Then, we must prove that
||q(C)||g1m < |lg(C)||P2m We distinguish two cases.

Case r = ¢. Let D be an object constant of sort o, such that

Hm(D) = mln(ma‘x(l - a7/1’m(E))7ma‘x(1 - min(ﬂ7 ||p(A)||}q;m)7 /j’m(B)))

By Proposition 6.11, ||q(C)||g;m = ||q(C)||{(q(D) 1)y and, by Proposi-
tion 6.6, lg(CIY/ T py 1)y = N*(m(C) | m(D)).

On the other hand, as P is a PGL* program satisfying the context con-
straint and (p(4) — ¢(B),B) € F;f, either § < ||p(A)||g;m or, for some
u € Uy, pm(ay(u) =0 and ppp,)(u) =1~ ||p(A)||gpm Then, we distin-

guish two cases.

Case g < ||p(4A)||Pm Let 7 : My,m — [0,1] be a possibility distribution
with the following definition:

(M) = { la(D)llna, if [lp(Dy)llma = 1

0, otherwise.

Case 8> ||p(4)||Pm Let m : My,m — [0, 1] be a possibility distribution
with the following definition:

[lla(D)llm, if either [|p(D,)[lm = 1 and
lg(B)llm > 1= [[p(A[I ", or

(M) = 4 Ip(Dp)llaa = 1= [[p(A) |5
lIp(A)|lm = 0 and [|g(B)[lm < 1 — [lp(A)[I5"
0, otherwise.

\

By Proposition 6.9, P, PGL+ (p(Dp), 1), and thus, P |—PGL+ (Dp), 1).
Then, by Proposition 6.2, there exists at least a PGLT interpretation
M € My, such that ||p(D,)|lm = 1. Moreover, as P is a PGLT program
satisfying the context constraint, if 5 > ||p(A)||gpm, there exists at least a
PGL* interpretation M € My, such that ||p(Dy)|lm = 1 — ||p(A)||g;m
and ||[p(A)[]m = 0. Then, as P does not contain recursive formulas, in

both cases we are considering each value u € U, .

On the other hand, as (p(A) = ¢(B),B) € P}, by the soundness of

the RE and FU inference rules, P |_PGLJr (p(A) — q(B),p) and, as

166

A complete calculus for PGL extended with fuzzy constants

(¢(E),a) € P,, it must be that (¢(E),a) € P. Hence, P |:g’5"L+ P,
and thus, P |:g’é”L+ P,. And, by the soundness of the UN and IN infer-
ence rules, P |:g’gL+ (¢(D),1). Then, by Proposition 6.2, 7 is normal-
ized in both cases. Finally, we can easily check that = |=g’gLL + P and
N*([g(O)] | 7) = infuc,, ftm(p)(8) S tim(ey(w) = N*(m(C) | m(D)), in
both cases too. Hence, by Proposition 6.1, ||q(C’)||g’1m = inf{N*([¢(C)] |

) | Epa. P} < N*(m(C) | m(D)) = laO)IF™

Case r #q. As P, only contains unit PGLT clauses, (P,U,m) satisfies

the context constraint. Then, by Proposition 6.12, ||q(C)||g;m
Um

9N gy minis tocanm

that

Let D be an object constant of sort g4 such

Mm(D) = max(l - min(ﬂ: ||p(A)||g;m)7Nm(B))
e Um _ Um —
By Proposition 6.6, (Ol m),mina,ipcangmyy = 19O a0y =
N*(m(C) | m(D)). As above, taking into account that P is a PGL* pro-
gram satisfying the context constraint and (p(4) — ¢(B),8) € P*, we

distinguish two cases.

Case 8 < ||p(A)||g;m Let m : My,m — [0,1] be a possibility distribution
with the following definition:

(M) = lla(D)[lm, if [[P(Dp)llm =1 and ||r(E)|lm =1
0, otherwise.

Case 3 > ||p(A)||g;m Let m : My,m — [0,1] be a possibility distribution
with the following definition:

(1lg(D)llna, i either [[p(D,)|l = 1 and

|I(E)llm = 1 and

lg(B)lIm > 1 = [Ip(A)|[Z™, or
Ip(Dp)llm = 1 — [|p(A)[|53™ and
lp(A)||lm = 0 and

lg(B)[lm < 1= [|p(A)||z™ and

max(1 — o, |[r(E)llv) > 1 — [lp(A)[5"

0, otherwise.

\

As P EYT . (p(Dp),1) and (r(E),@) € P, by Proposition 6.2, there ex-
ists at least a PGL™ interpretation M € My, such that ||p(D,)|lm = 1,

6.4. Completeness of the PGL* proof method 167

and ||r(E)||m =1 for each predicate symbol r. Moreover, as P is a
PGL* program satisfying the context constraint, if 8 > ||p(A)||g;m,
there exists at least a PGL™ interpretation M € My, such that
Ip(Dy)llna = 1= lp(A)|%™ and [[p(4)lag = 0. Then, if p # r, there ex-
ists at least a PGL™ interpretation M € My, ,,, such that [|p(Dp)|lm =
1= lp(A) %™ and lp(A)la = 0 and [[F(E)|lst = 1. T p = r, we have
that (p(E),a) € P,. Then, let E' be an object constant of sort o, such
that gy = max(l — @, m(g)). By the soundness of the UN infer-
ence rule, P, |:g’gL+ (p(E'),1), and thus, pimp,) < pm(er). Therefore,
if p = r, there exists at least a PGL" interpretation M € My, such
that [[p(Dy)llv = 1 — [Ip(A)[[%™ and lp(4) [l = 0 and 1 — [|p(4)|5™ <
max(1 — a, ||p(E)|lm). Hence, as r # g even if p = r, in both cases we
are considering each value u € U,,. On the other hand, as P |=g’g;”L+ Py,
by the soundness of the UN 1nference rule P |= por+ (@(D),1). Then, by
Proposition 6.2, 7 is normalized in both cases. Finally, we can easily check
that 7 =iy + P and N*([q(C)] | 7) = infueu,, fm(p) (W) = fm(c)(u) =
N*(m(C) | m(D)), in both cases too. Hence, ||q(C’)||g’lm = inf{N*([q(C)] |

™) |7 Epars Py < N*(m(C) | m(D)) = [la(C)|| " i
Proposition 6.14 Let P = (P,Um) be o PGL™ program, and let

(p(A) = ¢(B),B) and (r(E) — q(F),7) be two wvalid clauses of P, such

Um
that p # r. Then, 14(C)l{(p,),0),(0(4)—a(B).8).(r(D0) 1), (r(E)—a(F))}

la©)”{(q(B) min(B,[lp(A)l|5™)),(a(F),min(y,[lr(E)||5™)}

Proof: We define
Py = {(p(Dp),1), (p(A) = a(B), B), (r(D:), 1), (r(E) = ¢(F),7)}

and P, = {(q(B), min(8, [[p(A)|I ")), (a(F), min(y, [|r(B)[|5™))}-

By Propositions 6.10 and 6.6, |[p(4)[|5™ = ||p(A)||?(’;sz)71)} = N*(m(A) |
m(D,)) and [r(B)|%™ = [(E)I s, 1y = N*(m(E) | m(D,)). Then, by
the soundness of the SU and MP inference rules, P, |=g’gL+ P,, and thus,
T |:g’CT;”L+ P, for each model 7 : My, — [0,1] of Py,. Therefore, by Propo-
sition 6.1, IIq(O™ = imf{N*([q(O)] | m) | ® EPG+ P} > inf{N*([g(C)] |
m) |« PGL+ P} = ||g(C)||Pm Hence, we must prove that ||g(C)||Pl

(O™

168 A complete calculus for PGL extended with fuzzy constants

Let D be an object constant of sort o, such that pp,(py = min(max(1 —
min(B, [[p(A)l|5™); hm(B)), max(l — min(y, [[r(E)IZ™); pm(r)))- By Proposi-
tions 6.1 and 6.6, [4(O)I5" = ()5t 1yy = N*(m(C) | m(D))

On the other hand, as P is a PGL* program satisfying the context con-

straint and {(p(4) = ¢(B),), (r(E) = q(F),7)} C P;\, either § < [[p(4)[|5™

Um
||Pp ’

and either 7§||T(E)||g;m or, for some v € Us,, pmmp(v) = 0 and

or, for some u € U,,, pm(a(u)=0 and pn(p,)(u)=1-p(4)

Pm(D,)(v) =1 — ||r(E)||g’Tm Then, we distinguish four cases.

Case § < [[p(A)[|Z™ and < [|r(B)||Z™. Let m: My,m — [0,1] be a possibil-
ity distribution with the following definition:

wvp = { 1) nas i 1p(Dy)lla = 1 and (D)l =1
0, otherwise.
Case 8 < [[p(A)[|z™ and ||r(E)||Z™ < 7. Let 7 : My,m — [0,1] be a possibil-
ity distribution with the following definition:

[lg(D)||m, if ||[p(D,)||m = 1 and either
|*(Dy)||m = 1 and
lg(F)llna > 1= [Ir(B)||™, or

(M) = ¢ 2
lr(Dy)llm = 1 = [|r(B)|%™ and
r(E)|lm = 0 and [lg(F)|lm < 1 - [Ir(E)| 5™
L 0, otherwise.

Case ||p(A)||z™ < 8 and 7 < [|r(B)||Z™. Let m : My,m — [0,1] be a possibil-
ity distribution with the following definition:

(la(D)llna, if [Ir(Dy)llve = 1 and either
Ip(Dp)llm =1 and
la(B)llv > 1= [Ip(A)|5", or

Ip(Dp)llv =1 = [|[p(4)|5™ and
[Ip(A)|[vt = 0 and [lg(B)[lm < 1 — [[p(A)[| 5"
L O, otherwise.

Case ||p(A)||5™ < B and ||r(E)||Z™ <. Let m : My, — [0,1] be a possibil-

6.4. Completeness of the PGL* proof method 169

ity distribution with the following definition:

([lg(D)l|nt, if either [|p(Dy)|lm = 1 and
lg(B)lIm > 1 = [Ip(A)|[", or

Ip(Dp)llv = 1 = [Ip(A)[|5™
llp(4)llm = 0 and

") = lg(B)lIm < 1= [Ip(A)||5™; and either
[|7(Dy)||m = 1 and
lg(F)llm > 1 [Ir(EB)|[™, or
(D)l = 1 = [Ir(B)[|5™

Ir(E)llm = 0 and [|g(F)[lm < 1= [[r(E)[I2"™
0, otherwise.

\

By Proposition 6.9, P, |—PGL+ (p(Dp),1) and P, |—PGL+ (r(D,),1), and thus,
P I=PGL+ (p(Dp),1) and P |_PGL+ (r(D,),1). Then, by Proposition 6.2, there
exists at least a PGL™ interpretation M € My, ., such that |[p(D,)||m = 1 and
|*(D;)|lne = 1. Moreover, as P is a PGLt program satisfying the context con-
straint and {(p(4) — ¢(B),B), (r(E) = q(F),7)} C P} and r # p, in all four
cases we are considering each value u € U,,. On the other hand, by the sound-
ness of the RE and FU inference rules, P IZPGLJr {(p(4) — ¢(B),B),(r(E) =
4(F),v)}. Hence, P =Y par+ P2 and, by the soundness of the UN and IN in-
ference rules, P |:PGL+ (¢(D),1)}. Then, by Proposition 6.2, 7w is normal-
ized in all four cases. Finally, we can easily check that = Izg’g“ P, and
N*([q(C)] |) = infuev,, fim(p)(8) = pm(c)(u) = N*(m(C) | m(D)), in all
four cases too. Hence, by Proposition 6.1, ||q(C)||g;m = inf{N*([g(C)] | =) |

" Ve P} < N (n(©) | m(D)) = (O™ -

Proposition 6.15 Let P = (P,Um) be a PGL™ program, and let
(p(A) = q(B),B) and (p(E) — s(F),v) be two valid clauses of P, such

Um —
that g # 5. Then, [[a(O)(p(D,),1),(0(A) =a(B) B)(p(B) > s(F) (D)D)} =
la (O Gt mins eI}

Proof: We define
Py = (p(Dy),1), (p(A) = ¢(B), B), (p(E) — s(F),7),(s(Ds),1)}

and Py = {(q(B), min(8, [lp(A)lIZ™))}-

170 A complete calculus for PGL extended with fuzzy constants

By Propasitions 610 and 66, [p(AIE™ = P, ., = N (m(A4) |
m(Dp)). Then, by the soundness of the SU and MP inference rules, P; PG -
P, and thus, 7 |:PGL+ P, for each model 7 : My, — [0,1] of P,. There-
fore, by Proposition 6.1, ||q()||U’m = inf{N*([¢(C)] | =) | = PGL+ P} >
inf{N*([¢(C)] | =) | = PGL+ P} = ||g(C)”ng Then, we must prove that
lg(ON%™ < lla)N%™.

Let D be an object constant of sort o, such that

Mm(D) = ma*x(l - min(ﬂ7 ||p(A)||g;m)7 ,U/m(B))'

By Proposition 6.6, la(O)I 5" = ()i 1y = N*(n(C) | m(D). As P
is satisfiable in the context determined by U and m, let M,,, = (U, 4..,,m) be a
PGL* interpretation of My, such that ||@||m.., = 1 for each clause (¢, @) € P
with a > 0. Moreover, as P is a PGL* program satisfying the context constraint
and (p(A) — q(B),B) € P}, either § < ||p(A)||gpm or, for some u € U,,,
Pm(ay(u) =0 and ppp,)(u) =1 - ||p(A)||g;m Then, we distinguish two cases.

sat

Case 3 < ||p(4)||Pm Let 7 : Mym — [0,1] be a possibility distribution with
the following definition:

llg(D)|lm, for each M = (U,i,m) € My, such that
(M) = i(p) = e () a0d () = 7. (5)

0, otherwise.
Case ||p(A)||p™ < B. Let 7 : My,m — [0,1] be a possibility distribution with
the following definition:

(|lg(D)||m, for each M = (U,i,m) € My, such that
i(8) = 4...(s) and either i(p) = i...(p) and

M — lg(B)llm > 1= [Ip(A)[|Z™, or
7T() = < U,m
IP(Dp)llm =1 — [|[p(A)|5™ and
Ip(A)|lve = 0 and [lg(B)[lm < 1 — [lp(AI5™
L 0, otherwise.

As P satisfies the context constraint C2 and (p(A) — ¢(B),) € P and s # ¢,
in both cases we are considering each value u € Uy, .

Moreover, by Proposition 6.9, P, |:PGL+ (Dp),1) and
Py Epgps (8(Ds),1), and thus, P =50y 4 (9(Dy),1) and P =Gy (s(Dy), 1).

6.4. Completeness of the PGL* proof method 171

And, as {(p(4) = ¢(B),B), (p(E) = s(F),7)} C P, by the soundness of the
RE and FU inference rules, P |—PGL+ (p(A) = q(B),B), (p(E) — s(F),v)}.
Hence, P |:PGL+ P,, and thus, P |:PGL+ P,. Finally, by the soundness of
the UN inference rule, P |—PGL+ (¢(D),1). Then, by Proposition 6.2, « is
normalized in both cases.

On the other hand, as P satisfies the context constraint C1, for
each clause (p(G) — t(H),d) € P\P,, we have that, for each u €
Us,, either finc) () < fim () (isai (t)) OF (D, (1) < max(L = &, i (rr) (feas(t)))-
Now, by Proposition 6.3, for each clause (p(I) — I(J),\) € PT such that
(p(I) = I(J),) & P, by Proposition 6.3, we have (p(I) — I(J), \) can be derived
from P by applying the RE or FU inference rules.

Then, for each clause (p(I) — I(J),\) € P* derived from two clauses
of the form {(p(I) — r(K1),\1),(r(Kz2) — I(J),A2)} C P by applying the
RE inference rule, we have that if Ay = 0 or Ay = 0, then A = 0, and
thus, for each u € Us,, fimp,)(u) < max(l — A, fiy(g)(6.ae(1))). And, if
A1 #0 and Ay # 0, then A =min(A1, A2) and iy (k) (Geae (7)) < Mo (Ky) (e (7))
and fp (ko) (G20t (7)) < fm(g) (ieae(l)), and thus, for each u € U,,, either
o () < i) i (1)) OF () (0) < (L= Ny) (o (1)-

For each clause (p(I) — I(J),\) € P* derived from two clauses of the
form {(p(f1) — U(J1),\),(p(I2) — 1(J2),A2)} C P by applying the FU
inference rule, we have that if \y = 0 or A2 = 0, then A = 0, and
thus, for each v € U,, pm(p,)(u) < max(l — A, pip(s)(Geae(l))). And, if
A # 0 and Ay # 0, then A =min(A;,A2) and pip(ry = max(lm(r,)s lm(Io))
and fip(g) = Max(fm(sy), Bm(Jz)), and thus, for each u € U,,, either
Py (@) < () (s (1) OF pim(p,) (1) < max(l — A, fiyn () (feae(1)))-

Hence, as (p(E) — s(F),v) € P;f, we have that, for each u € U,, either
Pin(E) (W) < () (it (8)) OF fimm(p,) (1) < max(l =, () (1.0 (5)))-

Finally, as P |—PGL+ (p(Dp),1) and P |—PGL+ (s(Dy), 1), by Proposition 6.2
Pm(D,)(ieae (P)) = 1 and pipy(p,)(i.e(s)) = 1. Therefore, we can easily check that

x E% . Prand N*([g(O)] |) = infueu,, fim(p) (@) > fim(c) (W) = N*(m(C) |
m(D)), in both cases too.

Thus, by Proposition 6.1, [|g(C)||5™ = inf{N*([¢(C)] | 7) | 7 Epars Pi} <

N*(m(C) | m(D)) = [lg(C) 5™]

Corollary 6.2 Let P = (P,U,m) be a PGLt program, and let (p(A) — ¢(B), 3)
and (r(E) — s(F),v) be two valid clauses of P, such that p # r, p # s

172 A complete calculus for PGL extended with fuzzy constants

Um _
and g # 5. Then, [|a(O)lg(p(n,),1).(p(4)=a(B).8), (D)) (r(2)—5(F)) (s(D) 1)} =

U,m
NN (g5 mingapcay G

Proof: We define
Py ={(p(Dyp),1),(p(A) = ¢(B), B), (r(D:),1), (r(E) = s(F),), (s(Ds),1)}

and

P, = {(a(B), min(8, |p(4)|%™)}.
On the one hand, as in Proposition 6.15, Py |:g’gL+ P,, and thus, 7 Izg’gLJr P,
for each model 7 : My,, — [0,1] of P;. Therefore, by Proposition 6.1,
lg@I%™ = N ([(O)] |) | = EYZ. P} > mf{N*([q(O)] |) |
™ e B} = lla@)llp™

On the other hand, as P is satisfiable in the context determined by U and
m, there exists a PGLT interpretation M.,, = (U, %...,) € My, such that
[|#llm,,, = 1 for each clause (¢,a) € P with @ > 0. Now, by Proposition 6.9,
P Y92 (r(D2),1) and P, U, (s(D.),1), and thus, P Y . ((D,), 1)
and P |:PGLJr (8(Ds),1). And, as (r(E) — s(F),v) € P, by the soundness
of the RE and FU inference rules P |=PGL+ (r(E) = s(F),v). Therefore, by
Proposition 6.2, ||r(D,)||m.., = 1 and [|s(Ds)||m.., = 1 and max(1 -4, ||r(E) —
5(F)|IM.,..) = 1. Finally, as (r(E) — s(F),v) € P}, it must be ¢ # r. Moreover,
as p #r and p # s and g # s, for each pair of values u € U,, and v € U,,, there
exists at least a PGL" interpretation M = (U, 4, m) € My, such that i(q) = u,
i(p) = v, i(r) = i..(r) and i(s) = i...(s).

Hence, following the proof process used in Proposition 6.14 and taking into
account that either 8 < ||p(A)||gpm or, for some v € U,,, pm(a)(v) = 0 and
Pm(D,)(v) = 1—[|p(A)||U’m we can easily define a normalized possibility distribu-
tion 7 : My, — [0,1] such that = IZPGLJr P and N*([q()] |) = |lg(C)||P2 ,
and thus, [lg(C)|%™ = inf{N*((O)] |) | 7 ES0 . A} <la@I%™. m

At this point we are ready to prove that the degree of deduction obtained
by applying the SU and MP inference rules is the greatest lower bound of possi-
bilistic entailment for a PGL* program satisfying both the modularity and the

context constraints.

Proposition 6.16 Let P = (P,U,m) be a PGL™ program and let
(p(A) — q(B),p) be a valid clause of P,. Then,

@™ = la@lpx" = la©)lIE",

6.4. Completeness of the PGL* proof method 173

where Py = (PAA\{(p(4) = ¢(B), £)}) U {(a(B), min(B, [p(4)l|z™))}.

Proof: As P is a PGL* program satisfying the context constraint, by Propo-
sition 6.12, [lg(C)IIF™ = llg(C)lIZ™ and, by Proposition 6.4, [lg(C)l[5™ =
lg(C)|| 4" Hence, we must prove that [|g(C)||P+ = la(©)lI7™

By Corollary 61, B, EYZ. ((A)lp(AI%™) and, as B, C Py,
we have that P =% . (p(A),[Ip(A)|5™). Therefore, as (p(A) —
q(B),B) € P}, by the soundness of the MP inference rule, we have
that P g’g;"L+ (q(B),min(ﬁ,||p(A)||g;m)). Therefore, by Proposition 6.1,
lla(C)IIU’m = inf{N*([g(C)] | ™) | ® Epgye B} > inf{N*([g(C)] | =) |

|=pGL+ P;} = |la(C)|[z;™. Then, we must prove that [|¢(C)|| < lla(©@)lIz™.

Now, by Proposition 6.4, ||¢(C)||%™ = [l¢(C)||P,+, where

Pt =

{ P, if (p(A) = ¢(B),) is a basic clause of P}
q

P U{(g(B),min(8,[[p(A)|5™))}, otherwise.
Then, if (p(A) — q(B), 8) is not a basic clause of P;f, we have that Pt C P;*,
and thus, ||q(C)||g’f1 < ||q(C)||g’,T Hence, we must prove that if (p(A) —

a(B), B) is a basic clause of P;\, then [la(C)| 7" < la(C)lI™-
q
Let D, and Dy be two object constants of sort 04 such that

Hm(D,) = /\{,Um (D) | P IZPGL+ (¢(D),1)}

and
pm(oy) = \imp) | Py Epar+ (@(D),1)}.

By Proposition 6.10 and 6.6, ||q(C)||P:er = |lq(C)||{ (D))} = N*(m(C) |
m(Dy)) and lg(@)%" = 1a(O)I%p,, 1y = N*(m(C) | m(D}). Hence, we
must prove that if (p(A) — ¢(B),) is a basic clause of Pq"r, then Hm(Dy) <
Mm(p,)- To this end, we prove that P, g’énLJr (¢(D),1) for each object con-
stant D of sort o, such that P, |—PGL+ (q(D),1).

Suppose that there exists an object constant D of sort o, such that
P EYR . (¢(D),1) and P, DT . (q(D),1). Now, let D, be an object

constant of sort o, such that

Hm(Dp) = /\{Nm(D) | Py |=1Z’(7;nL+ (p(D),1)}.

Then, by Propositions 6.10 and 6.6, ||p(A)||g;m = ||p(A)||?(’;ZDp)71)} = N*(m(A) |
m(D,)). As P satisfies the context constraint C1, by Propositions 6.12 and 6.4,

174 A complete calculus for PGL extended with fuzzy constants

Ip(A) ™ = IIP(A)IIZZ}" and [lp(4)l|5™ = Ilp(A)[7™, and thus, |p(A)||P+ =
Ip(A) 1™

On the other hand, as (p(A) — ¢(B),8) € P} and P satisfies the
context constraint C2, either § < ||p(A)||g;m or, for some v € U,,,
() = 0 and pnp,)(®) = 1 — [[p(A)|Z™. Then, by Proposi-

. Um —
tion 6.8, [la(O)l{(p(p,),1).(p(4)—a(m).8)3 = 12(C)”{<q<B) min(B,N* (m(A) m(Dp))))} =

IO gt mincs, ity 2nd thus, - [la(C Miptpn,0, 6041081,
Um
LG rrm— Iy~ = MM, mins oy zymy- We define

= PAA{(0(4) = o(B), B)}.

Then, if
P U{(p(A) = ¢(B), B)} Epey+ (a(D), 1)
and

Py U {(a(B), min(B, [lp(ANIZ™)} Epay+ (a(D),1),

there should exist at least a clause (¢,a) € P; which together with (p(4) —
q(B), B) should enable P, to entail (¢(D),1). Thus, (p(A) = ¢(B),3) together
with (p,@) € Pi should entail a clause of the form (k — ¢(E),v) ¢ P} for
some atomic formula k, and such that max(1 — min(y, ||k||P,c)s m(E) (1)) <
max (1 — min(8, ||p(A)||g;m),um(B) (u)), for some u € U,,.

Now, by Proposition 6.13, [|a(O)I{(rr),),p00 0 p(Aoa(E8} =

Gy mrp— Ip(aygmyy for each unit dause (r(F),a) € Py,

and thus, (¢,a) € P cannot be a unit PGLT clause. More-
over, by Proposition 6.14, for each clause (r(F) — ¢(G),a) € P

U,
such that p 7 7, [4(O){(p(D,).1).(p(4)=a(B).8).(r (D)) (r(F)—sa(G)a)}

Um . s
||q(C)||{(q(B) min3, (Y1) (a(G),min(en I (FY %) and, by Proposition 6.12,

neither ||r(F)|| ™ nor ||p(4)||Pm depend on (p(4) — ¢(B),8) and (r(F) —
(@), a). And, by Proposition 6.15, for each clause (p(F) — s(G),a) €

U,
Py such that ¢ # s, [19(CO)l(p(,),0),(0(4)>a(B).6).(p(F) = 5(G).0).(s(D2) 1)}

[lg(C)||{(q(B) min(8,[p(A)] Z™))) and, by Proposition 6.12, neither the object

constant D, nor D; depend on (p(A) — ¢(B),B). And, finally, by Corol-
lary 6.2, for each clause (r(F) — s(G),a) € P, such that p # r and

U, —
p# s and g 7 s, 1¢(CO)(p(D,),1).(p(A)>a(B),8).(r(D2) 1)(r(F)—(G)0).(s(D) 1)} =

[|lg(C)”{(q(B),mm 8, Hp(A)ng’"))}’ and, by Proposition 6.12, the object constants

6.4. Completeness of the PGL* proof method 175

D,, D, and D, do not depend on (p(A) — ¢(B),5). Hence, (¢,a) € P; should
be either of the form (p(F) — ¢(G),) or (r — p(F), a), for some object con-

stants F' and G and atomic formula r. We distinguish two cases.

Case (p,a) = (p(F) = q(G),a). As (p(A) = ¢q(B),B) is a basic clause of P},
(p(A) = q(B),B) € P,. Then, as P, satisfies the modularity constraint, if
(p(F) = 4(G),) € Py with pm(a) £ pm(r) and fin(py £ fim(a), ((F') =
q(G"),min(a, B)) € Py with pipy = max(fm(r), bm(a)) and ppgry =
max(fim(G)> bm(B))-

On the other hand, if pma) £ tmr) and pymF) £ pma), We can eas-
ily check that {(p(F) — ¢(G),), (p(4) — ¢(B),B)} Fpar+ (p(F') —
q(H),d) with pipay < Mmay or & > min(a, §). Hence, if {(p(F) —
4(G),), (p(4) = ¢(B),B)} Epar+ @) = a(J),7), either pipny <
Bm(a) and f(g) 2 pm(s) and y < B, OF p(1y < pm(r) and fm(g) 2 Bm(G)
and v < @, OF fpy(1) < fmn(rry A0 flyn(gy > pm(ary and v < min(a, B).

Case (p,a) = (r = p(F),a). If (r = p(F),a) € Pi with ppr) < Hm(a),

then {(r — p(F),a),(p(4) = ¢(B),B)} Fpar+ (r = ¢(B),min(a, B)).
However, as Pq+ satisfies the modularity constraint and (p(A) —
q(B),p) € P,;, we have that (r — ¢(B),min(a,f8)) € P. On
the other hand, by the soundness of the SU and RE inference
rules, we have that {(r — p(F),a),(p(A) — q(B),H)} |:PGLJr
(r = q(B),min(a, 8, N*(m(F) | m(Dp)), N*(m(4) | m(F)))). And,
we can easily check that if p,p)(v) > fma)(v) for some v €
Us,, then {(r — p(F),a),(p(4A) — q(B),A} Fpeps ¢ —
¢(B),min(a, 8)) and {(r — p(F),a),(p(4) = ¢(B),B)} ¥pap+ (r —
¢(B),min(a, B, N*(m(F) | m(Dp)))) and {(r — p(F),a),(p(4) —
4(B),B)} ¥pe+ (r — a(B),min(a, 8, N*(m(A) | m(F)))). Hence, if
Pm(F)(V) > fma)(v) for some v € U,,, then min(a, 3, N*(m(F) |
m(Dp)), N*(m(A) | m(F))) > A for each A € [0,1] such that {(r —
p(F),a), (p(A) — ¢(B),B)} |:PGL+ (r = ¢(B), A). Finally, we have that
min(N*(m(F) | m(Dy)), N*(m(A) | m(F))) = min(infucu,, pm(p,)(u) =
Pm(ry (W), infuev, Pmr) (W) = pma)(w)) = infuev, min(pm,op,)(w) =
Nm(F)(u)uum(F)(u) = pmay(w) < infuev,, Bmp,) (W) = Hma)(u) =

N*(m(4) | m(Dp) = ||p(A)||g;m Hence, for each v € U,
max(1 — min(8, |[p(A)|5™), tm(p) (w)) < max(1 — min(a, 8, N*(m(F) |

176 A complete calculus for PGL extended with fuzzy constants

m(Dy)), N*(m(A) | m(F))), () (u))-

Therefore, if (¢,@) € Py and {(p(4) = ¢(B),), (v,0)} Epgy+ (k = a(E),7)
and, for some u € U,,, max(l — min(7,||k||Pk)s bm(E)(w)) < max(l —
min(B, [p(A)|Z™), tm(s) (), then (k — ¢(E),7) € Pi. On the other hand,
as (p(A) — q(B),B) is a basic clause of P;f, P* = Py, and thus, P, satisfies
the modularity constraint too. Then, if (¢,d) € P, and, for some atomic for-
mula I, {(k = q(E),7), (¥,9)} |—PGL+ (I = q(F),\) and, for some u € U,_,
max(1 — min(\, UI5™); ey (w)) < max(l = min(y, |[KII5™), (e () and
max(1 — min(\, [[15™), () (w) < max(l = min(B, Ip(ANE™)s tms) (W),
then (I = ¢(F),\) € Pi. Hence, if P, U {(p(A) — ¢(B),3)} |=PGLJr (¢(D),1),

then Py U {(g(B), min(B, [p(A)I5™)} Erae (a(D),1) as well, and thus,
Hm(D) < Hm(Dy)-]

The following propositions establish the basis for defining an efficient algo-
rithm for computing the maximum degree of possibilistic entailment of a goal
from a PGLT program satisfying both the modularity and the context con-

straints.

Proposition 6.17 Let P = (P,U,m) be a PGL" program. Then,
lla(C)||P+ = llg(@) I placts

where PP = {(a(E),7) € Pg} U {(a(B),min(B, [p(A)I5™) | @A) —
9(B),B) € P}

Proof: By Proposition 6.16, for each clause (p(A) = ¢(B),p) € P},
llq(C)lli;ln = llg(C)||p: , where

= (P \{((4) = (B),)}) U {(a(B), min(B, l[p(A)I5™))}-

Then, if P, satisfies the modularity constraint, we have that, for each clause

(r(F) = 4(G),0) € P}, (O™ = la(C)l|p", where
P = (P\{(r(F) = ¢(G),8)}) U {(¢(@), min(8, |Ir(F)|™))}-

On the other hand, in Proposition 6.5 we have proved that, for each finite set
of PGLT clauses Q, if (p,a) € @ and ¢ is a rule with head g, then either (p, a)

is a basic clause of @, or there exists at least a clause (¢),\) € @ such that

6.4. Completeness of the PGL* proof method 177

¢ is a rule with head ¢ and (¥,) is a basic clause of Q. Then, if Pl is a
finite set of clauses and Pq‘|r contains general PGLT clauses, there exits at least
a clause (p(4) — q(B) B) € P such that (p(A) — ¢(B),) is a basic clause of
P}t. Hence, [|q(C Y P = |q(C)”me and P, satisfies the modularity constraint.
Moreover, if P; is a ﬁnlte set of clauses, P; is a finite set of clauses too. Then,
if P! contains general PGL™T clauses, there exits at least a clause (r(F) —

q
q¢(G),8) € P! such that (r(F) — q(G),0) is a basic clause of P;, and thus,

q e
lg@)%™ = [1g(C)|%™ and P, satisfies the modularity constraint. Therefore,
if P;r is ; finite set of qclauses, repeating the above process we can transform Pq+
into a finite set of PGL* clauses of the form P;* = {(¢(B), min(5, ||p(A)||gpm)) |
((4) — a(B),B) € Py} U{(a(E),y) € PYU{(r — s,)) € PF | s # g}
and ||q(C)||g";:” = ||q(C)||P,T. Finally, if P is a finite set of PGLJr clauses,
then (P",U,m) is a PGLJr program satisfying the context constraint. And, by

Proposition 6.12, we have that [|q(C)||%™ = ||¢(C)||Pms, and thus, [l¢(C)[|21" =
q q

llg(C)|%m Practs- Then, we must prove that P, is a finite set of clauses.

As P is a finite set of clauses, Py is a finite set of clauses too. Now, by
Proposition 6.3, for each valid clause (¢, a) € P} such that (¢,a) & Py, (p,a)
can be derived from the clauses of P, by applying the RE and FU inference
rules.

On the one hand, as P, does not contain recursive formulas, by applying the
RE inference rule we derive a finite set of PGL1 clauses. On the other hand, by
applying the FU inference rule we can derive an infinite set of PGL* clauses.
However, as only belong to Pq+ the clauses derived from P, with the wider body
and the narrower head, we just consider a finite subset of them. Therefore, in the
worst-case each combination of clauses of P, derives a new valid clause. Hence,
denoting by N the number of clauses of F,, in the worst-case the number of
clauses of P;f is N + Zf\;z (Jy), and thus, P;" is a finite set of clauses as well as

pr. n

Proposition 6.18 Let P = (P,U,m) be a PGLt program, let (¢(B),[) be a

unit clause of P+, and let Dy, be an object constant of sort o, such that

pm(py) = [\ tm(o)y | BA\(@(B),)} F+ (@(D), 1)}

Then, |l = 14Oy by 1), (a8,

Proof: By Proposition 6.9, P,"\{(¢(B),B)} IZPGLJr (¢(Dg),1), and thus,
P+ ‘_PGL‘*‘ (Q(D;)Jl) Thereforea m '_PGL+ {((q),l),(Q(B),B)} for each

178 A complete calculus for PGL extended with fuzzy constants

model 7 : My, — [0,1] of PF. And, by Proposition 6.1, [lg(C)||U’m =
bV (g(©)) | ™) | 7 FU PYY > bV |) |« O
{(e(D}),1),(q(B),B)}} = lla(C)||{(q(Dq),1),(q(B)ﬁ)}. Then, we must prove that
lla(C)” <llg(C)“?(’ZZD;)J),(Q(B),B)}'

By Proposmon 6.17, ||q(C)||gql” = ||lq(C)||Pfacts, where Py = {(q(F),v) €
Py} U {(a(B), min(a, Ip(A)[IZ™) | (p(A) = q(E),a) € P;f}. Then, we must

prove that [lg(C) it < la(OM(rinn).0.a0m).00)-

Let D; and D2 be two object constants of sort o, such that p,,(p,) =
min(min{max(1 - 6, fim(@y) | (¢(G),9) € P=\{(q(B),)}}, masx(L — B, fms))
and fip(p,) = min(pm(py), max(1l — B, im(m)))-

As Pp* is a finite set of unit PGL™ clauses with head ¢, by Proposi-
tions 6.11 and 6.6, ||¢(C)||Pfacts ||q(C)||?(’;'(‘D1)’1)} = N*(m(C) | m(D;)) and
llg(C)“{(q(D’)l (a(B),A)} — ||‘1()”?(’;T(LDZ)J)} = N*(m(C) | m(Dz)). Then, we
must prove that iy, (p,) < tm(D;)-

Now, as (¢(B),B) is a unit PGL* clause, (P/\{(¢(B),/)Ht =
P\{(¢(B),B)}, and thus, (¢(B),5) is a basic clause of P}. Then, by

Proposition 6.17, ||g(D)||P+\{(q(B)) = |lg(D)||Pfacts\{(q(B) 8}’ for each ob-
ject constant D of sort o,. Then, by the soundness of the UN inference

rule, fip(py) < min{max(1 =6, um () | (4(G),0) € Pp*\{(a(B),B)}}. Hence,
Hm(Ds) < Bm(Dy)- [

Corollary 6.3 Let P = (P,U,m) be a PGL' program, let (p(A) — q(B),3) be

a basic clause of P+, and let D' be an object constant of sort o, such that

oy = Nmeoy | PAB(A) = a(B), B)} Efar+ (@(D), 1)}

Um __ U,m
Then, lla(ON g = Na(ON gy, (a(8) mincaimcan g

Proof: As (p(A) — q(B),8) € P;, by Proposition 6.16, ||q(C)||g’f’
lg(O)lI5™, where

Py = (P\{(p(4) = ¢(B), A)}) U {(a(B), min(B, Ip(A)[|5™))}-

Moreover, as (p(A) — ¢(B),B) is a basic clause of P}, we have

that (PA\{(p(4) — a(B),HHT = P\{((4) - qB)A)} and

thus, P, satisfies the modularity constraint and Pm(Dy) = Mpmo) |

P\{(a(B), min(8, [p(A)I5™)} Epgy+ (@(D),1)}. Then, by Proposition 6.18,

6.4. Completeness of the PGL* proof method 179

Uvm — Uim U,m
Hla(ONE"™ = MO 4y, (a(8) mina ey &y 20D thUs, el =

|
la(@)”{<q<D') 1),(a(B),min(8,[[p(4)[5™)}

Finally, before proving the completeness result, we consider two particular

cases.

Proposition 6.19 Let P = (P,U,m) be a PGL" program, and let C be an
object constant of sort o such that i, (c) (u) = 1 for each u € Us,. Then,

la(C)Ip™ = |g(C)|P™ = 1.

Proof: As pipcy(u) = 1 for each u € Uy, [|g(C)|lm = 1 for each PGL™ inter-
pretation M € My ,, and thus, N*([¢(C)] | m) = 1 for each possibilistic model
7 : My.m — [0,1]. Therefore, by Proposition 6.1, ||q(C)||g’m = inf{N*([¢(C)] |
)| PGL+P}—1

On the other hand, by the triviality axiom, P I—gCTLJr (¢(C),0) and, applying
the UN inference rule, we get (¢(C),0) I—IZCTLJr (¢(C),1), and thus, |q(o™ =

sup{a € [0,1] | P F557 . (4(C),@)} = 1. Hence, [lg(O)[|5™ = [¢(C)[p™ =1. =

Proposition 6.20 Let P = (P,U,m) be a PGL* program, and let C be an
object constant of sort o, such that pm,cy(u) < 1 for some u € U, . If there is
no clause in P with head q, then ||q(C)||g’ = |¢(C)|p Um _ 9.

Proof: As P is a PGL™ program satisfying the context constraint, by Proposi-
tion 6.12, ||g(O)||%™ = ||q(C)||g;m, where, if there is no clause in P with head
g, P; = {(¢(B),0)}, B being an object constant of sort oy.
Now, let m : My, — [0,1] be a possibility distribution such that #(M) =1
for each PGL* interpretation M € My ,,. Obviously, = =% par+ (@(B),0) for
)] m) =
infmemy,,, 7(M) = ||q()||M = 0. Therefore, by Proposition 6.1, ||q(C)||g;m =
inf{N*([g(O)] | m) | ™ Eper+ P} =0, and thus, [|lg(C)[|Ip™ = 0.
On the other hand, by the triviality axiom, |¢(C)|g’m > 0. However, by the
soundness of the inference rules, [|g(C)||%™ > |¢(C)|%™, and thus, [|¢(C)||%™ =
a(C)|z™ = 0.]

any object constant B and, as fi,,(cy(u) < 1 for some u € U,,, N*([¢(C

Theorem 6.2 (completeness) Let P = (P,U,m) be a PGL* program satis-
fying the context constraint. Then, ||g(C)||%™ = |¢(C)|%™.

180 A complete calculus for PGL extended with fuzzy constants

Proof: We assume that p,c)(u) < 1 for some u € Uy, (04) being the type of
g; otherwise, by Proposition 6.19, ||q(C’)||g’ = |g(C)|p Um — 1.

Moreover, we assume that there is at least clause in P with head ¢; otherwise,
by Proposition 6.20, ||¢(C)||%™ = |¢(C)|%™ = 0.

Now, by Proposition 6.12, [|¢(C)||%™ = [l¢(C)||g;m, where

P, = {(¢,a) € P | head(y) = q or ¢ depends on head(y) in P}.

Moreover, by Proposition 6.4, ||q(C)||U’m = ||lq(C)||PJr , where Pt is the set of

valid clauses of P;. And, by Proposition 6.3, P, HY PGL+ (p,), for each valid
clause (¢, a) of P;. Hence, we must prove that ||g(C)|| = |g(C)|U’m. However,

by the soundness of inference rules, ||g(C)|| > |g(C)| iy and thus we must

prove that ||g(C)|| < |q(C)| . We proceed by induction on n, where n is
the number of clauses of P}.

If n = 1, it must be that P} contains either a unit PGL* clause with
predicate symbol ¢, or a general PGL™ clause with head q.

Suppose that P contains only the unit PGL* clause (¢(B),3). Let D be
an object constant of sort o, such that pi,,,(py = max(1 — B, iy (p))- By Propo-

stion 6.6, l9(C)7m 5y, = 1250y, = N*(m(C) | m(D)). On the
other hand, applying the UN inference rule, {(¢(B),)} I_PGL+ (¢(D),1) and,
applying the SU inference rule, {(¢(D),1)} I—gé”L+ (¢(C), N*(m(C) | m(D))).
Therefore, |g(C)|{ (a(B),8)} — sup{a € [0,1] | (¢(B),5) '_ggbm (@(C),)} >

N*(m(C) | m(D)), and thus, [[g(C) 1§75, 513 < 10(Oms s
Suppose now that Pq+ contains only the general PGLT clause

(p(A) = ¢(B),). On the one hand, it must be that (p(4) — ¢(B),B) € P,
and thus, (p(4) = q(B),B) € P. Therefore, fi,,,(4)(v) < 1 for some v € U,,,
(0p) being the type of p. On the other hand, it must be that P contains no
clause with head p. Then, by Proposition 6.20, ||p(A)||g’m = 0 and, by Proposi-
tion 6.12, ||p(4)||%™ = ||p(4)||{(p,0)} s (p(A) — ¢(B),p) is a basic clause of

—+ —
Pq 5 by COI‘OHaI‘y 617, ”q()||{(p(A)—>q(B) ﬂ)} - ||q()“{(q(B) mln(ﬁ ”p(A)”if(;ﬂo)}))}7

and thus, ||‘1(C)||?(’;Y(LA)_>,1(B),5)} =||q(C)||{(q (B),0)}" Let D be an object constant
of sort o, such that pp,(py(u) = 1 for each u € U,,. By Proposition 6.6,
WO iy0ry = IOy = N*Gn(C) | m(D)). AS (@) < 1
for some u € U,,, N*(m(C) | m(D)) = 0. Hence, ||CI(C)||?(’;H(A)_>(1(B),5)} =0.
Finally, by the triviality axiom, |q(C)|g(’;’ZA)_>q(B)’ﬂ)} > 0, and thus,

Um
2O ipiar—amo 2 19O a) a0

6.4. Completeness of the PGL* proof method 181

Finally, suppose that for each PGL* program P’ = (P',U, m) satisfying the
modularity and the context constrains and containing at most n clauses, it holds
that ||s||P,m < |s|p: for each PGL" goal 5. And suppose that P, contains n + 1
clauses.

As we are assuming that g occurs in P,F, by Proposition 6.5, P;F must contain
at least a clause (¢,) such that the head of ¢ is ¢ and (¢,) is a basic clause of
P} Therefore, as (P,,U,m) is a PGLT program satisfying the modularity and
the context constraints, we have that P’ = (P',U,m) with P' = P*\{(¢,7)}
is a PGL* program satisfying the modularity and the context constraints and

containing n clauses. Now, we distinguish two cases depending on the form of

1.

Case (¥,7) = (¢(B),7). Let D be an object constant of sort o, such that
Mm(Dy) = /\{,um(D) | P’ PGL+ (¢(D), 1)}

By Proposition 6.18, ||g(C)||P+ = llg(C)”{(q (D}),1),(a(B), M} Now, let £ be

an object constant of sort o, such that
Hm(E) = WD (fm (D), Max(l =, U (B)))-
By Propositions 6.11 and 6.6,
M@0y aty oy = IOy 1y = N*(n(C) | m(E)).

On the other hand, by Proposition 6.9, P’ |—PGL+ (q(Dy),1), and thus,

||q(D’)|| = 1. Then, by the induction hypothesis, ||q(D')||Um <
lg(DL|Z™ < |q(D’)|Uf1, and thus, P U7 . (q(D!),1). Now, as

(¢(B),7) € P;f and pip(g) = min(umm) max(1—7, fim(5))), applying the
IN inference rule, we get that P, FY per+ (@(E),1). Finally, applying the
SU inference rule, {(¢(E),1)} I—PGL+ (¢(C),N*(m(C) | m(E))). Hence,
|Q(C)|g;f” sup{a € [0,1] | B FP&y 4 (@(C),a)} > N*(m(C) | m(E)),

and thus, [l(O)|5" < |a(O)| 1"

Case (¢,v) = (p(A) — q(B),'y). Let D; be an object constant of sort o, such
that
pm(py) = Nmeoy | P =PG4+ (@(D), 1)}
As (p(A) — ¢q(B),y) is a basic clause of P/, by Corollary 6.3

and Proposition 6.4, ||q(0)||g;1” = llg(@)”{<q<D') 1, (a(B) min(r (AT)Y

182 A complete calculus for PGL extended with fuzzy constants

where, as ¢ depends on p in P, Pt = {(#,0) € P} | head(¢) =
p or p depends on head(¢) in P,f}. Now, let E be an object constant

of sort o, such that
Hm(E) = min(um(D;)ama*X(l - min('}la ”p(A)”g;;:n):Nm(B)))
By Propositions 6.11 and 6.6, ||¢(C)||%"™ =

{(‘I(D;)vl)7(‘1(3)7min(’)’7”13(14)”gf))}
(O, 1y = N*(m(C) | m(E)).

On the other hand, by Proposition 6.9, P’ —g’g’L+ (q(Dy),1), and thus,

||q(D;)||g’,m = 1. Then, by the induction hypothesis, ||q(D;)||g’,m
lg(Dy) um < |q(D;)|g’F, and thus, P} I—gCTLJr (¢(Dg),1). Moreover,
s (Pf,U,m) is a PGL* program satisfying the modularity and the

context constraints and containing at most n clauses, by the induc-

tion hypothesis, we get that ||p(A)||g’+ Ip(A)| < |p(A)|Um And,
by Corollary 6.1, P =207, (p(A), Ip(A)I2), and thus, P+ G
p

(p(A),N), for some A > |p(4)||g’+m Finally, applying the MP in-
p

ference rule, {(p(4),)),(p(4) — ¢(B),7)} Fpeys (a(B),min(y,N)).
AS) = min(ippy),max(l — min(y, (A7), pms)) >
min(um(D;),max(l — min(y, A), ,um(B))), applying the UN inference rule,
{(a(D)), 1), (a(B),min(7, N} Fpa+ (a(E),1). And, applying the SU
inference rule, {(¢(E),1)} }—ggLL+ (g(C),N*(m(C) | m(E))). Hence,
|q(C)|Z§" = sup{a € [0,1] | P} F2504 (4(0),@)} > N*(m(C) | m(E)),

and thus, [jg(C)|| < lqg(C)lp;:”- i

6.5 Automated deduction

In this section we define an automated deduction system for non-recursive and
satisfiable PGL* programs satisfying the context constraint. The definition of
an efficient algorithm for checking the satisfiability of PGL™ programs is out the
scope of this thesis.

As we have already pointed out, the proof method for this restricted class
of PGLT programs can be divided into three different and sequential steps. A
pre-processing step which extends a set of PGL™ clauses with all valid clauses.

A translation step which computes a set of unit PGL™' clauses. Since we are

6.5. Automated deduction 183

interested in the possibilistic entailment degree of a PGL™T goal, the set of unit
PGL™T clauses is semantically equivalent to the original one whenever the set
of valid clauses satisfies the context constraint. And, finally, a deduction step
which computes the possibilistic entailment degree of a PGL™ goal from the set

of unit PGL* clauses.

6.5.1 Completing the knowledge base

Given a non-recursive PGLY program P = (P, U, m), in this section we define an
algorithm for computing the set of valid clauses of P in the context determined
by U and m. The algorithm is based on two basic operations and two auxil-

iary functions which apply the RE and FU inferences rules over the clauses of P.

The chaining operation:

chainingy,m : Set of PGL* clauses x PGLT clause — Set of PGL* clauses
ChainingU,m(Sa (Q(B)aa)) = 0

chaining; . (S, (p Ap(A) = ¢(B),a)) = {(¢ Ay = ¢(B),min(e, B)) | (¢ —
p(AI),,B) € S and Hm (A" < Mm(A)} U {(%b A Ap(A) - T(C)amin(a7ﬂ)) |
(W AqgB') = r(C),B) €S and) < pm(Br)}

The fusion operation:
fusiony,, = Set of PGL™ clauses x PGL* clause — Set of PGL* clauses
fusiony ., (S, (a(B),@)) = 0

fusiony ., (S, (¢ Ap(A1) = q(B1),@)) = {(p A9y Ap(As) — q(Bs), min(a, 8)) |
(¥ A p(A2) — q(B2),B) € S and pima,) £ Bm(as) and pmay) £
Pm(Ay) A flon(4g) = MAX(Ln(Ay)> Bm(Az)) AN L (By) = MAX(fhm(B,), lm(Ba)) }

function chaining

input
S1, So : Set of PGLT clauses
U : Collection of non-empty domains
m : Interpretation of object constants over U

/* PGLT program context My, */
prog ,

184 A complete calculus for PGL extended with fuzzy constants

output
S5 : Set of PGL™T clauses

auxiliary variables
C : PGL™ clause
S : Set of PGL™ clauses
begin
while (S2 #0) do
C := select_clause(Ss);
S := chainingy; ,, (S1, C);

S;:= 51 U{C};

Sz = (S52\{C}) U (S\S1);
end while
Ss := Si;

return(Ss)

end function chaining

function fusion

input
S1, So : Set of PGL™ clauses
U : Collection of non-empty domains
m : Interpretation of object constants over U

/* PGLt program context My, */

output
Ss : Set of PGLT clauses

auxiliary variables
C : PGL* clause
S : Set of PGL™T clauses

begin
while (Ss #0) do
C := select_clause(Ss);
S = fusiony,, (S1, C);
S1:= 851 U{C};
Sz := (52\{C}) U (5\S1);

end while

6.5. Automated deduction 185

Sz := Sy
return(Ss)

end function fusion

Algorithm 6.1 completing the knowledge base
Input: (P,U,m) : A non-recursive PGLT program
Output: P7 : The set of valid clauses of P

Auxiliary variables:
exists_new_valid_clauses : boolean

C, F : Set of PGL* clauses

Method:
C := chaining(0, P, U, m)
F := fusion(0, C, U, m)
if (C=F) then
/* C satisfies the modularity constraint */
Pt .= C;
else
ezists_new_valid_clauses := true;
while (exists_new_valid_clauses) do
C:= chaining(C, F\C, U, m);
if (C=F) then
/* F satisfies the modularity constraint */
Pt = F;
exists_new_valid_clauses := false;
else
F := fusion(F, C\F, U, m);
if (C =F) then

/* C satisfies the modularity constraint */

186 A complete calculus for PGL extended with fuzzy constants

Pt = C;
ezists_new_valid_clauses := false;
end if
end if
end while

end if

Final treatment: return(Pt)

Given a non-recursive PGL* program P = (P,U, m), the algorithm for com-
pleting the knowledge base computes, by means of the chaining function, the
set of valid clauses that can be derived from P by applying the RE inference
rule. From this new set of valid clauses the algorithm computes, by means of
the fusion function, all valid clauses that can be derived by applying the FU
inference rule. As the FU inference rule stretches the body of rules, if the fusion
step derives some new valid clauses, the algorithm checks if a new set of valid
clauses can be derived from them by applying the RE inference rule. In that
case, as the RE inference rule modifies the body and the head of rules, the al-
gorithm checks if a new set of valid clauses can be derived by applying the FU
inference rule. This process is performed until either the chaining or the fusion
functions do not compute new valid clauses.

On the other hand, by the proof of Proposition 6.5, for each valid clause (¢,)
of P either (p,) is a basic clause of P, or there exists at least a finite sequence
C1,Cs,...Cy, of valid clauses of P such that Cp, = (p,a), C1 € P\{(¢,a)},
Cy € P\{(yp,0a)} and, for each i € {3,...,m}, either C; € P\{(¢,a)} or C;
can be obtained by applying the RE or FU inference rules to previous clauses
in the sequence. And, for each ¢ € {1,...,m — 1}, C; cannot be obtained
from (¢, a), and thus, the chaining and fusion functions cannot produce infinite
loops. However, as a valid clause can be derived from two or more different
sequences, the chaining and fusion functions check if each valid clause has been
already derived. Finally, as each valid clause of P is either a basic clause or can
be derived at least from two clauses of P, in the worst-case, each combination
of clauses of P derives a different valid clause. Hence, as P is a finite set of
PGL* clauses, denoting by N the number of clauses of P, in the worst-case, the

number of valid clauses is N + Y"1V, (V) € @(J}IVL/;) However, only a reduced

6.5. Automated deduction 187

set of PGLT clauses of P can combined to derive new valid clauses. Then,
the algorithm does not systematically check all possible combinations, but only
extends valid clauses which have been previously computed. Thus, the algorithm
checks if three different clauses C;, Cs and C5 of P derive a new valid clause
whenever either C; and C5, or C; and Cs, or Cy and C3 have already derived a
valid clause different to C;, Cs and Cs.

6.5.2 Transforming the knowledge base

Given a non-recursive and satisfiable PGL™ program P = (P,U,m) and its set
of valid clauses P, in this section we define an algorithm for computing a set
of unit PGL* clauses which is equivalent to P, for determining the maximum
degree of possibilistic entailment of a goal, whenever P satisfies the context
constraint. Thus, if P satisfies the context constraint, the algorithm determines,
for each predicate symbol ¢ of type (o,) appearing in P, the object constant D,

of sort o, such that

tm(Dy) = N\ltm(py | P DG+ (@(D), 1)}

Moreover, the algorithm computes the set of predicate symbols appearing in P
for which one can ensure the proof method to be complete. Thus, the algorithm
determines, for each predicate symbol ¢ appearing in P, if the object constant
D, can be computed, by applying the MP and SU inference rules, just from the

set of clauses of P such that their heads are g or ¢ depends on their heads in P.

Algorithm 6.2 transforming the knowledge base

Input:
(P,U,m) : A non-recursive and satisfiable PGL™ program
Pt : The set of valid clauses of P
L.. = (U,is,m) : Lo € Tym such that, for each clause (¢,a) € P
with a >0, L,.(¢) =1
Output:

Pred : The set of predicate symbols appearing in P for which

the proof method is complete

188 A complete calculus for PGL extended with fuzzy constants

D : {D, object constant | ft,(p,) = 1, if ¢ ¢ Pred, and
pm(Dy) = NMttmp) | P |:g’g‘L+ (¢(D),1)}, otherwise}

Auxiliary variables:
q : predicate symbol

D, : object constant

Method:
Pred := {q predicate symbol appearing in P};
D =0
while (Pt #0) do
q := select_independent_predicate_symbol (P);
if (P contains no PGL™ clause with head ¢) then
D, := object constant such that p.,p,) =1;
else
D, := object constant such that
() = min{max(1 = B, s | (@(B),B) € P*};
end if
D= DU{D,};
Pt = P"\{(a(B),B) € P}
if (g € Pred and, for some clause (¢(F') A ¢ — t(G),~y) € P and
value u € Uy, fim(F)(4) > fim(q)(ieae (1)) and
Pm(Dg)(w) > max(l — v, () (feae ())
then /* checking the context constraint C1 for ¢ */
Pred := Pred\{q};
end if
for (each clause (¢(H) A¢ — r(I),8) € P* such that r € Pred) do
if (g¢ Pred) then
Pred := Pred\{r};

else

6.5. Automated deduction 189

if (0> N*(m(H)|m(D,)) and there exists no value u € Uy,
such that p,m)(u) =0 and pyp,)(u) = N*(m(H) | m(D,)))
then /* checking the context constraint C2 for r */
Pred := Pred\{r};
end if
end if
end for
Pt i= P+ U{(- r(I), min(6, N*(m(H) | m(D,)))) |
(qH) N = r(I),0) € P
Pt = PP\{(¢(H) N = r(I),0) € PT};

end while

Final treatment: return(Pred, D)

The algorithm for transforming a non-recursive and satisfiable PGL* pro-
gram P = (P,U, m) into a set of unit PGL™T clauses is based on Proposition 6.10
which establishes that, given a PGL™ goal ¢(C),

lgOIE™ = e,)13

where D, is an object constant such that

pmy) = Ntmp) | P Epgr+ (@(D),1)}.

Moreover, by Proposition 6.4,

la@)IIZ™ = la(©)lIp"

Pt

where P is the set of valid clauses of P in the context determined by U and m.
Pt is computed by means of the completion algorithm. Then, if a PGLT pro-
gram satisfies the context constraint C1, by Proposition 6.12, for each predicate
symbol ¢ appearing in P* the object constant D, can be computed from the set
of clauses of PT such that their heads are ¢q or g depends on their heads in PT.
And, if a PGLT program satisfies the context constraint C2, by Proposition 6.17,
each general PGL™ clause of Pt such that it head is g can be transformed into

a unit PGL™T clause by applying the SU and MP inference rules. Finally, by

190 A complete calculus for PGL extended with fuzzy constants

Proposition 6.11, D, can be computed from a finite set of unit PGL* clauses by
applying the UN and IN inference rules.

On the other hand, as a non-recursive PGLT program does not contain re-
cursive formulas, there exists at least a predicate symbol ¢ which depends on
no other predicate symbol in P*. And, after applying the replacement step,
based on Proposition 6.17, for each predicate symbol depending on ¢ in PT,
there exists at least a predicate symbol s # ¢ which depends on no other pred-
icate symbol in PT. The select_independent_predicate_symbol function selects
this predicate symbol for each algorithm iteration. Hence, if a PGL* program
satisfies the context constraint C1 for ¢ and constraints C1 and C2 for s, the

object constants D, and D, computed by the algorithm are

Ny | P EYT . (a(D),1)}

and
Nittmpy | P EST L (s(D), 1)},

respectively. Thus, repeating the above process, the algorithm determines, for
each predicate symbol of Pt, if the proof method is complete and computes
the associated unit PGL* clause. Finally, the time complexity of the algorithm
for computing the set of unit PGL™ clauses is linear in the total number of
occurrences of predicates symbols in P*. And, when extending a PGL™ program
with unit PGL* clauses, only the equivalent set of unit clauses must be computed
again, and thus, once we have computed the set of valid clauses of a PGL*
program we must perform the completion algorithm iff new general PGL* clauses

are added to the knowledge base.

6.5.3 Computing the maximum degree of deduction

Given a non-recursive and satisfiable PGLT program P = (P,U,m), in Sec-
tions 6.5.1 and 6.5.2, we have defined algorithms for computing the set of valid
clauses of P and transforming this set into a set of unit PGL™ clauses, respec-
tively. Moreover, if P satisfies the context constraint for each predicate symbol
of P, the computed set of unit PGL* clauses is semantically equivalent to P
for determining the maximum degree of possibilistic entailment of a PGL™ goal.
And, in that case, if (¢(Dy),1) is the unit PGL™ clause associated with the

6.5. Automated deduction 191

predicate symbol ¢ of P, by Propositions 6.10 and 6.6,

la(ONE™ = 4@ 5. .1yy = N*(m(C) | m(D,)),

for any object constant C. On the other hand, if P does not satisfy the con-
text constraint for some predicate symbol g, obviously, the object constant D,

computed by Algorithm 6.2 is

/\{,um(D) |P I_ggblﬁ (q(D)al)}'

Hence,
4(C)[p™ = N*(m(C) | m(Dy))

and, if P satisfies the context constraint for the predicate symbol ¢, we can

ensure that
lg(C)1F™ = llg(C)IP™

Therefore, after applying Algorithms 6.1 and 6.2 to a non-recursive and satis-
fiable PGL* program, the maximum degree of deduction of a PGL™ goal can
be computed in a constant time complexity in the sense that it is equivalent to

compute the partial matching between two fuzzy constants.

Algorithm 6.3 computing the maximum degree of deduction

Input:
(P,U,m) : A non-recursive and satisfiable PGL' program
Pred : The set of predicate symbols appearing in P for which
the maximum degree of deduction is the maximum degree
of possibilistic entailment
D : {D, object constant |
tmn,) = Mbmo) | P Gy (@(D), D)} if g € Pred,
and fim(p,) = NMbmy | P l—g’g‘L+ (¢(D),1)}, otherwise}
q(C) : PGL* goal
Output:

la(O)|p™ = sup{a € [0,1] | P F, 4 (a(C), @)}
mazximum_degree_of_possibilistic_entailment : boolean

/* true if we can ensure that |¢(C)|%™ = [|g(C)[|%™ =/

192 A complete calculus for PGL extended with fuzzy constants

Method:
if (for each u € Uy, fim(cy(u) =1) then
/* checking the first particular case */
la(O)p™ =1,
mazimum_degree_of_possibilistic_entailment := true;
else
if (¢ does not appear in P) then
/* checking the second particular case */
a(C)[p™ = 0;
mazimum_degree_of_possibilistic_entailment := true;
else
4(C)[%™ = N*m(C) | m(D,));
mazximum_degree_of_possibilistic_entailment := q € Pred,
end if
end if

Final treatment:

return(|¢(C)|%™, mazimum_degree_of possibilistic_entailment)

Chapter 7

An automated deduction
system for a first-order
extension of PGL™

7.1 Introduction

In Chapter 5 we defined PGL, a general propositional fuzzy possibilistic logic
based on Gédel infinitely-valued logic. Then, in Chapter 6 we defined PGL*, a
fuzzy possibilistic logic programming language based on the Horn-rule fragment
of PGL extended with fuzzy constants and a semantical unification mechanism.
Now in this chapter we define a first-order extension of PGL™T.

To achieve our objective, analogously to what we did with the propositional
case, we first define a general first-order possibilistic logic with fuzzy constants
based on Godel predicate logic (called PGLTY). Then, for logic programming
purposes, we focus our attention on a first-order Horn-rule fragment of PGL™Y.
Finally, we provide a translator of PGLTY programs into machine code by ex-
tending the Warren Abstract Machine to our fuzzy and possibilistic context.

The chapter is organized in four parts. In the first part, Section 7.2, we
present the syntax and the semantics of PGL1V. In the second part, Section 7.3,
we provide the Horn-rule fragment of PGL*Y with a sound modus ponens-style

calculus including several unification rules, a merging and a weight weakening

193

194 An automated deduction system for a first-order extension of PGLT

rules. In the third part, Section 7.4, we define an automated deduction sys-
tem based on the above calculus. To be precise, in Section 7.4.1 we develop
a directional algorithm for computing a most general fuzzy unifier of a pair
of atomic formulas; in Section 7.4.2 we describe a proof procedure oriented to
program queries that applies the generalized modus ponens inference rule in
a reverse way by using a depth-first strategy; and, in Section 7.4.3 we apply
these algorithms to the construction of a proof tree when general and specific
fuzzy constants have to be unified. In the last part, Section 7.5, we provide a
compiler for PGL™V programs, and a user-friendly environment which has been
implemented to facilitate the graphical representation of fuzzy constants and

compilation tasks.

7.2 A first-order possibilistic logic with fuzzy

constants based on Godel predicate logic

In this section we collect together the main definitions of the syntax and the se-
mantics of a general first-order fuzzy possibilistic logic based on Gédel predicate
logic, denoted hereafter as PGLTY.

7.2.1 Godel predicate logic extended with fuzzy constants

Throughout this section we describe the syntax and the many-valued semantics
of Godel predicate logic extended with fuzzy constants, denoted hereafter as
GHv.

The basic components of GTY are:

Sorts of variables and constants. We distinguish a basic sort o from its
corresponding (imprecise and fuzzy) extended sort fo. A type is a tuple

of sorts.

A set X of object variables and a set C of object constants (crisp and fuzzy

constants), each having its sort.

A set Var of primitive propositions.

A set Pred of reqular predicates, each one having a type.

Connectives N, —.

A first-order possibilistic logic based on Gddel predicate logic 195

e Quantifiers V, 3.

o Truth constants T, L .

Definition 7.1 (G1V term) A GV term is either an object variable from X

or an object constant from C.

Definition 7.2 (G'V atomic formula) A GV atomic formula is either a
truth constant, or a primitive proposition from Var, or of the form p(ti,...,ts),
where p is a predicate symbol of arity n from Pred and t1,...,t, are terms such

that the sorts of t1, ...,t, correspond to the type of p.

GV formulas are built from atomic formulas using connectives and quanti-
fiers in the usual way.
Next we define the semantics of GTV formulas, which, due to the presence of

fuzzy constants, is many-valued, instead of Boolean (two-valued).

Definition 7.3 (disjunctive many-valued interpretation) A disjunctive

many-valued interpretation M = (U, i,m) maps:

1. each basic sort o into a non-empty domain U, and each extended sort fo

into the set F(U,) of imprecise and fuzzy sets of Uy ;
2. a primitive proposition into o truth value of the unit interval [0,1];
3. a predicate p of type (01,...,0k, fOk+1,---, fOn) into a crisp relation
i(p) CUsy X -+- x Uy,

such that, for each (uy,...,u) € Uy, X--+xU,,, there exist unique values

(Ukt1s--+sUn) € Ugyyy X -+ x Uy, and (u1,...,u,) €i(p); and

4. a (precise) object constant ¢ of sort o into a value m(c) € Uy, and an (im-
precise or fuzzy) object constant A of sort fo into a (normalized fuzzy)
set m(A) € F(U,). We denote by [iy() the membership function of
m(-). The value m(c) € U, is also represented by a fuzzy set, given by
Pm(e)(m(c)) =1, and piym(c)(u) = 0 for each u € Uy such that u # m(c).

We denote as M the set of all possible disjunctive many-valued interpretations.

196 An automated deduction system for a first-order extension of PGLT

Remark that a many-valued interpretation M = (U, i,m) is a disjunctive inter-
pretation in the sense that if p is a predicate of type (fo1,..., fo,), then there
exist unique values (uy,...,up) € Uy, X---x U, and i(p) = {(u1,...,un)}, and
if p is a predicate of type (o1, fos ..., fo,), then for each value u; € U,, there

exist unique values (ug,...,up) € Uy, X --- X Uy, and (u1,us,-..,uy) € i(p).

Definition 7.4 (fuzzy evaluation of variables) An evaluation of variables
is a mapping v assigning to each variable x of sort o an element v(z) € U,. If
z s of sort fo, then v(x) is a (normalized fuzzy) set of F(U,). As above, we
denote by fi,(,) the membership function of v(x), where v(x) is either an element
of Uy or a (normalized fuzzy) set of F(U,).

In contrast to PLFC, in PGL1Y the unification between fuzzy constants is al-

lowed, and thus, variables have to be evaluated to fuzzy constants.

Definition 7.5 (truth value of a GTV atomic formula) The truth value of a
GtV atomic formula under an interpretation M = (U,i,m) and an evaluation
v of variables, denoted by ||¢||m,v, is the value 1 if @ is the truth constant T,
is the value 0 if ¢ is the truth constant L, is just the truth value i(q) if ¢ is a

primitive proposition q, and it is computed as

sup min(---aﬂv(m)(u)r--Jp’m(c)(w)7"')
(vensUyeyw,...)Ei(p)
if ¢ is of the form p(...,x,...,c,...), where x is an object variable and c is an

object constant.

Notice that [|p(...,z,...,¢,...)|]|Mm,» may lie somewhere in the unit interval
[0,1] as soon as p contains some fuzzy constant or v evaluates some variable

to a fuzzy set. Moreover, if p is a predicate of type (foi,...,fon), then

ilp)={(..,u,...,w,...)} and
(s it = M0 i) () - fmgey (0),).

The above truth value extends to the value ||¢||m,y, for each GV formula ¢,
in the usual way by means of the min-conjunction and the Gédel’s many-valued

implication. Thus,

A first-order possibilistic logic based on Gddel predicate logic 197

leAdlimy = min(llollm,, [[¢]lv,0),
1, if {lellv,e < (14l
lle = Yllmo = " ’
[|¢[lm,0, otherwise,
I(V2)pllve = inf{llgllne | o'(y) = v(y) for each variable y, except z},
|3x)ellm,y = sup{ll¢llm,o | v'(y) = v(y) for each variable y, except z}.

The truth value of a GTV formula ¢ in a disjunctive many-valued interpre-
tation M is ||¢|lm = inf{||¢|lm,» | v is an evaluation of variables}; and ¢ is a
1-tautology if ||¢||lm = 1 for each interpretation M. A disjunctive many-valued
interpretation M is a model of a set of GV formulas T if ||¢||m = 1 for each
¢ € T. Finally, T entails another GTV formula ¢ if ||@||]m = 1 for each model
M of T.

Example 7.1 Let age(-,-) be a Dbinary predicate of type
(person name, fyears old), let Peter and Ruth be constants of sort
personname and let about35 be a constant of sort fyears_old. Let

M = (U, i,m) be a disjunctive many-valued interpretation such that:
1. U = { Uperson_name = {Peter, Ruth},
Uyears_old = [0, 120](years) };
2. i(age) = {(Peter, 37), (Ruth, 34)};

Now consider the GV atomic formula age(Peter,) and the following four
evaluations of variable z: wv1(z) = 35, va(z) = 37, vs(z) = [30;40; 50; 60] and
va(x) = [30;35;40;45]. Then, we have the following truth values of the atomic
formula age(Peter,) in the interpretation M under the corresponding variable

evaluations:
|lage(Peter, z)||m,v: = py3s(37) =0
lage(Peter, z)||m,v, = pizr3(37) =1

||age(Peter, 33)||M,vs = M[30;40;5o;60](37) =07

198 An automated deduction system for a first-order extension of PGLT

llage(Peter, T)||M,u. = 14[30;35;40545] (37) = 1

Now, consider the atomic formula age(Peter, about_35). In this case, we have no

free variable, and the truth value in the interpretation M itself is:
||age(Peter, abOUt_35)||M = ,U/m(about_35) (37) = M[30;35;35;40] (37) = 0.6.

Finally, the truth value in the interpretation M of the GtV formula
((3z)age(z, about_35)) is computed as:

[|(3z)age(x, about_35)||nm
= max(||age(z, about_35)||n,v(2)=Peter ||age(x, about 35)||Im,v(z)=Ruth)
= ma‘x(p’m(about_SS) (37), Bm(about_35) (34))
= max(u[30;35;35;40] (37) s H[30;35;35;40] (34))
= max(0.6,0.8)
= 0.8.

7.2.2 Possibilistic reasoning over Godel predicate logic ex-

tended with fuzzy constants

In this section we extend G'V to enable fuzzy reasoning under possibilistic
uncertainty, and thus, we extend GV formulas with certainty-weights and we
define a well behaved possibilistic semantics on top of G1V.

A PGL'Y formula is a pair of the form (p,a), where ¢ is a GTV formula
and «a € [0,1] is a certainty value formalizing that “p is certain with a necessity
of at least a”.

In order to define a well behaved possibilistic semantics on top of G1V, as
we did for PLFC and PGL™, we need to introduce the notion of context. Let U
be a collection of non-empty domains and let m be an interpretation of object
constants over U (or over [0,1]V in the case of fuzzy constants). We define
the PGL*Y context determined by U and m, denoted My, as the set of all
disjunctive many-valued interpretations M € M having U as domain and m as
interpretation of object constants.

Then, given a PGL'Y context My, a possibilistic model is a normalized
possibility distribution 7 on the set of disjunctive many-valued interpretations

Mu,m.

A first-order possibilistic logic based on Gddel predicate logic 199

Definition 7.6 (necessity evaluation) Let My, be a PGL*Y context, let
T : Mu,m — [0,1] be a possibilistic model, and let v be an evaluation of variables
over the domain U (in the sense of Definition 7.4). The necessity evaluation

of a GTY formula ¢ given by m under the evaluation of variables v, written
NX([g] |), is defined as

Ni(lel | m) = dnf (M) = [lellm.e,

U,m

where => is the reciprocal of Godel’s many-valued implication’ .

For the sake of simplicity, when a G*V formula ¢ contains no free variables we

simply define the necessity evaluation of ¢ given by 7 as
N* = inf M .
(61 =, dnf 7(M) = [igllm

Definition 7.7 (possibilistic satisfiability) Given a PGL*Y context My,

and an evaluation of variables v, a possibilistic model ™ : My, — [0, 1] satisfies

a PGL*Y formula (p,a) in the context My, under the evaluation v, written

T #gé"iﬁv (p,), iff N¥([¢] | m) > a. Furthermore, w satisfies (o,) in the con-
Um,v

text My,m, written w 'ZZ’CTLH-/ (p,a), iff m Epiity (@, a) for each evaluation

v of variables.
When (g, @) is a PGLTY formula of the form

((V2)p(2),),

the above definition of possibilistic satisfiability is equivalent to the following

one:
™ Epgiey (V)9(@),0) iff Ny([p(@)] | 7) >
for each evaluation v of variables Z. However, the possibilistic satisfiability of a
PGL1V formula of the form
((32)p(2), @)
cannot be expressed in the same way, i.e. if N} ([¢(Z)] | 7) > a for some evalu-

ation v of variables Z, then 7 |=IZ’CTL +v ((32)p(Z),), but the reverse does not
hold.

lRemember that z = y = 1, if z < y, and & = y = 1 — z, otherwise.

200 An automated deduction system for a first-order extension of PGLT

Example 7.2 Consider the context My,,, where U and m are as in Exam-

ple 7.1, and the following predicate interpretation mappings:

io(age) = {(Peter,37), (Ruth,34)}
i1(age) = {(Peter, 35), (Ruth,40)}
is(age) = {(Peter, 32), (Ruth, 35)}
iz(age) = {(Peter, 40), (Ruth,36)}

and denote Mo = (U,ig,m), My = (U,i1,m), My = (U,iz,m) and
M; = (U, i3, m). Finally, consider the following possibility distribution m:

(0.4, if M =M,
1, fM=M,
(M) =4 06, if M =M,
0.2, if M = Mj

0, otherwise

\

Let us now compute how much the possibilistic model 7 makes the GV
atomic formula age(Peter, about_35) certain. Remember that m(about-35) =
[30; 35; 35; 40], and thus, we have:

||age(Peter, abOUt—35)”M0 = KEm(about_35) (37) = 0.6,
||age(Peter, abOUt—35)”M1 = Mm(about_35) (35) =1,
llage(Peter, about 35)||M, = tm(about_35)(32) = 0.2, and
|lage(Peter, about 35)|[m; = tm(about_35)(40) = 0.

Then,

N*([age(Peter, about_35)] | 7)
= min(0.4=0.6,1=1,06=02,02=0,{0=y |y € [0,1]})
= 04.

Therefore, for instance, in the current context,
T |:g’(TL+V (age(Peter, about_35),0.4),
but
T [#g’gﬂ_v (age(Peter, about_35),0.9).
Finally, consider the PGL1Y formula ((3z)age(x,about_35),0.9). To compute

how much the possibilistic model 7 makes this formula certain we must con-
sider, for each disjunctive many-valued interpretation M € My, n,, all possible

evaluation of variable z of sort person name, and thus we have:

A first-order possibilistic logic based on Gddel predicate logic 201

[|(3z)age(x, about_35)||Mm,
= max(|(age(z, about 35) g u(e) peters 129, about 35)l |ty o)< euen)
= max(lim(about_zs) (37), Hm(about_35) (34))
= max(0.6,0.8)
= 0.8.
[|(3z)age(z, about_35)||m,
| (age(z, about_35) g, e =peters | (age(, about 35) oo rutn

(
(

= max(.um(about _35) (35) Hm(about_35) (40))
(1,

= max

max(1,0)
= 1.
[|(3x)age(x, about_-35)||nms,
= max(||(age(z, about_35)||My,v(z)=Peter, || (age(x, about 35)||My,v(z)=Ruth)
= max(Um(about_35)(32), fhm(about_35) (35))
= max(0.2,1)
= 1.

[|(3z)age(z, about_35)||m,
= max(|(age(z, about 35)||ny,v(z)=Peter: || (age(z, about_35) ||y, v(z)=Ruth)
(
(

= MaX{Um(about_35) (40) Hm(about_35) (36))
= max(0,0.8)

= 0.8.

Then,

N*([(3z)age(x, about_35)] |)
= min(0.4 = 0.8,1= 1,06 > 1,0.2= 0.8, {0= y | y € [0,1]})
= 1.

So, in the current context, N*([(3z)age(z, about_35)] | 7) > 0.9, and thus,
T |=PGL+V ((3z)age(x, about_35),0.9).
However, we have that
Ny(2)=peter (lage(z, about 35)] | 7) = 0.4,

and

N;)k(z):Ruth([age(waabOUt—35)] | 7T) =0.

202 An automated deduction system for a first-order extension of PGL

Definition 7.8 (possibilistic entailment) Let K be a set of PGL™Y formulas
and let (p,a) be a PGLTY formula. K entails (p,) in a given PGLTY context
Mu,m, written K Izgg:an (p, @), iff each possibilistic model © : My, m — [0,1]
satisfying all the PGLYY formulas in K also satisfies (p,a).

We refer to a possibilistic model = : My, — [0,1] satisfying all the PGL*Y

formulas in a set K as a model of K.

7.3 A first-order possibilistic logic programming

language with fuzzy constants

In order to define a first-order automated deduction system, we restrict ourselves
to the Horn-rule fragment of PGL*V, and thus, the logic programming system

is based on two special types of PGL1Y formulas: clauses and queries.

Definition 7.9 (PGL™YV clause) A clause is a PGL*Y formula of the type
(VZ)(p1 A+ Apr — q),), where py,...,pr,q are GTY atomic formulas such

that all their variables, denoted as T, are universally quantified.

When the body of a clause is the truth constant T, we talk of a PGLTY unit
clause. They have the form ((VZ)(T — q),a) and are simply written ((VZ)(—

q),a), where T denotes the set of variables of the GtV atomic formula gq.

Definition 7.10 (PGL*Y query) A query is a PGL™Y formula of the type
(3Z)(p1 A+ -+ App),a), where p1,...,p, are GTY atomic formulas such that all

their variables, denoted as T, are existentially quantified.

When the GtV formula of a query is the truth constant T, we talk of the truth

query.
PGL™TY clauses allow us to represent fuzzy information of the real world

under possibilistic uncertainty. For instance, the statements
“it is almost sure that the book is cheap”
and
“it is more or less sure that when a book is cheap, people buy it”,

are represented in this framework respectively as

A first-order possibilistic language with fuzzy constants 203

(— price(book, cheap),0.9) and (price(book,cheap) — buy(book),0.7),

where price(-,-) and buy(-) are regular predicates of type
(product, fproduct price) and (product), respectively; book is an object
constant of sort product; and cheap is a fuzzy constant of sort fproduct_price.
On the other hand, PGLTY queries allow us to ask about the possibilistic
uncertainty of fuzzy information from a knowledge base. For instance, the

queries
“can we be almost sure that there is something to buy?”
and
“can we be more or less sure that there is something cheap?”,
are represented in this framework respectively as
((3z)buy(x),0.9) and ((3x)price(x,cheap),0.7).

From now on, for the sake of simplicity, PGL™Y formulas refer to PGL™Y clauses
and queries.

At this point we are interested in defining a sound proof method for PGLTY
queries based on a fuzzy unification mechanism between fuzzy constants. To this
end, we tried first to define a refutation proof method by resolution, but we failed
since refutation itself is not sound with respect to the possibilistic entailment of

PGLTY formulas. Let us consider the following grounded GV atomic formulas:
A1l: weight(between_54_56)
A2: weight(about_55)

where between_54_56 and about_55 are two fuzzy constants of sort fkilograms,
and the following PGL1V context:

1. U = {Ukilograms = [0,200](kilograms)};

2. m(between_54.56) = [52; 54; 56; 58], and
m(about_55) = [50; 55; 55; 60].

As Hm(between_54_56) (54) =1> Hm(about_55) (54)7

f m(between = m(abou :0’
ue[lélgoo]u (between_54_56) (U) = Mm(about_s5) (1)

204 An automated deduction system for a first-order extension of PGL

and thus, the PGLTY query (weight(about_55),a) cannot be a logical conse-
quence of the PGL1Y unit clause (— weight(between 54 56),1) if @ > 0. On
the other hand, the negation of the query should be of the form

(weight(about_55) — L,1).
Then, it is easy to check that

{(— weight(between_54.56),1), (weight(about_55) — L1,1)} '=1(£’6TL+V (L,1),

however, we have seen that
(— weight(between_54.56), 1) |=g’c7:nL+\-/ (weight(about_55),a) iff a = 0.
Hence, in PGLTY

KU{(p = L)} Epgpey (La) # K ERGL L (9,),

where (p — 1,1) stands for the negation of a PGLTY query (p,1). Hence,
we have turned our attention to a sound deductive proof method based on the
PGL™ semantical unification pattern (see Section 6.2.2).

For the sake of simplicity, when clear from the connectives of PGLTY
formulas, the quantifiers are dropped, i.e. PGL'V formulas of the form
(VB)Y(pr A --- Apr = q),a) and ((37)(p1 A--- Apn),), where Z and § denote
the set of variables involved in the atomic formulas, are simply written as
(pL A Apr — ¢q,0) and (p1 A --- A pn,a), respectively. Furthermore, we as-
sume that ((Vz)e(z),a), ((3z)p(2),a), and (¢,a) denote a PGL'Y clause, a
query, and a formula (clause or query), respectively.

Given a context My, the calculus for PGL1Y has the following triviality

axiom and inference rules:
Aziom: (p,0).

Resolution on PGLTY clauses:

(pAg—=ra),(sAt—p,B)
(s At Aq— r,min(a,3))

[RR].

Remark 7.1 The following weighted modus ponens rule can be seen as a

particular case of the RR rule:

(LA Apn— q,0)
(_> plaﬂl)a' te (_> pna/Bn)
(_) qamin(aaﬂla s 7ﬂn))

[MP].

A first-order possibilistic language with fuzzy constants 205

Query conjunction:

(= p,oa),. ..y (= Prs o)
(pl AN Apkamin(ala . 7ak))

[QCI.

Semantical unification on PGLTY unit clauses:

(= p(..,4),0)
(= (..., B), min(a, N*(m(B) | m(4))))

[SU

if p is a predicate symbol of type (o1,...,0%, fOk+1,.-., fon), and A and
B are object constants of sort fo,; and where

N*(m(B) | m(A)) = inin tm(a) (W) = () (u),

uelU,

= being the reciprocal of Godel’s many-valued implication.

Remark 7.2 If p,,4) < pim(B), We get the following rule instance:

(= p(...,A),0a)
(= p(..,B),a)

Remark 7.3 The rule admits the following straightforward generaliza-

tion:
(—)p(...,Al,...,Ap),a)

(_> p("'aBlv'-'aBp)amin(aaﬂlr"aﬂp)),
where 8; = N*(m(B;) | m(Ay)), fori=1,...,p.

Particularization on PGL1Y clauses:

(Vz,y)p(Z,9), @)
(VZ)p(z,A),)

if A is an object constant of sort of variable y.

[PR]

Remark 7.4 The rule admits the following straightforward generaliza-

tion:

((v:ﬁ7y17 v 7yn)(10(:ﬁ7y17 tee 7yn)7a)
((VZ)p(Z, A1, ..., An), Q) ’

Query instance:
Az)p(z, A), a
(GE)p(a, A),0) o
((Fz,9)0(z,y), @)
if y is a variable of sort of object constant A.

206 An automated deduction system for a first-order extension of PGL

Remark 7.5 The rule admits the following straightforward generaliza-

tion:
((El:f:)(p(.tf:, A17 Tt An)a Oé)

((35771!1; s 7yn)(10("ﬁ7y17 .- 7yn)aa) ’

Renaming variables:

(90(3;17" <y LhkyLh41y- - 'amp)aa) [RV]
(So(yla"'aykaxk+15"'7$p)7a)

if y1,...,yx are different variables and y; & {Tk41,...2p}, fori=1,...,k.
Merging:
(p,a), (¢, B)
—2 =~ IMR).
(o, max(a,B) I
Weakening:
(p,0)
WR
0.
if 6 <a.

Obviously, the axiom is a valid PGL'YV formula and inference rules are proved
to be sound with respect to the possibilistic entailment of PGL™Y formulas. We
assume a particular PGLTY context My, to be given, and thus, the notion of

soundness is relative to the context.

Theorem 7.1 soundness of the PGLTY inference rules For each PGLTY context
Mum, the RR, QC, SU, PR, QI, RV, MR and WR inference rules are sound

with respect to the possibilistic entailment of PGLYY formulas.
Proof:

RR: Given a PGL"Y context My ,,,, we must prove, for each possibilistic model
7 Mym — [0,1], that 7 |=g’gL+V (pAg—r,a)and 7 Izggﬁ-v (sAht—
p,3) imply 7 ':g’ng (s At Aq— r,min(a, f)).
Assume that 7 'zgng (pANg—r,a) and 7 g’gLW (sAt— p,[). This
means that N¥([pAq = r] | 7) > aand Ni([sAt = p] | 7) > B, for
each evaluation v of variables. The two conditions amount to, for each
interpretation M € My, (M) = |[pA ¢ = 7|lm,» > @ and 7(M) =
[|sAt = pllm,v > B. Thus, #(M) = min(|[pAg = r||m,w, [|SAL = DllM,w) >

A first-order possibilistic language with fuzzy constants 207

QC:

min(a,). But, by residuation, min(||[p A ¢ = 7||Mmu;||s At = Dllm,w) <
[|s At Ag — 7||m,»- Then, for each interpretation M, 7(M) = |[sAtAg —
r|lm,y > min(e, 8). Hence, Ny([s At Aq — r] |) > min(a, §) for each
evaluation v of variables, and thus, 7 |=PGL+V (s ANtAq — r,min(a, B)) as

well.

Given a PGL'Y context My, for each possibilistic model
T Mum = [0,1], 7 LT L (= pi,a;) iff, for each M = (U,i,m) €

PGL+Y
My, and evaluation of variables v, #(M) = || = pillmMp > o
for i = 1,...,k. But, | = pillMmy = |pillmMp, then 7(M) =
min(||p1||m,v,- -+, [[PEllM,s) > min(ei,...,ar) for each evaluation
of variables v. Therefore, 7(M) = min(||p1|m,v,---,||PellMw) >
min(ay,...,a) for some evaluation of variables w. Thus,
mESE (1 A Ape,min(ag, ..., ax)) as well.

SU: Given a PGL*V context My, we must prove, for each possibilis-

tic model 7:Mym —[0,1], that if 7 ESZ .. (= p(...,4),q)
then = —g’glLJrv (= p(..,B),min(a, N*(m(B) | m(A4)))).
Assume that = |=g’énL+v (= p(..,A4),). This means that
Ni([—=p(...,A)] | 7) >a for each evaluation v of variables, and
thus, 7(M) = || = p(..., A)||m,» > a for each M = (U,i,m) € My, .

Now, since p is a predicate of type (o1,...,0k, fOr+1;---,f0n), we have
that for each (u1,...,ug) € Uy, X --- X Uy, there exist unique values
(Uks1,-- - Un) € Ugyyy X -+ X Uy, and (u1,...,u,) € i(p). Hence, || —

p(-- s Ay = [Ip(- -, Al = min(ve,m(0m),; do,m (Um), tm(a)(Wn)),
where oy, and u,, denote vectors of values from the domain such that
(0nm, U, Wit) € 4(P), Yo,m(0m) = 1 and §, m(uy) € [0,1]. Then, we have

the following consecutive inequalities:

L. w(M) = min(dy,m (am), tm(4)(Wnm)) > a
2.

3

M) = §ym(um) >
(M) = pm(a)(wm) > @

3

v

3. min(m(M) = pma)(Wm), m(a)(Wm) = pm(B)(WM))
min (g, a)(WnM) = pm(s) (W), @)

4. min(7(M) = fima)(WM), fim(a)(WM) = pm(p) (wMm)) <
(M) = pm(B) (wm)

208

PR:

An automated deduction system for a first-order extension of PGL

5. 7(M) = pm()(wm) > min(pim(a)(wm) = pm(s)(wm), @)
6. 7(M) = min(dy,m (Unm), tm(B) (WM))
= min(m(M) = 6y,m(um), T(W) = pm(B)(wnm))
> min(Uma)(Wm) = m(s)(WmM),)
7. infmemy,, 7(M) = min(8y m (Um), tm(s)(wnM)) >
infmery , MU0t (a) (WM) = fim(B) (WM), @)
8. infmemy,, TM) = || = (..., B)||mo >
infMe My, MIN (Lo (a) (WM) = p(B) (WM), @)
9. Ny([— p(...,B)] | m) > min(a, infucu, pm(a)(u) = pms) (@)
10. N([— p(...,B)] | m) > min(a, N*(m(B) | m(A))) for each evalua-

tion v of variables.
Thus, © |=1(£’£,"L+V (= p(...,B),min(a, N*(m(B) | m(A)))) as well.

Given a PGL'V context My,,, we must prove, for each possibilis-
tic model 7 : My,;m — [0,1], that if = g’gLW ((VZ,y)p(Z,y),a) then
T o (V2)p(E, A),@). Assume that © E0 o ((VZ,y)9(Z,y),).
This means that N} ([¢p(Z,y)] |) > a for each evaluation v of vari-
ables Z and y. By Definitions 7.3 and 7.4 some evaluations, namely v’,
evaluate variable y of sort o (or fo) to the element m(A) € U, (respec-
tively, m(A) € F(U,)), and thus, ||¢(Z,y)|m,»» = ||¢(Z, A)||m,» for each
M = (U,i,m) € My,m, which in turn implies N (¢(Z, A) | m) > a for

each evaluation v' of variables Z. Hence, 7 |=g’gbL+V ((VE)p(Z, A), a).

QI: Given a PGL*'Y context Muy,,, for each possibilistic model

T Mym —[0,1, = ey (@D)p(z,4),a0) iff (M) =
[|(3Z)(Z, A)|lm > a for each interpretation M = (U,i,m) € My n.
But, [|(32)¢(z, A)[lm = supy) [l¢(Z, A)|lm,o- Now, for each evaluation
v of variables T there exists an evaluation, namely v', of the form
v'(y) = m(A), and v'(z;) = v(z;) for each variable z; € T such that
lo@ Al = 0@). Thus, 7 EU0 L (32,5)0(@y),a) as
well.

RV: Given a PGL1Y context My, and a possibilistic model 7 : My, — [0,1],

assume that 7 Izg’éan (p(x1,...,2p),). Since ¢(z1,...,z,) contains no
free variables, this means that 7(M) = ||¢(z1,...,2;)||m > a for each in-

terpretation M = (U, i,m) € Muy,m, and the truth value ||¢(z1,...,2,)||m

7.4. Automated deduction 209

is defined over all possible evaluation v of variables zi,...,z,. Now,
as variables yi,...,yr are different and y; & {T441,...2p}, for i =
1,...,k, we have that for each evaluation v of variables z,...,2,
there exists an equivalent evaluation, namely v', of the form v'(y;) =
v(z1),...,0" (yr) = v(zg), v (Tp41) = v(@kt1),---,0"(xp) = v(zp) such
that ||o(z1,...,2p)IMe = |01, -+ Yks Tht1, - -+ Tp)||M,r for each in-

terpretation M. Hence, 7 ':g’CTL+V (e(Y1s- s Yk Tht1s. -+, Tp),) as well.

MR: Given a PGL*Y context My, and a possibilistic model
T Mum — [0,1], assume that 7 Eogy sy (9,a) and 7 ESS o (¢, B).
Since ¢ contains no free variable, this means that N*([¢] | #) > « and
N*(¢] | 7) > 8. Thus, N*(¢] |) > max(a,).

WR: Given a PGL*'Y context My, and a possibilistic model
m: Mym — [0,1], assume that = ':ggL+v (p,a). Since ¢ contains
no free variable, this means that N*([¢] | m) > a. Then, N*([¢] |) > 8

for each 8 < a.
|

Definition 7.11 (proof in PGL*VY) Let K be a set of PGL™Y formulas and
let (p,a) be a PGLY formula. Given a context My, ,, K proves (¢, q), writ-
ten K '_g’gbl,ﬂ-/ (p,), iff there emists a finite sequence of PGLYY formulas
Ci,...,Cp such that Cp, = (p,a) and, for each i € {1,...,m}, it holds that
either C; € K, C; is an instance of the triviality axiom or C; is obtained by
applying the RR, QC, SU, PR, QI, RV, MR and WR inference rules to previous
PGL™Y formulas in the sequence.

Since Theorem 7.1 proves the soundness of PGL1Y inference rules, we straight-

forwardly get the soundness of the deduction l—g’CTLW.

Corollary 7.1 Let K be a set of PGLYY formulas and let (p,a) be a PGLTY

formula. For each PGLYY context My, m, if K I—g’é”LJrV (p,a) then K Izg’éan
(¢,).

7.4 Automated deduction

In the last section we defined a sound deductive proof method for PGL*Y clauses

and queries based on the triviality axiom and the PGL™Y inference rules. Now

210 An automated deduction system for a first-order extension of PGL

we are interested in automating this deductive process. For this purpose, taking
into account that PGLTY queries are existentially quantified and unification for
fuzzy constants is available in PGL1V unit clauses (by the SU inference rule),
we define a deductive proof method oriented to PGL™Y queries which is based
on the MP, QC and WR inference rules, and a directional unification algorithm
of fuzzy constants. However, because of the soundness of the PGLTY proof
method is relative to a context determined by a domain U and an interpretation
m of object constants, before defining the unification algorithm and the proof
procedure for PGL'Y queries we have to fix a particular PGL*V context, and
thus, we are led first to formalize the notion of PGLTY program.

As in classical logic programming systems, a PGL1Y program clause is either

a fact or a rule which are defined as follows:

fact: it is a PGLTY unit clause such that the head of the GTV formula is not a

truth constant; and

rule: it is a PGLTY clause such that neither the head nor the body of the GTV

formula are a truth constant.

From now on, for the sake of a simpler and more standard notation, we
write a fact ((VZ)(— q),a), a rule ((VZ)(p1 A---Apr — ¢),a) and a query
()1 A+ Apn),@) as (= q,a), (pt A+ Apr = g,@) and (p1 A -+ A py,a),
respectively.

Definition 7.12 (PGL'Y program) A PGL'Y program is a structure
P = (P,U,m), where P is a finite set of facts and rules, U is a collection of
non-empty domains, and m is an interpretation of object constants over U (or

over [0,1]Y in the case of imprecise and fuzzy constants).

Definition 7.13 (proof in PGL'V programs) Let P = (P,U,m) be a
PGL™ program and let (p,a) be a PGLYY query. P proves (p,a), written
P (p,), iff P proves (p,a) in the context My, using the triviality aziom
and the MP, QC, SU, PR, QI, RV, MR, and WR inference rules.

Corollary 7.2 Let P = (P,U,m) be a PGL*Y program and let (p,a) be a
PGLYY query. If P (p,a) then P |=g’gL+V (p,a).

Example 7.3 Let price(-,-) be a binary predicate of type
(product, fproduct_price), let buy(-) be a unary predicate of type (product),
and let P = (P,U,m) be a PGL™Y program with

7.4. Automated deduction 211

1. P = { (- price(book, about_35),0.9),
(price(x, between_30-40) — buy(x),0.7) };

2. U ={ Uproduct = {book},

Uproduct_price = [0,100](euros) };

3. m(book) = book,
m(about_35) = [30; 35; 35; 40], and
m(between_30_40) = [25; 30;40; 45].

Let us now compute a proof for the PGLTY query (buy(book),0.5) from P in
the context determined by U and m. Applying the SU inference rule to the fact

(— price(book, about_35),0.9),

we infer

(— price(book, between_30-40), min(0.9, 8)),

where
B = N*(m(between_30_40) | m(about_35)) = 1.

Applying the PR rule to the program rule
(price(z, between_30-40) — buy(z),0.7),

we infer
(price(book, between_30-40) — buy(book),0.7).

Now, applying the MP inference rule to the derived fact and rule, we get
(— buy(book),0.7)

but, by the WR inference rule, we infer (— buy(book),0.5). Finally, by the QC
inference rule, we obtain the PGL1Y query (buy(book),0.5). Hence,

P+ (buy(book),0.5),
and thus, P |=g’gLL+V (buy(book),0.5). O

In what follows, we are concerned with automating the proof method of
PGL™Y queries from PGL™Y programs. To this aim, we define a backward first-

order proof procedure based on the MP, QC and WR inference rules, and a

212 An automated deduction system for a first-order extension of PGL

directional fuzzy unification algorithm. That is, the proof procedure attempts
to construct a proof tree for an input query beginning at the leaves (the atomic
formulas of the query) and working up towards the root (the truth query T).
We can think of this process as one of “reducing” a PGL1Y query (¢, @) to the
truth query T with a necessity of at least a. At each reduction step an atomic
formula of the query matching the head of a PGLTY program clause is replaced
by the body of it. If the PGL1YV program clause is chosen correctly at each
reduction step, a derivation through the PGL™TY inference rules is traced out in
reverse. We then need an algorithm that let us know when two atomic formulas
match. Moreover, we need an algorithm that automatically computes the set of
substitutions or transformations that have to be applied in each reduction step.
This algorithm is the directional fuzzy unification algorithm which is based on
the SU, PR, QI, RV and MR inference rules.

7.4.1 Fuzzy unification

Because of the semantical unification inference rule, the unification between
fuzzy constants is performed on PGL™Y unit clauses and the unification degree
is computed by means of a directional necessity measure on fuzzy sets, directional

in the sense that, if A and B are two different fuzzy sets, in general,
N*(A|B) # N*(B | A).

So, we address the problem of unification involving fuzzy constants in systems
where a separation between general and specific patterns can be made (Rios-
Filho and Sandri, 1995). The patterns classified in the first class are those
expressing general domain information, like for instance rules in knowledge-
based systems, or ungrounded clauses in logic programming languages. The ones
classified in the second class come from specific knowledge about a particular
problem, like facts in knowledge-based systems, or grounded clauses in logic
programming languages.

In our framework, the proof method for PGL1Y queries is performed in a
bottom-up manner through the MP, QC and WR inference rules. Therefore,
during the construction of a proof tree for a PGLTY query, the set of object
constants from the head of PGLTY program clauses (initial facts and possibly
derived facts) make up the specific object constants, whereas the set of object

constants in PGL*V queries (the initial query and all possible subsequent queries

7.4. Automated deduction 213

generated by the proof method) make up the general object constants. The idea
is to define a directional unification between specific and general object constants
in the sense of computing the unification degree which, by the SU inference rule,

is computed as
N*(general_object_constant | specific_object_constant).

So, the unification degree for a PGL*V query is higher as soon as the informa-
tion about the real world, expressed through a set of PGL1Y program clauses, is
more specific than the information requested by the PGL1YV query. The follow-
ing examples describe some cases that can occur during the unification process
between general and specific object constants.

The most simple case appears when we have to unify an specific object con-

stant with a general object constant.
Example 7.4 Let us consider the PGL'Y program of Example 7.3 in which

P = { (- price(book, about_35),0.9),
(price(z, between_-30-40) — buy(z),0.7) },

where between_3040 and about_35 are two fuzzy constants defined over
the reference set [0,100](euros), m(between_30-40) = [25;30;40;45] and
m(about_35) = [30; 35; 35; 40]. To compute a proof for the PGLTY query

(buy (book),0.5)

we have to derive a fact of the form (— buy(book), @), with @ > 0.5. Thus, we

have to compute a proof for the query
(price(book, between _30-40), 0.5).

Now, since the fuzzy constant between_30_40 appears in the query and the fuzzy
constant about_35 in the program fact (— price(book, about_35),0.9), they are
considered general and specific object constants, respectively. Then, applying

the SU inference rule to the fact
(— price(book, about_35),0.9),

we infer
(— price(book, between_30_40), min(0.9, 58))

214 An automated deduction system for a first-order extension of PGL

with
B = N*(m(between_30-40) | m(about_35)) =1,

which, in turn, corresponds with computing the unification degree of the general

object constant between_30_40 and the specific object constant about_35. |

The second case that we have to analyze is the unification of a variable with

multiple specific object constants.

Example 7.5 Let age(-,-) and friend(-,-) be two binary predicates of type
(person_name, fyears_old) and (person_name, person_name), respectively; and

let P = (P,U,m) be a PGL"Y program with

1. P ={ (- age(Mary,young),0.8),
(— age(John,about_18),0.9),
(age(z,z) A age(y, z) — friend(z,y),0.6) };
2. U = { Uperson_name = {MC"“Z/;JOh”}a
Uyears_old = [0, 120](years) };

3. m(Mary) = Mary,
m(John) = John,
(
(

m(young) = [10; 15; 35; 40], and

m(about_18) = [16; 18; 18; 20].
To compute a proof for the PGLTY query
(friend(Mary, John),0.5)

we have to derive a fact of the form (— friend(Mary, John),), with a > 0.5.

Thus, we have to compute a proof for the queries
(age(Mary, 2),0.5) and (age(John,z),0.5).
Now, since the fuzzy constants young and about_18 appear in the program facts
(— age(Mary,young),0.8) and (— age(John,about_18),0.9),

they are considered specific object constants in the base system. Then, in order
to compute a proof for the queries (age(Mary, z),0.5) and (age(John, z),0.5),

we get that variable 2z has to be instantiated either to the fuzzy constant young

7.4. Automated deduction 215

or about_18. If variable z is instantiated to the fuzzy constant young, by applying
the SU inference rule to the fact (— age(John,about_18),0.9), we infer

(= age(John, young), min(0.9, 81)),

where
B1 = N*(m(young) | m(about_18)) = 1.

On the other hand, if variable z is instantiated to the fuzzy constant about_18,
by applying the SU inference rule to the fact (= age(Mary,young),0.8), we
infer

(— age(Mary, about_18), min(0.9, 52)),

where
B2 = N*(m(about18) | m(young)) = 0.

Therefore, if variable z is instantiated to the fuzzy constant young, the query
friend(Mary, John) can be proved to be true from P with a necessity of at
least 0.6 which, in turn, corresponds with computing the unification degree of a

variable and multiple specific object constants. O

Finally, the following example analyzes the unification of a variable and mul-

tiple general and specific object constants.

Example 7.6 Let price(-,-), value(-,-) and buy pricevalue(-,-,-) be three
predicates of type (product, fproduct price), (product,fproduct_value)
and (product, fproduct_price, fproduct_value), respectively; and let
P = (P,U,m) be a PGLTY program with

1. P ={ (- price(book,34),1),
(= value(book, about_35),0.8),
(price(z,y) A value(z,y) — buy_price_value(z,y,y),0.7) };

2. U=A{ Uproduct = {book},
Uproduct_price = [0, 100](euros),

Uproduct_value = [0,100](euros) };

3. m(book) = book,

m(34) = 34,

m(about_35) = [30; 35; 35; 40],

m(around_35) = [32; 34; 36; 38], and
(

m(between_30-40) = [25; 30; 40; 45].

216 An automated deduction system for a first-order extension of PGL

To compute a proof for the PGLTY query
(buy price_value(book, around_35, between _30-40), 0.5)
we have to derive a fact of the form
(= buyprice_value(book, around_35, between_30-40), a),

with @ > 0.5. Now, since the fuzzy constants around_35 and between_30_40
appear in the query they are considered general object constants in the base

system. Then, variable y of the program rule
(price(z,y) Avalue(z,y) — buy_price_value(z,y,y),0.7)

has to be instantiated either to the fuzzy constant around_35 or between_30-40.
If variable y is instantiated to the fuzzy constant around-35, we have to compute

a proof for the queries
(price(book, around-35),0.5) and (value(book,around-35),0.5),

which, by Example 7.4, corresponds with computing the unification degree be-

tween specific and general object constants, and thus, from the facts
(— price(book,34),1) and (— value(book,about_35),0.8),
by applying the SU inference rule, we infer
(= price(book, around_35), min(1, 8))

and
(— value(book, around_35), min(0.8, 82)),

respectively, where
B1 = N*(m(around_35) | m(34)) =1

and
B2 = N*(m(around_35) | m(about_35)) = 0.67.

Now, applying the MP inference rule to the instantiated rule

(price(book, around_35) A value(book, around_35) —
buy_price_value(book, around_35, around_35),0.7),

7.4. Automated deduction 217

we infer

(= buy_price_value(book, around_35, around_35), min(1,0.67,0.7)).
Finally, applying the SU inference rule to the derived fact, we infer

(— buy_price_value(book, around_35, between_30-40), min(0.67, B3)),

where
B3 = N*(m(between_30_40) | m(around_35)) = 1.

On the other hand, if variable y is instantiated to the fuzzy constant

between_30_40, following the above process, we infer
(— buy-_price_value(book, between _30_40, between _30-40), min(1,0.8,0.7)).
However, applying the SU inference rule to the derived fact, we infer
(— buy_price value(book, around_35, between_30_40), min(0.7, B4)),

where
B4 = N*(m(around_35) | m(between_30.40)) = 0.

Therefore, if variable y is instantiated to the fuzzy constant around_35, the query
buy _price_value(book, around_35, between_30_40) can be proved to be true from
P with a necessity of at least 0.67 which, in turn, corresponds with computing
the unification degree of a variable and multiple general and specific object

constants. O

In the rest of this section, we specify the data structures used in the unifi-
cation algorithm, we formalize the definitions of fuzzy substitution, directional
fuzzy unifier and most general directional fuzzy unifier, we develop a directional
algorithm for determining a most general directional fuzzy unifier of two atomic
formulas based on the distinction between general and specific object constants
and, finally, we describe the computation of the unification degree of a fuzzy
substitution by means of the SU and MR inference rules.

We represent the semantic component of a variable as two lists of object
constants. The first one, called general list, contains the general object constants
to whom the variable has been instantiated during the construction of the proof

tree for a PGL*'Y query and it concerns with the set of object constants from

218 An automated deduction system for a first-order extension of PGL

the query to whom the variable has been unified. The second one, called specific
list, shows the set of object constants from heads of PGL*YV program clauses to
whom the variable has been unified. In what follows, we refer to these two lists
as the semantic structure of a variable. All constants of the semantic structure
of a variable are defined over the same universal set. Before starting the proof
procedure, the semantic structure of variables appearing in a program clause or

query is empty.

Definition 7.14 (fuzzy substitution) A fuzzy substitution o consists of the

following two components.

Syntactic component: It is a mapping from variables to variables, and is written
as 0 = {x1/t1,...,x, [t }, where variables x1, ..., z, are different and x; #

t;, fori=1,...,n.

Semantic component: It is a mapping from wvariables and dummy variables to
semantic structures. A dummy variable is a wvariable associated with
a pair of object constants. We represent a semantic component as

SC = {z1 = (91, sl1), ..., Tm = (gln,sl,)}, where

® T1,..., T, are different variables or dummy variables;
e (gly,sly),...,(gly, sl,) are semantic structures;

e cach wvariable t;, for i = 1,...,n, has a semantic structure, i.e.
t; € {x1, ..., Tm }; and

o cach variable z; such that z; & {t1,...,tm}, for i = 1,...,n, has an

empty semantic structure, i.e. x; = ([|],[|]) € SC.

From now on, we write a fuzzy substitution ¢ with syntactic component 6 and

semantic component SC as (6, SC). Then, we say that two fuzzy substitutions

01(01,SC1) and 02(02,SC5) are equal iff §; = 6 and SC; = SCs.
Substitutions operate on expressions. By an expression we mean a PGL*Y

term or a sequence of PGL1Y atomic formulas.

Definition 7.15 (fuzzy instance of an expression) Let E be an expression
and let o(0,SC) be a fuzzy substitution. The fuzzy instance of E, written as
Eo, stands for the result of applying the two following steps sequentially:

7.4. Automated deduction 219

1. Syntactic substitution: It is a question of applying the syntactic component
0 of the fuzzy substitution o to the expression E and it is denoted by E6.
The result is obtained from replacing simultaneously each occurrence in E

of a variable from the domain of 8 by the corresponding substitution term.

2. Semantic substitution: It is a question of applying the semantic component
SC' of the fuzzy substitution o to the expression E6. The result is obtained
from linking each variable of EO with semantic structure in SC' with the

respective structure.

Definition 7.16 (composition of fuzzy substitutions) Fuzzy substitutions
can be composed. Let o1(601,SC1) and 02(02, SC2) be two fuzzy substitutions with
01 ={z1/t1, - Znftn}, 02 ={v1/51, s Ym/Sm}, SC1={z1 = l,....;2zr = i}
and SCy = {y1 = m1,...,yp = myp}. The composition of o1 and o2, written

0102, 18 a fuzzy substitution (6, SC) in which

1. 0 is defined by removing from the set

{z1/t102, .o Tp [tn02,91 /81,5 oy Ym /[Sm }
those pairs x;[t;02 for which t;0 is z; and those pairs y;/s; such that
yi € {21, ..., Tn}.
2. SC is defined by removing from the set
{z1 = b,y = Ik, y1 = M, yp = Mp}
those pairs x; — l; such that z; € {y1,...,yp}-

Definition 7.17 (more general fuzzy substitution) Two fuzzy substitutions
01(01,SC1) and 02(02,S5C2) are equal if 81 = 62 and SCy = SCa. A semantic
structure (gl, sl) is more general than a semantic structure (gl', sl') if gl and sl
are sublists of gl' and sl', respectively. Then, we say that a fuzzy substitution
o1(01,{x1 = l1, ...,z = I }) is more general than o fuzzy substitution oo if there
exists some fuzzy substitution o3({y1/51, s Ym/Sm},{¥1 = M1, ...,yp = my})
such that

1. 02 = 0103, and

2. each wariable xz;, for i = 1,...,k, either z; & {y1,....,Yyp}, or

;i = My; € {y1 = ma,....,yp = myp} and l; is more general than m,,,

220 An automated deduction system for a first-order extension of PGL

or Ti/8z; € {y1/81, s Ym/Sm} and sz, = ms, € {y1 = M1, ..., yp = My}
and l; is more general than M, -

Definition 7.18 (directional fuzzy unifier) Let ¢ and ¢ be two PGLVY
atomic formulas with predicate symbol p of arity n and let o(6,SC) be a fuzzy
substitution. If o is of the form p(s1, ..., 8n) and ¢o is of the form p(ty,...,t,),
we say that o is a directional fuzzy unifier from ¢ to ¢ if each pair (s;,t;), for

i =1,...,n, satisfies one of the following conditions:

1. s; and t; are two object constants and either s; = t;, or there exists in SC

a dummy variable with semantic structure ([s;|], [t:]])-

2. t; is a variable, s; is an object constant which belongs to the general list of
the semantic structure of t;, and the i—term of ¢ is a variable liked with
a semantic structure which is more general than the semantic structure of
t;.

3. s; is a variable, t; is an object constant which belongs to the specific list of
the semantic structure of s;, and the i—term of ¢ is a variable liked with
a semantic structure which is more general than the semantic structure of

S;-

4. s; and t; are a same variable and the i—terms of both ¢ and ¢ are variables
liked with semantic structures which are more general than the semantic

of s;.

Definition 7.19 (most general directional fuzzy unifier) A directional
fuzzy unifier o from an atomic formula ¢ to an atomic formula ¢ is a most
general directional fuzzy unifier (or mgdfu for short), if it is more general than
each other directional fuzzy unifier from ¢ to ¢. In fact, mgdfu’s are unique

modulo renaming of variables.

In order to develop the unification algorithm we follow the presentation of Apt
(1990) and Lassez et al. (1988), based upon Herbrand’s original algorithm
which deals with solutions of finite sets of term equations. This algorithm was
first presented by Martelli and Montanari (1982).

7.4. Automated deduction 221

Algorithm 7.1 directional fuzzy unification algorithm

Input: Two PGL*V atomic formulas with predicate symbol p of arity n of the
form p(s1,...,8,) and p(t1, ...,t,) such that they do not have any variable
in common and each variable keeps the link to the semantic structure as-
sociated in the respective formula. The algorithm unifies general object
constants with specific object constants and gives rise to a directional unifi-
cation process. Therefore, we assume that p(sq, ..., 8,) is an atomic formula
from a query, and thus, p(t1, -.., t,) is the head of a PGLTY program clause,
i.e. an object constant s; € {s1,...,Sn} (respectively, t; € {t1,...,t,}) de-

notes a general object constant (respectively, an specific object constant).
Output: An mgdfu o(0,SC) from p(ty,...,tn) t0 p(81,...;8n)-

Initialization:

e From the pair of PGL™Y atomic formulas p(sy, ..., sn) and p(t1, -.., tn)

we construct a set of pairs of terms of the form
ST = {(81, tl), veey (Sn, tn)}

o SC := {z — (gly, sly) | z is a variable of one of the atomic formulas
and (gl,, sl;) is the semantic structure linked with z at the

atomic formula}

Method: Choose a pair (s;,t;) from ST and perform the associated action until
ST and SC do not change.

1. s; and ¢; are object constants:
if (s; #t;) then
if (the dummy variable (s;,t;) € SC) then
SC := SC U {(si,ti) = ([s:],[t:]]) }> where (s;,t;) denotes a
dummy variable and ([s;]], [t;|]) its semantic structure
end if
end if
Delete the pair (s;,t;) from ST
2. s; is an object constant and ¢; is a variable:

if (t; = (gly,sl;) € SC and s; € gly;) then

222 An automated deduction system for a first-order extension of PGL

SC := (SC\{ti = (gls;, slt;)}) U{ti = (insert(gls,,si),sls;)}
end if
Delete the pair (s;,t;) from ST
3. s; is a variable and ¢; is an object constant:
if (s; — (9ls;,8ls;,) € SC and t; & sls;) then
SC = (SC\{s; = (9ls;, sls;)}) U {s; = (9ls,, insert(sl,,,t;))}
end if
Delete the pair (s;,t;) from ST
4. s; and t; are variables:
if (s;=t;) then
Delete the pair (s;,t;) from ST
else
if (si— (1L[]]) €SC) then
if (s; has another occurrence in ST) then
Perform the syntactic substitution {s;/t;} on each other
pair of terms of ST
end if
else
if (ti—([|],[I])€SC) then
Replace (s;,t;) by (t;,s;) in ST
else
SC := (SC\ {si = (gls;,8ls;),ti = (gls;,sl,)}) U
U {si = ([1 111Dt = (gl 0 gls;, sly; 0 sls,)},
where o denotes the concatenation operation of lists.
Perform the syntactic substitution ({s;/t;},SC) on each
other pair of terms of ST
end if
end if

end if

Final treatment:
If {(z1,u1), ..., (Tk, ur)} is the resulting set of pairs of terms, then
0 := {z1/u1,....,xx/ux} and o= (6,5C).

7.4. Automated deduction 223

Proposition 7.1 The directional fuzzy unification algorithm computes an

mgdfu from an atomic formula of the form p(ti,...,t,) to an atomic formula

of the form p(s1, ..., 8n).
Proof:

o The directional fuzzy unification algorithm terminates.

The algorithm terminates when for each pair of terms, (s;,t;) € ST, the

execution of the associated action does not modify ST and SC:

(i) We can easily check that for each pair of terms (s;,t;) € ST there

exists exactly one associated algorithmic action.

(ii) We prove that for each pair of terms (s;,t;) obtained from p(sy, ..., s,)
and p(ty, ..., t,), the algorithm modifies ST and SC a finite number

of times.

Therefore, (i) and (ii) imply termination.

To prove (ii) we must analyze the behavior of the algorithm for each action.
We show that each algorithmic action either can be performed a finite
number of times, reduces the number of pairs of ST, or replaces a pair of

terms by an equivalent one that satisfies a different action:

— Actions (1), (2) and (3) reduce the number of pairs of ST'.

— Action (4) either reduces the number of pairs of ST; replaces a pair of
terms by an equivalent one that satisfies the action (4) but, not the
replacing condition; or performs a substitution. However, for each
variable s; the substitution {s;/t;} can be performed at most once,

so the action can be performed only a finite number of times.

e The directional fuzzy wunification algorithm computes an mgdfu from
P(t1, s tn) t0 P(S1, ..y 8p).
The invariant of the iteration is “the composition of the fuzzy substitutions
computed by the algorithm make up an mgdfu of the resolved pairs of terms
from p(ty,...,ts) to p(s1,.--,8,)”-
To establish the correctness of the algorithm we must prove that the algo-
rithm satisfies the invariant of the iteration before the first iteration and

after each repetition including the final one:

224 An automated deduction system for a first-order extension of PGL

(i) Before the first iteration, the set of resolved pairs of terms from
p(t1, -y tn) to p(s1,...,8,) is @, and the composition of the fuzzy
substitutions computed by the algorithm is the fuzzy substitution
(0, SC), where for each variable of the atomic formulas SC keeps the

link to the semantic structure associated in the respective formula.

(ii) We know that for each pair of terms (s;,t;) there exists one associated

algorithmic action. Then,

- Action (1) computes a substitution with an empty syntactic
structure and a dummy variable as semantic structure which cor-
responds with an mgdfu from ¢; to s;. Therefore, the composition
of the new substitution is an mgdfu of the resolved set of pairs
of terms from p(t1,...,tn) t0 p(s1, ..., Sn)-

- Actions (2) and (3) modify the semantic structure of a variable
according to the definition of directional fuzzy unifier and its

construction ensures that the new structure is most general.

- Action (4) is performed when two variables have to be unified.
If the two variables are equal, the action generates an empty
substitution and the invariant remains true. Otherwise, for each
variable s; and t;, if action (4) has to be performed it is because
no syntactic substitution has been applied before. Therefore, the
semantic structure of either s; or t; is empty, or both seman-
tic structures contain a list of object constants. If the semantic
structure of ¢; is empty, action (4) replaces the pair by an equiva-
lent one and does not create a new substitution. In that case, the
elements of the invariant have not changed. If s; has an empty
semantic structure, it must be the first time that the variable
is considered and the composition of the new substitution is an
mgdfu of the new set of resolved pairs of terms from p(ty, ..., t,)
to p(s1, ..., 8p). Finally, if actions (2) or (3) have been applied for
s; and t;, the unification algorithm computes a substitution that
replaces s; by t; and maintains the fuzzy instances of s;. Then,

after this step the invariant is already true.

(iii) Finally, we must prove that the composition of the fuzzy substitu-

tions computed by the algorithm make up an mgdfu from p(t4, ..., t,)

7.4. Automated deduction 225

to p(s1,...,8n). For this purpose, we have to prove that after the

last iteration the set of resolved pairs of terms of p(sy,...,s,) and

P(t1, ..y tn) is {(s1,%1), .., (Sn,tn)}. We have seen that for each pair

of terms (s;, ;) there exists exactly one associated action in the algo-

rithm. Every action computes a fuzzy substitution except those that

replace a pair of terms by an equivalent one. The algorithm ensures

that for each pair at most one replacement is performed. Then, at

the end of the iteration each pair has been resolved. .
According to Proposition 7.1 each pair of PGL1Y atomic formulas of the
form p(s1,...,8,) and p(t1,...,t,) can be unified, then we need to measure, by
means of the SU and MR inference rules, the unification degree of a computed

mgdfu.

Example 7.7 Let us consider the PGL*V program of Example 7.5 in which

P = { (> age(Mary,young),0.8),
(— age(John, about_18),0.9),
(age(z, 2) A age(y, 2) — friend(z,),0.6) },

where young and about 18 are two fuzzy constants defined over
the reference set [10;15;35;40](years), m(young) =[10;15;35;40] and
m(about_18) = [16;18;18;20]. As the proof method for PGL'Y queries is
performed in a bottom-up manner through the MP, QC and WR inference
rules, to compute a proof for the PGL*Y query

(friend(Mary, John),0.5),

the atomic formula friend(Mary, John) of the query is unified with the head

of the program rule
(age(z, 2) A age(y,z) = friend(z,y),0.6)
and an mgdfu is
o1 = (0,{z = ((Mary|],[1]),y = ([John[],[| D})-
Then, the new PGL1V query is
(age(z, z) A age(y, 2),0.5),

where the semantic structure of variables x and vy is

226 An automated deduction system for a first-order extension of PGL

z = ([Mary|,[|]) and y— ([John|],[]]),

respectively. Now, the atomic formula age(z, z) is unified with the atomic for-
mula of the fact

(— age(Mary,young),0.8)
and an mgdfu is
o2 = (0,{z = ([Mary|],[Mary|]),z — ([|], [young|])}).

Therefore, the new PGL*V query is

(age(y, 2),0.5),
where the semantic structure of variables y and z is
y = ([John|],[|]) and z—([|],[young|]),

respectively. Then, the atomic formula age(y, z) is unified with the atomic for-
mula of the fact

(— age(Mary,young),0.8)
and an mgdfu is
o3 = (0,{y = ([John| |,[Mary|]),z = ([|], [young|young])}).

However, as N*(m(John) | m(Mary)) = 0, the proof procedure fails and a new
program clause is considered. Finally, the atomic formula age(y, z) is unified

with the atomic formula of the fact
(— age(John, about_18),0.9)
and an mgdfu is
oy = (0,{y = ([John|],[John|]),z = ([|], [young|about18])}).
Now, composing o1, o2 and of we get

o1 =0, {z —» ([Mary|],[Mary|]),y = ([John|], [John]]),
z = ([1], [young|about18])}),

which, in turn, shows that the PGL*Y query (friend(Mary, John),0.5) can be

proved from two different PGL*V clauses:

7.4. Automated deduction 227

1. (age(Mary,young) A age(John,young) — friend(Mary, John),0.6)
2. (age(Mary, about_18) A age(John, about_18) — friend(Mary, John),0.6)

The first clause can be resolved through the MP inference rule by applying the

SU inference rule to the fact
(— age(John, about_18),0.9)
and the unification degree is
N*(m(young) | m(about_18)) =1,

then the PGLTY query can be proved to be true with a necessity degree of at
least min(1,0.8,0.9,0.6) = 0.6. The second clause can be resolved through the
MP inference rule by applying the SU inference rule to the fact

(— age(Mary,young),0.8)
and the unification degree is
N*(m(about_18) | m(young)) =0,

then the PGLTY query can be proved to be true with a necessity degree of at
least min(0,0.8,0.9,0.6) = 0. Finally, by the MR, inference rule,

P E (friend(Mary, John),0.6)
and, by the WR inference rule,
Pt (friend(Mary, John),0.5).

So, the unification degree of the fuzzy substitution o4 has to be computed as the
minimum of the unification degree of variables z, y and 2z, where the unification

degree of variables z and y has to be computed through the SU inference rule as
N*(m(Mary) | m(Mary)) =1 and N*(m(John) | m(John)) =1,

respectively; and the unification degree of variable z has to be computed through

the SU and MR inference rules as the maximum of
N*(m(young) | m(about_18)) =1

and
N*(m(about_18) | m(young)) = 0.

228 An automated deduction system for a first-order extension of PGL

Definition 7.20 (unification degree) Let My, be a PGLTY context and let
0(8,SC) be a fuzzy substitution with SC = {v1 = (gl1, 1), ..., vn = (gln, sln)},
where vy, ..., v, are variables or dummy variables and (gl1,sl1), ..., (gln, sl,) are
their semantic structures. We define the unification degree of the fuzzy substitu-

tion o in the context My, denoted by UDy (o), in the following way:
UDy,m(0) = min(UDVy,pm(v1,SC), ..., UDVy m(vn, SC)),

where UDVy m(v;, SC) denotes the wunification degree of wvariable v;, for
i =1,...,n, determined by the semantic component of the fuzzy substitution in
the context My m. The unification degree of a variable v is computed, through
the SU and MR inference rules, depending on its type and its semantic structure

in the following way:
e Ifv is a dummy variable and v — ([gc|],[sc|]) € SC, then

UDVy,;m(v,SC) = N*(m(gc) | m(sc));

e Ifv is a variable and v — ([|], [sc1|sca...sck]) € SC, then
UDVy,m(v,SC) = max{min(N*(m(sc;) | m(sc1)),. ..,
N*(m(sc;) | m(scg))) | s¢j € {sc1,...,8¢k}},

and the specific object constant sc; that provides the mazimum make up

the assignment of value to the variable;
e Ifv is a variable and v — ([gcy|ges...gal), [sc1|sca...sc]) € SC, then

UDVym(v,SC) = max{min(N*(m(gc1) | m(gc;)),. ..,
N*(m(ger) | m(ge;)), N*(m(ge;) | m(sca)), .- -,
N*(m(gc;) | m(sck))) | gej € {gea, ..., gat},
and the general object constant gc; that provides the mazimum make up

the assignment of value to the variable.

7.4.2 Proof procedure

As already pointed out, the proof of a PGLTY query from a PGLTY program is
defined by derivation using the MP, QC, SU, PR, QI, RV, MR, and WR inference
rules, where the SU, PR, QI, RV and MR inference rules are automatically

7.4. Automated deduction 229

performed by the fuzzy unification algorithm. Therefore, the proof procedure is
based on the MP, QC and WR inference rules.

The proof procedure we define applies the generalized modus ponens and
the query conjunction inference rules in a reverse way as it is done in classical
backward inference systems, i.e. rather than applying the MP inference rule to
p1 A+ Ap, = q once we have deduced p1,...,pn, it checks first whether ¢ can
be deduced which, in turn, leads to check whether ps,...,p, can be deduced.
Therefore, at each step an atomic formula of a PGLTY query which can be
unified, through an mgdfu o, with the head of a PGL*Y program clause is
replaced by the body of it. The new PGL1YV query is obtained from applying
the mgdfu o to the resulting query. The proof procedure finishes when the
truth query T has to be checked. Moreover, the proof procedure is based on
chronological backtracking and the search strategy is depth-first. Finally, the
assignment of value for variables is computed by means of a repeated use of the
fuzzy unification algorithm.

Let P = (P,U,m) be a PGL1Y program. In order to verify if a PGLY query
(p, @) can be proved from P, we apply the proof procedure described below with

the function call
Deductive_Proof Procedure(P,U, m, ¢, a, (0,0),1),

where (0,0) and 1 mean, respectively, that neither a fuzzy substitution nor a

necessity degree have been computed before starting the proof procedure.

function Deductive_Proof_Procedure

input
P : Set of PGL1Y program clauses
U : Collection of non-empty domains
m : Interpretation of object constants over U /* context My, */
query : Set of PGLTY atomic formulas
threshold : Necessity degree /* proof threshold */
o : Fuzzy substitution

B: Necessity degree /* computed degree of proof */

output
entailment : boolean

T entailment * Fuzzy substitution

230 An automated deduction system for a first-order extension of PGL

Bentailment: Necessity degree

auxiliary variables
P': Set of PGL™Y program clauses
query’ : Set of PGLTY atomic formulas
q : PGL*Y atomic formula
o1, 02, : Fuzzy substitution /* o; = (6;,5C;) */
B': Necessity degree
C: PGL™Y program clause

begin
if (Empty_Set(query)) then
entailment := true;
T entailment = 5
Bentailment = min(8, UDu,m(7));
return(entailment, o optoilment> Bentailment)
else
P' := Rename_Variables(P);
q := First(query);
for (each PGL*V program clause C' € P')do
if (Weight(C) > threshold and Predicate(q) = Predicate(Head(C)))
then
o1 := mgdfu(q,Head(C));
query’ := (Body(C) U (query \ {q}))o1;
o9 1= 0071;
if (min{UDVy,nm(v,SC2) | v ¢ query’ and v € SCy} > threshold)
then
B' := min(8, Weight(C));

(entailment,o

entailment Pentailment) =
Deductive_Proof-Procedure(P',U, m, query’, threshold, o2, 8');
if (entailment) then
return(entailment, o
end if
end if
end if

end for

entailment> ﬂentailment)

entailment := false;

7.4. Automated deduction 231

% entailment = (9, 0);

Bentailment = 0;
return(entailment, o

end if

entailment> B entailment)

end function Deductive_Proof-Procedure

The function Rename_Variables applies the RV inference rule to ensure that
the name of variables is different in each level of the proof tree and in each PGL*Y
program clause. Moreover, the semantic structure of all renamed variables is
initialized to the empty set. The function Head returns the conclusion of a
PGL™TY program clause; the function Body produces the set of premises of a
program rule or the empty set for facts; and the function Weight returns the
certainty-weight attached to a PGL1Y program clause. Finally, functions UDy,,
and UDVy,y, use Definition 7.20 for computing the unification degree, in the
PGLTY context determined by U and m, of a fuzzy substitution and a variable,
respectively.

The function Deductive_Proof-Procedure runs in a depth-first manner apply-
ing the generalized modus ponens rule in a reverse order, i.e. an atomic formula
q is deduced, with a necessity of at least «, if all the atomic formulas of the
body of a PGLTY program clause, whose head unifies with ¢, are deduced with
a necessity of at least o and the certainty-weight of the PGL1Y program clause

is higher or equal than «. Thus, the function call

Deductive_Proof-Procedure(P,U,m,{q1,...,qn},a, 0, 8),

selects the leftmost atom ¢; of the query and a PGLTY program clause C of the

form
(Body(C) — Head(C), Weight(C))

such that Weight(C) > « and Head(C) unifies with ¢;. Let o1 be an mgdfu from
Head(C) to ¢y, if the unification degree of each completely instantiated variable
through the fuzzy substitution oo; is higher or equal than the threshold «, a

new function call of the form

Deductive_Proof-_Procedure(P,U, m,(Body(C)U{qa, - .., qn})o1,a,001,8"),

232 An automated deduction system for a first-order extension of PGL

with ' = min (8, Weight(C)) is produced. A variable or a dummy variable v is

said to be completely instantiated through the fuzzy substitution
03(62,SC2) = oo,

if SCy contains a non-empty semantic structure for v and variable v has no

occurrence in the new query

(Body(C)U{ga,...,qn})o1.

If no PGL'Y program clause satisfies these constraints for the leftmost atom
of the query, the function Deductive_Proof Procedure backtracks. The function
finishes when the truth query T has to be checked or when the input PGL*Y
query cannot be proved with a necessity degree equal or higher than the threshold
a. In the first case, the computed fuzzy substitution o corresponds with the

assignment of value to variables and

Bentaitment = min(B, UDy,m(0)) > o

gives the necessity degree with which the initial query has been proved from
the PGL*Y program, i.e. given a PGL™Y program P = (P,U, m) and a PGL*V
query (g, @), if the function call

Deductive_Proof-Procedure(P, U, m, ¢, a, (0,0),1),

returns (true, o, Boptoitment)> then P E (0, Beptaitment) With Beptaitment = @
and, by the WR inference rule, P + (¢, a).

7.4.3 Examples

In this section we apply the unification algorithm and the deductive proof proce-
dure to examples of Section 7.4.1. For this purpose, we describe the construction
of a proof tree corresponding to a branch of the search tree.
The first example of Section 7.4.1 shows the unification of two fuzzy con-
stants. Let
(buy (book),0.5)

be a PGLTY query and let P = (P,U,m) be a PGL™V program with

1. P = { (- price(book, about_35),0.9),
(price(x, between_30-40) — buy(x),0.7) };

7.4. Automated deduction 233

{buy(book)}

(price(zx, between_30-40) — buy(x),0.7)

o1 = (0,{z — ([book|][I },)

o = (0.0)0] = o}

B = min(1,0.7) = 0.7

{price(z, between_30_40)}

(— price(book, about_35),0.9)

o2 = (0, {z — ([book|], [book|])
di — ([between_30-40]], [about_-35|1)})
03 = 0307 = (0, {z — ([book|], [book]]),
dy — ([between_-30_40|], [about-35|])})

UDVy,m(z,SC3) = N*(m(book) | m(book)) =1
UDVy,m(d1,SC2) = N*(m(between_30-40) | m(about_35)) = 1

% = min(0.7,0.9) = 0.7
UDy,m(03) = min(UDVy, ;m(z, SC3),UDVy m(di,SC3)) =1

T

Figure 7.1: Unification of two fuzzy constants.

234 An automated deduction system for a first-order extension of PGL

2.0 ={ Uproduct = {book},
Uproduct_price = [0, 100](euros) };

3. m(book) = book,
m(about_35) = [30; 35; 35; 40], and
m(between_30-40) = [25; 30; 40; 45].

The proof tree generated by the function call
Deductive_Proof Procedure(P, U, m, {buy(book)},0.5, (0, 0),1),

is described in Figure 7.1, where d; denotes the dummy variable associated with
the fuzzy constants between_25_30 and about-35. When the truth query T is

obtained the function returns
(true, o2, min(52, UDyim(ag))),
and thus,
P+ (buy(book),0.7).

Now, applying the WR inference rule, we get
P F (buy(book),0.5).

The second example of Section 7.4.1 analyzes the unification of a variable

and multiple specific fuzzy constants. Let
(friend(Mary, John),0.5)
be a PGL*Y query and let P = (P,U, m) be a PGL1Y program with

1. P ={ (- age(Mary,young),0.8),
(— age(John,about_18),0.9),
(age(z,z) A age(y, z) — friend(z,y),0.6) };

2. U = { Uperson_name = {Mary, John},
Uyears_old = [0,120](years) };
3. m(Mary) = Mary,
m(John) = John,
(young) = [10; 15; 35; 40], and
m(about_18) = [16;18;18; 20].

m

7.4. Automated deduction 235

The proof tree associated with the function call
Deductive_Proof Procedure(P,U, m,{ friend(Mary, John)},0.5,(,0),1),

is described in Figure 7.2. When the truth query T has to be checked the
function returns
(true, o3, min(B°, UDy,m(03))),

and thus,
Pt (friend(Mary, John),0.6).

Therefore, applying the WR inference rule, we get
P E (friend(Mary, John),0.5).
Remark that in the third level of the proof tree, before using the fact
(— age(John, about_18),0.9),

the fact
(— age(Mary,young),0.8)

is chosen by the proof algorithm and the semantic structure generated by the

fuzzy unification algorithm for variable y is
y = ([John|],[Mary]]).
Then, the unification degree computed for variable y is
N*(m(John) | m(Mary)) = 0,

which is less than the threshold 0.5, and the function Deductive_Proof-Procedure
backtracks.
The last example of Section 7.4.1 analyzes the unification of a variable and

multiple specific and general object constants. Let
(buy price_value(book, around_35, between _30-40), 0.5)
be a PGLTY query and let P = (P,U,m) be a PGL1Y program with

1. P ={ (- price(book,34),1),
(— value(book, about_35),0.8),
(price(z,y) A value(z,y) — buy_price_value(z,y,y),0.7) };

236 An automated deduction system for a first-order extension of PGL

{friend(Mary, John)}

(age(z, z) A age(y,z) — friend(z,y),0.6)

ot = .4z = (Mary] L[| Dy~ (Tohnl L[| D)
o = (0,0)0} = o}

B! = min(1,0.6) = 0.6
{age(z, 2), age(y, z)}

(— age(Mary, young),0.8)

of = (0,{z = ((Mary|], [Mary|]),z — ([|], [young|])})
o = o301 = (0,{z — ((Mary|], [Mary|]),

y = ([John| |, [|]),

z = ([|], lyoung|))})
UDVy,m(z,SC3) = N*(m(Mary) | m(Mary)) =1
% = min(0.6,0.8) = 0.6

{age(y,2)}

(— age(John,about_18),0.9)

o3 = (0,{y > ([John]) [John]),
z = ([|], [young|about_18])})
o3 = 0303 = (0,{x = ([Mary|],[Mary|]),
y — (John|], [Tohn])
z = ([|], [young|about_181)})
UDVy,m(z,8C3) = UDVy,m(z,SC3) =1
UDVu,m(y, SC3) = N*(m(John) | m(John)) = 1
UDVy,m(z,SC3) = max(N*(m(young) | m(about_18)),
N*(m(about_18) | m(young))) =
= max(1,0) =1
5% = min(0.6,0.9) = 0.6
UDy,m(03) = min(UDVy, m(z, SC3),
UDVy,m(y, SC3),
UDVy,m(z,8C3)) = 1

T

Figure 7.2: Unification of a variable and multiple specific fuzzy constants.

7.5. A translator system 237

2.U0= { Uproduct = {bOOk};
Uproduct-price = [0, 100](euros),
Uproduct-value = [0,100](euros) };

@«
3

(book) = book,
m(34) = 34,
m(about_35) = [30; 35; 35; 40],
(
(

m(around_35) = [32; 34; 36; 38], and
m(between_30_40) = [25; 30;40; 45].

The proof tree generated by the function call
Deductive_Proof Procedure(P,U, m, query, 0.5, (0,0),1),

with query = {buy_price_value(book, around_35, between_30-40)} is described in
Figure 7.3. When the truth query T is obtained the function returns

(true, o3, min(B°, UDy.m(03))),
and thus,
P F (buy-price_value(book, around-35, between_30-40), 0.67).
Finally, applying the WR inference rule, we get

P+ (buy_price_value(book, around_35, between_30-40),0.5).

7.5 A translator system

In this section, we first define a system for translating PGLTV programs into
code machine. Then, we describe a user-friendly environment that has been
developed to facilitate the graphical representation of fuzzy constants and com-
pilation tasks.

The Warren Abstract Machine (WAM), designed in 1983 by Warren (1983),
is an abstract machine consisting of a memory architecture and an instruction
set. In (Alsinet et al., 1995; Alsinet and Manya, 1996) we defined a logic
programming environment for a family of first-order infinitely-valued logics. This
system was implemented by extending the WAM to the infinitely-valued context.

From a syntactic point of view, there are only two differences between PGL*Y

238 An automated deduction system for a first-order extension of PGL

{buy _price_value(book, around_35, between_30_40)}

(price(z,y) A value(z,y) = buy_price_value(z,y,y),0.7)

a1 = (0, {z — ([book|], []]),
y — ([around_35|between_30-40],[|])})
o = 0,0)0! = ol

B = min(1,0.7) = 0.7

{price(z,y),
value(z,y)}

(= price(book, 34),1)

o} = (0,{z — ([book|], [book|]),
y — ([around_35|between_30-40],[34|])})
03 = 0307 =0}

B? = min(0.7,1) = 0.7

{value(z,y)}

(— value(book, about_35),0.8)

o3 = (0,{y = ([around_35|between_30-40], [34|about_35])})
o3 = o30f = (0, {z — ([book]|], [book|]),
y — ([around_35|between_30-40], [34|about 35])})
UDVy,m(z,SC3) = N*(m(book) | m(book)) = 1
UDVy,m(y, SC3) = max(min(N*(m(between_30-40) | m(around-35)),
N*(m(around-35) | m(34)),
N*(m(around_35) | m(about_35))),
min(N*(m(around_-35) | m(between_30-40)),
(m(between_30-40) | m(34)),
(m(between_30-40) | m(about_35)))) =
= max(min(1,1,0.67),min(0,1,1)) = 0.67
3% = min(0.7,0.8) = 0.7
UDy.m(03) = min(UDVy,m(z, SC3), UDViym(y, SC3)) = 0.67

N*(m(
N*(m(

T

Figure 7.3: Unification of a variable and multiple general and specific fuzzy

constants.

7.5. A translator system 239

and this family of infinitely-valued logics. On the one hand, terms are not
only variables and precise object constants, but also imprecise and fuzzy object
constants. On the other hand, unification between terms is not only syntactic,
but also semantic based on a necessity-like measure. Therefore, we can easily
define a translator system for PGL*Y programs by extending the environment
defined in (Alsinet et al., 1995; Alsinet and Manya, 1996) with both fuzzy

constants and the directional fuzzy unification algorithm.

In this manner, we divide the translation process in two phases. The first one
translates a PGL1Y program into an equivalent intermediate code representation
which we call possibilistic and fuzzy WAM code. The second phase generates
the target code consisting of relocatable machine code from the intermediate

representation and the possibilistic and fuzzy WAM implementation.

The first phase extends the WAM target language and architecture for com-
piling pure Prolog to handle the semantical definition of fuzzy constants and
to acomodate the implementation of certainty-weighted facts and rules. To es-
tablish our WAM extension on a von Neumann architecture, corresponding to
the target code generation phase, we have chosen the high level language C++.
Therefore, in (Morldn, 2000), we have developed a collection of library functions
that simulates the memory organization of the WAM architecture, the sequence
of low level instructions associated to each WAM instruction and the PGL1V
directional fuzzy unification algorithm. Figure 7.4 shows the two phases that
take part in the translation process.

A translator of PGL1Y programs into possibilistic and fuzzy WAM code can
be syntax-directed. That is, the translation process is driven by the syntactic
structure of a program as recognized by the parser. The semantic routines,
which are the part of the translator that interprets the meaning (semantics)
of a program, perform this interpretation based on its syntactic structure. On
account of the possibilistic and fuzzy WAM implementation, it is necessary that
permanent variables be saved in an environment associated with each activation
of the procedure they appear in. Permanent variables are those that occur in
more than one body atom. Then, it is necessary to know the permanent variables
for a program clause before generating the suitable possibilistic and fuzzy WAM
code. The solution consists of organizing the translation process around the

syntactic tree structure and multiple tree traversals.

On the one hand, a bottom-up parser builds the abstract syntactic tree, which

240 An automated deduction system for a first-order extension of PGL

PGL*Y Program

(— age(Mary,young),0.8)
(— age(John,about_-18),0.9)
(age(z, 2) A age(y, z) — friend(z,y),0.6)

?- (friend(Mary, John), 0.5)

PGL1Y Translator

1

Possibilistic and Fuzzy WAM Code

(intermediate code representation)

!

Possibilistic and Fuzzy G
WAM Implementation — +J‘r — C++ system libraries
. . compiler
(developed libraries)
1

Relocatable Machine code (execution code)

Figure 7.4: Translation process

7.5. A translator system 241

is the intermediate representation that allows translation to be decoupled from
parsing, and the two semantic processing tasks —static semantic checking, and
possibilistic and fuzzy WAM code generation— can be accomplished by using
semantic attributes attached to the nodes of the syntactic tree and evaluated
by more than one traversal of it. On the other hand, semantic routines are
in charge of translating the abstract syntactic tree into a set of intermediate
instructions, i.e. an abstract representation of a PGL*1V program clause into a
set of possibilistic and fuzzy WAM instructions.

The pseudocode of the most important functions involved in the possibilistic

and fuzzy WAM code generation process are described bellow.

action Code_Generation

input

clause_list : Pointer to clause

auxiliary variables
pointer_clause : Pointer to clause

m, n : integer

begin
Sort_Clauses(clause_list);
pointer_clause := First_Clause(clause_list);
n:=1;
while (pointer_clause # NILL) do
m := Number_Equal_Clauses(pointer_clause);
Label_Generation(pointer_clause);
if (m>1) then
case n of
1:
Generate(try_me_else);
n = n+1;

Generate(trust_me);
n:=1;
otherwise:

Generate(retry me_else);

242 An automated deduction system for a first-order extension of PGL

n = n+1;
end case
end if
Clause_Code_Generation(pointer_clause);
pointer_clause := NextClause(pointer_clause);
end while

end action Code_Generation

The action Sort_Clauses groups the program clauses with equal head
predicate preserving the appearing order; the function Number_Equal_ Clauses
calculates the number of clauses with the same head predicate as the actual
pointer_clause; and the action Label_Generation generates the label for the
set of possibilistic and fuzzy WAM instructions. try.me_else, trust_me and

retry me_else are WAM instructions.

action Clause_Code_Generation

input

pointer_clause: : Pointer to clause

auxiliary variables
pointer_body_clause : Pointer to clause

n : integer

begin
n := Number_Permanent_Variables(pointer_clause);
Generate(allocate(n));
Get_Arguments(pointer_clause—head);
pointer_body_clause := pointer_clause— body;
while (pointer_body_clause # NILL) do
Put_Arguments(pointer_body_clause);
pointer_body_clause := pointer_clause— body;
end while
Code_Generation_Weight(pointer_clause);
Generate(deallocate)

end action Clause_Code_Generation

7.5. A translator system 243

The function Number_Permanent_Variables traverses the abstract syntac-
tic tree in a left-to-right pass carrying the permanent variables for each
clause. Actions Get_Arguments and Put_Arguments generate code for a
head atomic formula and a body atomic formula, respectively. The action
Code_Generation_Weight determines the computed necessity degree, the result
is assigned to a global register. To preserve it, the value is saved in the acti-
vation environment of the procedure as the permanent variables are and in the
Choice Point as the argument registers are. The Choice Point is a memory
structure that stores the computation state of a resolution tree node with more
than one child and its aim is to preserve the information between the differ-
ent alternatives. Finally, allocate(n), getlevel and deallocate are WAM

instructions.

Figure 7.5: Development environment

Morldn (2000) has implemented the possibilistic and fuzzy WAM library by
extending the system defined in (Alsinet et al., 1995; Alsinet and Many#a, 1996)
with the directional fuzzy unification algorithm. However, the implementation
of the translation phase of PGL*V programs into possibilistic and fuzzy WAM
code, based on actions Code_Generation and Clause_Code_Generation, is not yet
ready.

Finally, to facilitate the implementation and compilation tasks, we have de-

244 An automated deduction system for a first-order extension of PGL

Figure 7.6: Definition of fuzzy constants

veloped a user-friendly environment under X Window. Figures 7.5 and 7.6 dis-
play the development environment and the definition of fuzzy constants windows,

respectively. Currently, this environment only considers trapezoidal fuzzy set.

Chapter 8

Conclusions and

future work

In the preceding chapters we have been concerned with the formalization of logi-
cal systems for reasoning with possibilistic uncertainty and vague knowledge. As
one of our ultimate objectives was to obtain competitive (from a computational
point of view) algorithms for automated deduction in the frame of possibilis-
tic logic programming with fuzzy constants, our approach has not only been
confined to define formal possibilistic semantics and sound (and complete when
possible) calculi, but also sketch pseudo-code of algorithms that automate their
application.

Our next step should be to design suitable data structures for representing
fuzzy constants and incorporate them into efficient implementations of the proof
procedures, as well as to examine their behavior in real-world applications. We
would like to point out that the logical systems we have defined in this thesis
may be particularly useful within the framework of fuzzy deductive data bases
and diagnosis systems in which symptoms are not always described accurately.
They may also be valuables to implement dialog agents in multi-agent systems
when vague, incomplete or imprecise information about the real world and ap-
proximately specified rules are needed.

In Chapter 1, we have already given in detail the main contributions of this
thesis. Here, we summarize them briefly:

First, we have defined a formal semantics and a sound resolution-style refuta-

245

246 Conclusions and future work

tion proof procedure for the necessity-valued fragment of first-order possibilistic
logic extended with fuzzy constants and fuzzily restricted quantifiers (called
PLFC). The PLFC resolution rule includes an implicit fuzzy unification mecha-
nism of fuzzy events which is based on a necessity-like measure.

Second, we have formalized a semantics for a general possibilistic logic
with fuzzy propositional variables (called PGL) which is based on Godel
infinitely-valued logic and, based on this, we have defined a sound deductive
proof method which is based on a Hilbert-style axiomatization of the logic and
a generalized modus ponens inference rule.

Third, we have considered the Horn-rule fragment of PGL and, we have
proved, for this restricted class of formulas, that the modus ponens-style calculus
is complete for determining the maximum degree of possibilistic belief with which
a fuzzy propositional variable can be entailed from a set of formulas.

Fourth, we have defined a fuzzy possibilistic logic programming language
(called PGL™) by extending the Horn-rule fragment of PGL with fuzzy con-
stants and a semantical unification mechanism. The PGL* unification system is
basically based on a necessity-like measure, a fusion and an intersection mecha-
nisms.

Fifth, we have formalized the notion of non-recursive and satisfiable PGL*
program, we have proved that the PGLT unification mechanism preserves com-
pleteness for this restricted class of programs further satisfying a context con-
straint, and we have defined an efficient as possible proof procedure for com-
puting the maximum degree of deduction of an atomic formula with fuzzy con-
stants from a program. The PGL™ proof procedure clearly departs from classical
propositional interpreters and it has been developed in four sequential steps. A
satisfiability testing step. A pre-processing step which ensures that all (explicit
and hidden) program clauses are considered. A translation step which translates
a program into a set of 1-weighted facts. And finally, a deduction step which
just computes the unification degree between two fuzzy constants.

Sixth, we have defined a general first-order fuzzy possibilistic logic (called
PGL™Y) which is based on Godel predicate logic extended with fuzzy constants.
Then, we have tackled logic programming aspects by considering the sublan-
guage of definite clauses of PGL1Y; defining, for this class of clauses, a sound
SLD-style resolution procedure which is based on a directional fuzzy unification

algorithm; and describing how a translator of PGL'Y programs into machine

Conclusions and future work 247

code can be designed by extending the Warren Abstract Machine to our fuzzy
and possibilistic context.

The main differences between PLFC and PGLTY are (i) at the level of the
syntax and semantics of the language; (ii) at the level of providing the language
with a sound calculus; and (iii) at the level of defining an automated deduction
method based on (ii).

Regarding the syntax, in PLFC, formulas are pairs of the form (¢(Z), f(7)),
where T and g denote sets of free and implicitly universally quantified variables
and § DO T, ¢(Z) is a disjunction of literals with fuzzy constants, and f(3)
is a valid valuation function which expresses the certainty of ¢(Z) in terms
of necessity measures. Basically, valuation functions f(g§) are constant values
and variable weights which are not considered in PGLTY. Variable weights are
suitable for modeling statements of the form “the more = is A (or z belongs to
A), the more certain is p(z)”, where A is a fuzzy set.

In PGL'YV, formulas are pairs of the form (p,a), where ¢ is a first-order
definite clause or a query with fuzzy constants and regular predicates and a €
[0,1] is a lower bound on the belief on ¢ in terms of necessity measures.

On the other hand, in PLFC, fuzzy constants can be seen as (flexible) restric-
tions on an existential quantifier. In general, “L(B) is true at least to degree a”,
is represented in PLFC as (L(B),), where L is either a positive or a negative
literal and B is a fuzzy constant. Therefore, as the proof method for PLFC is
defined by refutation through a generalized resolution rule between positive and
negative literals, the unification (in the classical sense) between fuzzy constants is
not allowed. However, as variable weights are interpreted as conjunctive (fuzzy)
knowledge, an implicit semantical unification between fuzzy events is performed
between variable weights and fuzzy constants.

In PGL1V, fuzzy constants are interpreted as disjunctive fuzzy knowledge
too but, in contrast to PLFC, we do not have negative literals in the language;
we have provided the language with a sound modus ponens-style calculus by
derivation based on an explicit unification mechanism of fuzzy constants; and we
have proved, for clauses with only fuzzy constants (i.e. for the PGL* sublanguage
of PGL1Y), that completeness can be gained by extending the system with a
fusion and an intersection mechanisms between fuzzy constants.

Regarding the semantics, because of the fuzzy information, the truth evalua-

tion of formulas is many-valued in both systems, and belief states are modeled by

248 Conclusions and future work

normalized possibility distributions on a set of many-valued interpretations, also
in both systems. However, the basic connectives of PLFC are negation — and
disjunction V while in PGLTYV, they are conjunction A and implication —, and
the semantics for the two sets of connectives are not equivalent, i.e. the two sets
of connectives are not inter-definable. Moreover, the extended necessity measure
for fuzzy sets suggested by Dubois et al. (1994c), which is used in PGL1V for
setting the possibilistic semantics of formulas, is different from the one used in
PLFC, although both are extensions of the standard necessity measure for crisp

sets.

Regarding automated deduction we have developed a sound resolution-style
refutation procedure for PLFC which is based on the computation of the neces-
sity evaluation of fuzzy events. In order to get PLFC clauses with the greatest
possible weights (i.e. to get higher unification degrees), a fusion mechanism must
be applied after each resolution step. Therefore, the refutation procedure can-
not be oriented to a resolvent clause and the search space consists of all possible
orderings of the literals in the knowledge base. As already pointed out, in order
to gain completeness, a fusion mechanism is also needed for PGLTY. There-
fore, from a computational point of view, the extension of a knowledge base
with all (explicit and hidden) clauses through a fusion mechanism is a draw-
back in both systems. However, in contrast to PLFC, we have shown that the
fusion mechanism for PGL™Y clauses with only fuzzy constants (i.e. the PGL*
sublanguage) can be performed in a pre-processing step of the knowledge base.
Hence, for PGL1V, we have developed an SLD-style resolution procedure ori-
ented to queries which is based on a generalized modus ponens inference rule

and a directional fuzzy unification algorithm.

In table 8.1 we summarize the main differences between the necessity-valued
fragment of possibilistic logic (PL) and the formalization provided in this thesis
for its extension with fuzzy constants and fuzzily restricted quantifiers (PLFC).
And in table 8.2 we summarize the main differences between PLFC and PGL*YV.

Apart from the implementation of the proof procedures we have introduced
in this thesis, our ongoing research is addressed to extend semantical unification
to allow a similarity-based unification of object constants.

In fact, in both PLFC and PGL1V, the matching degree between two object
(fuzzy) constants is computed in terms of a necessity measure for fuzzy sets. As

a consequence, the unification degree between two different and precise object

Conclusions and future work

Syntax

Interpr.

Poss.

Models

Resolution

Proof method

Unification

Sound./Compl.

PL

249

PLFC

(-p(z) V q(a), @)
a: crisp constant

Regular predicates

(-p(z) V q(A), min(a, B(z)))
A and B: fuzzy sets
Typed regular predicates

M = (U,i,m), m(a) €U
llellm € {0,1} (Boolean)

[¢]: crisp set of models

M = (U,i,m), m(A) : U — [0,1]
[lollv € [0, 1] (many-valued)
[¢]: fuzzy set of models

M= {M}
m: M —[0,1]
7 (p,0) it N([g] | 7) > o
ff (M) <1-a
VM e M with [|¢|lm =0

Mym ={M = (U,i,m)}
m: Mum —[0,1]
T = (p, @) iff N([g] | 7) > a
iff (M) <1-—a
VM € My,m with ||¢||m < @

(=p(@z)ve(z),a),(p(b),R)
(q(b),min(a,B))

(=p(z)Va(z),min(a, A(2))),(p(B),B)
(a(B),min(a,B,N (A[[B]g)))

Refutation by resolution

Refutation by resolution

Syntactic (classic)

Semantic: N(A | [B]g)

Soundness and Completeness

Soundness

Table 8.1: Possibilistic logic and PLFC

250

Syntaz

Interpr.

Poss.
Models

Unifi.

Proof
method

Sound./
Compl.

PLFC

Conclusions and future work

PGLtY

(—age(z,y) V salary(z, low), young(y))
Disjunctive 4+ Conjunctive

fuzzy constants

(age(z, young) — salary(z,low),1)
Disjunctive

fuzzy constants

M = (U,i,m)
m(A): U —[0,1]

i(p) C U (conjunctive inter.)
v(z) € U (crisp evaluations)
llp(A)llm = supye;p) tm(a) (w)
Img(B)llve = supg;(q) m (B) (1)
I=q(B) V p(A)[lm =
max(||~q(B)|Im, [[p(A)llnm)

M = (U,i,m)
m(A): U —[0,1]
i(p) € U (disjunctive inter.)
v(z): U — [0, 1] (fuzzy evaluations)
lIp(Allm = pmca) (i(p))

llg(B) — p(A)|lm
Godel truth functions

7 Mum — [0,1]
7= (p,a) iff N([¢] | T) >a
N([¢] | w) = infm max(1 — m(M), [|¢]lm)

T Mym — [0,1]
m = (g, a) it N*([¢] | T) > a
N*([¢] |) = infm 7(M) = [|ol|m

Variable weights/

Imprecise constants

Fuzzy constants/

Fuzzy constants

Refutation by resolution
(implicit unification)
Fusion over each

resolvent clause

Modus ponens +
Unification rule
PGL™: Fusion in a
pre-processing step +

intersection mechanism

Soundness

PGL™: completeness for goals

(context constraint)

Table 8.2: PLFC and PGL*V

Conclusions and future work 251

constants is null in both systems. Sometimes this is a rather unpleasant behav-
ior, especially if we are trying to model approximate knowledge. To remedy this
situation, in (Alsinet and Godo, 2001a) we have addressed the issue of extending
the (graded) unification of fuzzy constants to cope with a similarity-based unifi-
cation of precise object constants. For simplicity and practical reasons, we have
focused on a sublogic of Horn-like PLFC clauses expressing disjunctive informa-
tion, and thus, fuzzy constants are only allowed in the head of a clause. Then,
each precise object constant appearing in the body of a clause is fuzzified by
means of a similarity relation, and the fuzzified constant is placed as a variable
weight. With this we enlarge the applicability of the clause to constants close

to the original ones. For instance, the set of Horn PLFC clauses

{ (price_book(34),1),
(price_book(35) — buy_book,1) },

are transformed into

{ (price_book(34),1),
(price_book(z) — buy_-book, around_35(x)) },

where we take faround_s5(x) = S(35, x) with
S Dproduct_price X -Dproduct_price — [05 1]

being a fuzzy proximity (i.e. reflexive) relation on the domain Dproguct price Of

the sort product_price. Now, applying the PLFC resolution rule we get
(buy_book, N (around_35 | 34)),
and in this case we have
N(around_35 | 34) = paround_s3s(34) = S(35,34).

Hence,
(buy -book, S(35,34))

is the derived clause after using the proposed similarity-based unification mech-
anism.
The similarity-based fuzzification mechanism of precise constants can be eas-

ily extended to fuzzy constants themselves. On the other hand, the proposed

252 Conclusions and future work

methodology can be used solely as a pure similarity-based reasoning with classi-
cal (precise) constants (that is, with no fuzzy constants at all). The comparison
of the resulting system with the ones proposed by (Arcelli et al., 1998; Gerla
and Sessa, 1999; Formato et al., 2000) on the one hand, and the one proposed
by (Vinaf and Vojtas, 2000; Vojtds et al., 2001b), in different frameworks, will
be a matter of high interest.

Finally, we would like to point out two other future research perspectives.

First, we aim at extending the current first-order inference systems (which
are only sound) that would allow us to have a complete possibilistic entailment.
Actually, as we have already mentioned, the PGLT proof procedure is complete
for determining the possibilistic entailment degree of an atomic formula with
fuzzy constants from a restricted class of programs. Therefore, in order to gain
completeness in both PLFC and PGL1Y, it will be necessary at least to extend
the PGL™T fusion and intersection mechanisms to the first-order case. On the
other hand, when restricting ourselves to definite clauses, the fusion mechanisms
can be applied as a pre-processing step of the knowledge base. Hence, in order
to define an SLD-style refutation procedure for PLFC it seems necessary to
consider a suitable Horn-like sublanguage of PLFC.

Second, we aim at extending the base languages to allow fuzzy com-
putable functions. A fuzzy computable function is an operation on fuzzy
sets which can be computed as soon as all its arguments are instanti-
ated. Some useful fuzzy computable functions are standard fuzzy set the-
oretic operations (i.e. fuzzy complement, intersection and union) and arith-
metic operations * on fuzzy numbers by means of the extension principle (i.e.
paes (10) = Dy min(pa (u), 15 (v))).

For instance, when extending PGL*"Y with fuzzy computable functions we
obtain a unified framework for the treatment of fuzzy constants and variable

weights (i.e. fuzzily restricted quantifiers). For instance, the PLFC clause
(mage(z, z) V ~age(y,t) V friend(z,y), approx_equal(z,t)),

where approx_equal(-,-) is a fuzzy relation with fuzzy arguments, could be rep-
resented in PGL'Y as

(age(z, 2) A age(y,t) A distance(z, t, approx_zero) — friend(z,y),1),

where approz_zero is a fuzzy constant and distance(-, -, -) is a classical predicate

with fuzzy arguments which would be defined through the fuzzy set subtraction

Conclusions and future work 253

operation © in the following way:
(— distance(z,y,z ©y),1).
In possibilistic terms, the PLFC clause
(mage(z, z) V mage(y,t) V friend(z,y), approx_equal(z,t))
is interpreted as

“the more two persons are about a same age,

the more certain they are friends”,
while the PGL™Y clause
(age(z, 2) A age(y, t) A distance(z,t, approx_zero) — friend(z,y),1)
as

“the more certain the (fuzzy) distance between the age

of two persons is close to zero, the more certain they are friends”.

Thus, from a semantic point of view, fuzzily restricted quantifiers can be handled
by means of fuzzy constants and computable functions. Furthermore, when

resolving the PLFC clause
(—age(z,2) V —age(y,t) V friend(z,y), approx_equal(z,t))
with the set of PLFC clauses
{(age(Mary, around_19),0.8), (age(John, about_18),0.7)},
where around-19 and about_18 are two fuzzy constants, we get
(friend(Mary, John), min(0.8,0.7, approz_equal ([around_-19]g s, [about_18]g.7))),
where approz_equal ([around_19]o s, [about_18].7) is computed as
N(approz_equal | [around-19]g.s X [about_18]¢.7),

where x stands for Cartesian product, and hence, by extending the necessity

measure N(- | -) to general fuzzy relations. On the other hand, from the set of

254 Conclusions and future work

PGL™YV clauses

{ (= age(Mary, around_19),0.8),
(— age(John, about_18),0.7),
(age(z, z) A age(y,t) A distance(z,t, approz_zero) — friend(z,y),1),
(— distance(z,y,z©y),1) }

we infer
(friend(Mary, John), min(0.8,0.7, N*(approx_zero | around-19 & about_18))),

and thus, from a syntactic point of view, fuzzily restricted quantifiers can be
handled by means of fuzzy constants and computable functions as well.
Finally, other benefits of considering computable functions are to handle
imprecise temporal knowledge in the possibilistic logic framework as proposed
by Sandri and Godo (1999), and recursively define concepts. For instance, the

Sorites paradox

“a heap of sand with X — 1 grains is large,

if a heap of sand with X grains is large”
could be represented in PGL1Y extended with fuzzy computable functions as
(large_heap(x) A weighted_dis(x,z © 1, close_zero) — large_heap(z ©1),0.9),

where close_zero is a fuzzy constant and weighted_dis(-,-,-) is a classical predi-
cate with fuzzy arguments which would be defined through the fuzzy set division

operation @ in the following way:
(— weighted_dis(z,y, (x ©y) @ max(z,y)),1),

where max is the extension to fuzzy sets of the usual max-operation by means

of the extension principle.

References

Adlassnig, K., Scheithauer, W. and Kolarz, G. (1986). Fuzzy medical diagnosis
in a hospital. In Prade, H. and Negoita, C., editors, Fuzzy Logic in Knowledge
Engineering, volume 86 of Interdisciplinary Systems Research Series, pages 275—
294. Verlag TUV Rheinland, Koln.

Ait-Kaci, H. (1991). Warren’s Abstract Machine. A Tutorial Reconstruction.
MIT Press.

Alsina, C., Trillas, E. and Valverde, L. (1983). On some logical connectives for
fuzzy set theory. Journal Math. Anal. Appl., 93:15-26.

Alsinet, T., Manya, F., Jové, L. and Morillo, J. (1995). A multiple-valued logic
programming system: Definition and implementation. In Actas de la VI Con-
ferencia de la Asociacidn Espariola para la Inteligencia Artificial, CAEPIA-95,
pages 37-45, Alicante, Spain.

Alsinet, T. and Manya, F. (1996). A declarative programming environment
for infinitely-valued logics. In Proceedings of the Sixzth International Conference
on Information Procesing and Management of Uncertainty in Knowledge-Based
Systems, IPMU-96, pages 1205-1210, Granada, Spain.

Alsinet, T. (1997a). Algorisme d’unificacié fuzzy direccional. Butlleti de
l’Associacié Catalana d’Intel-ligéncia Artificial, 12:109-117. Actes de les Jor-

nades d’Intel-ligeéncia Artificial: Noves Tendencies, Lleida, Spain.

Alsinet, T. (1997b). Una primera aproximacién a la unificacién fuzzy via rela-
ciones de compatibilidad. In Actas del VII Congreso Espanol sobre Tecnologias
y Logica Fuzzy, ESTYLF-97, pages 159-164, Tarragona, Spain.

255

256 References

Alsinet, T. and Godo, L. (1998). Fuzzy unification degree. In Proceedings of
the Second International Workshop on Logic Programming and Soft Computing,
pages 23-43, Manchester, UK.

Alsinet, T., Godo, L. and Sandri, S. (1999). On the semantics and automated
deduction for PLFC, a logic of possibilistic uncertainty and fuzziness. In Pro-
ceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence,
UAI-99, pages 3-12, Stockholm, Sweden. Morgan Kaufmann.

Alsinet, T. and Godo, L. (2000a). A complete calculus for possibilistic logic
programming with fuzzy propositional variables. In Proceedings of the Siz-
teenth Conference on Uncertainty in Artificial Intelligence, UAI-2000, pages
1-10, Stanford, CA. Morgan Kaufmann.

Alsinet, T. and Godo, L. (2000b). A complete proof method for possibilistic
logic programming with semantical unification of fuzzy constants. In Actas del
X Congreso Espaiiol sobre Tecnologias y Légica Fuzzy, ESTYLF-2000, pages
279-284, Sevilla, Spain.

Alsinet, T. and Godo, L. (2001a). Adding similarity to possibilistic logic with
fuzzy constants. In Proceedings of the Ninth International Fuzzy Systems Asso-

ciation World Congress, IFSA-2001, Vancouver, Canada. In press.

Alsinet, T. and Godo, L. (2001b). A proof procedure for possibilistic logic pro-
gramming with fuzzy constants. In Proceedings of the Sizth European Confer-
ence on Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
ECSQARU-2001, Toulouse, France. In press.

Alsinet, T. and Godo, L. (to appear, 2001c). Towards an automated deduc-
tion system for first-order possibilistic logic programming with fuzzy constants.

International Journal of Intelligent Systems.

Appelbaum, L. and Ruspini, E. (1985). ARIES: An approximate reasoning
inference engine. In Gupta, M., Kandel, A., Bandler, W. and Kiszka, J., editors,
Approximate Reasoning in Expert Systems, pages 745-765. Noth-Holland.

Apt, K. (1990). Logic programming. In Leeuwen, J. V., editor, Handbook of

Theoretical Computer Science, volume B, chapter 10. Elsevier.

References 257

Arcelli, F., Formato, F. and Gerla, G. (1998). Fuzzy unification as a founda-
tion of fuzzy logic programming. In Arcelli, F. and Martin, T., editors, Logic
Programming and Soft Computing, chapter 3, pages 51-68. Research Studies

Press.

Baaz, M., Fermiiller, C., Ovrutcki, A. and Zach, R. (1993). MULTLOG: A
system for axiomatising many-valued logics. In Voronkov, A., editor, Proceedings
of the Fourth International Conference on Logic Programming and Automated
Theorem Proving, LPAR-93, pages 345-347. Springer-Verlag, LNAT 698.

Baaz, M. and Fermiiller, C. (1995). Resolution-based theorem proving for many-

valued logics. Journal of Symbolic Computation, 19:353-391.

Baaz, M., Fermiiller, C., Salzer, G. and Zach, R. (1996). MUltlog 1.0: To-
wards an expert system for many-valued logics. In Proceedings of the Thirteenth
International Conference on Automated Deduction, CADE-96, pages 226—230.
Springer-Verlag, LNAT 1104.

Baaz, M., Hijek, P., Svejda, D. and Krajicek, J. (1998). Embedding logics into
product logic. Studia Logica, 61(1):35-47.

Bacchus, F. (1990). Representing and Reasoning with Probabilistic Knowledge.
MIT Press, Cambridge, Mass.

Baldwin, J. and Pilsworth, B. (1979). Fuzzy truth definition of possibility mea-
sure for decision classification. International Journal Man-Machine Studies,
11:351-380.

Baldwin, J. (1981). Fuzzy logic and fuzzy reasoning. In Mandani, E. and Gaines,
B., editors, Fuzzy Reasoning and its Applications, pages 133-148. Academic

Press.

Baldwin, J. (1986). Support logic programming. International Journal of Intel-
ligent Systems, 1:73—-104.

Baldwin, J. (1987a). Evidential support logic programming. Fuzzy Sets and
Systems, 24:1-26.

Baldwin, J., Martin, T. and Pilsworth, B. (1987b). The implementation of
FPPROLOG: A fuzzy Prolog interpreter. Fuzzy Sets and Systems, 23:119-129.

258 References

Baldwin, J., Martin, T. and Pilsworth, B. (1993). Fril: A support logic pro-
gramming system. In Hand, D., editor, AI and Computer Power: The Impact
on Statistics, pages 129-149. Chapman and Hall.

Baldwin, J., Martin, T. and Pilsworth, B. (1995). Fril-Fuzzy and Evidential

Reasoning in Artificial Intelligence. Research Studies Press.

Baldwin, J. and Martin, T. (1996). Fuzzy classes in object-oriented logic pro-
gramming. In Proceedings of the Fifth IEEE International Conference on Fuzzy
Systems, Fuzz-IEEFE-96, pages 1358-1364, New Orleans, Louisiana. IEEE Press.

Beckert, B., Hihnle, R., Oel, P. and Sulzmann, M. (1996). The many-valued
tableau-based theorem prover sTAP: Version 4.0. In Proceedings of the Thirteenth
International Conference on Automated Deduction, CADE-96, pages 303-307.
Springer-Verlag, LNAI 1104.

Beckert, B., Hiahnle, R. and Manya, F. (2000). The SAT problem of signed CNF
formulas. In Basin, D., D’Agostino, M., Gabbay, D., Matthews, S. and Vigano,
L., editors, Labelled Deduction, volume 17 of Applied Logic Series, pages 61-82.

Kluwer.

Bel, G., Farreny, D. and Prade, H. (1986). Towards the use of fuzzy rule-
based systems in the monitoring of manufacturing systems. In Crestin, J. and
Waters, J. M., editors, Software for Discrete Manufacturing, pages 525-535.
North-Holland.

Bénéjam, J. (1986). La méthode de beth pour la construction de modeles en
logique a valeurs réelles. In Proceedings of the First International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based
Systems, IPMU-86, pages 393-396, Paris, France.

Benferhat, S., Dubois, D. and Prade, H. (1997). Nonmonotonic reasoning, con-
ditional objects and possibility theory. Artificial Intelligence, 92:259-276.

Bonissone, P., Gans, S. and Decker, K. (1987). RUM: A layered architecture
for reasoning with uncertainty. In Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, IJCAI-87, pages 891-898, Milano, Italy.

Morgan Kaufmann.

References 259

Bouchon-Meunier, B., Dubois, D., Godo, L. and Prade, H. (1999). Fuzzy sets
and possibility theory in approximate and plausible reasoning. In Bezdek, J.,
Dubois, D. and Prade, H., editors, Fuzzy Sets in Approximate Reasoning and

Information Systems, Fuzzy Sets Series, pages 15-190. Kluwer.

Buchanan, B. and Shortliffe, E. (1984). Rule-Based Expert Systems — The
MYCIN Ezxperiments of the Stanford Heuristic Programming Project. Addison-
Wesley.

Cao, T. and Creasy, P. (2000). Fuzzy types: A framework for handling uncer-
tainty about types of objects. International Journal of Approximate Reasoning,
25(3):217-253.

Cayrol, M., Farreny, H. and Prade, H. (1982). Fuzzy pattern matching. Kyber-
netes, 11:103-116.

Cignoli, R., Esteva, F., Godo, L. and Torrens, A. (2000). Basic fuzzy logic is

the logic of continuous t-norms and their residua. Soft Computing, 4:106-112.

Comerauer, A., Kanoui, H., Roussel, P. and Pasero, R. (1973). Un systeéme
de communication homme-machine en francais. Technical report, Groupe de

Recherche en Intelligence Artificielle, Université d’Aix-Marseille.

da Costa, N., Henschen, L., Lu, J. and Subrahmanian, V. (1990). Automatic the-
orem proving in paraconsistent logics: Theory and implementations. In Stickel,
M., editor, Proceedings of the Tenth International Conference on Automated
Deduction, CADE-90, pages 72-86. Springer-Verlag, LNCS 449.

Davis, M. and Putnam, H. (1960). A computing procedure for quantification
theory. Journal of the ACM, 7:201-215.

De Baets, B., Esteva, F., Fodor, J. and Godo, L. (to appear, 2001). Systems
of ordinal fuzzy logic with application to preference modeling. Fuzzy Sets and

Systems.

Di Zenzo, S. (1988). A many-valued logic for approximate reasoning. IBM
Journal of Research and Development, 32(4):552-565.

Dubois, D. and Prade, H. (1986). Truth, vagueness and uncertainty - On a fre-

quent misunderstanding in approximate reasoning. In Proceedings of the North-

260 References

American Fuzzy Information Processing Society Conference, pages 52-56, San

Francisco, CA.

Dubois, D., Lang, J. and Prade, H. (1987a). Theorem-proving under uncertainty
- A possibility theory-based approach. In Proceedings of the Tenth International
Joint Conference on Artificial Intelligence, IJCAI-87, pages 984-986, Milano,

Italy. Morgan Kaufmann.

Dubois, D. and Prade, H. (1987b). Necessity measures and the resolution prin-
ciple. IEEFE Transactions on Systems, Man and Cybernetics, 17:474-478.

Dubois, D., Prade, H. and Testemale, C. (1988a). In search of a modal system for
possibility theory. In Proceedings of the Eighth European Conference on Artificial
Intelligence, ECAI-88, pages 501-506, Munich, Germany. Pitman Publishing.

Dubois, D., Prade, H. and Testemale, C. (1988b). Weighted fuzzy pattern match-
ing. Fuzzy Sets and Systems, 28:313-331.

Dubois, D. (1989a). Fuzzy knowledge in an artificial intelligence system for job-
shop scheduling. In Evans, G., Karwowski, W. and Wilhelm, M., editors, Ap-
plications of Fuzzy Set Methodologies in Industrial Engineering Advances, pages
73-89. Elsevier.

Dubois, D. and Prade, H. (1989b). Handling uncertainty in expert systems -
Pitfalls, difficulties, remedies. In Hollnagel, E., editor, The Reliability of Expert
Systems, pages 65—118. Ellis Horwood.

Dubois, D. and Prade, H. (1990). Resolution principles in possibilistic logic.

International Journal of Approximate Reasoning, 4:1-21.

Dubois, D., Lang, J. and Prade, H. (1991a). Fuzzy sets in approximate reasoning
- Part 2: Logical approaches. Fuzzy Sets and Systems, 40(1):203-244.

Dubois, D., Lang, J. and Prade, H. (1991b). Towards possibilistic logic program-
ming. In Proceedings of the Joint International Conference and Symposium on

Logic Programming, pages 581-595, Paris, France.

Dubois, D. and Prade, H. (1991c). Fuzzy sets in approximate reasoning - Part 1:
Inference with possibility distributions. Fuzzy Sets and Systems, 40(1):143-202.

References 261

Dubois, D., Lang, J. and Prade, H. (1994a). Automated reasoning using pos-
sibilistic logic: Semantics, belief revision and variable certainty weights. IEEE

Transactions on Data and Knowledge Engineering, 1(6):64-71.

Dubois, D., Lang, J. and Prade, H. (1994b). Handling uncertainty, context
vague predicates and partial inconsistency in possibilistic logic. In Driankov,
D., Eklund, P. and Ralescu, A., editors, Fuzzy Logic and Fuzzy Control, pages
45-55. Springer-Verlag, LNAT 833.

Dubois, D., Lang, J. and Prade, H. (1994c). Possibilistic logic. In Gabbay, D.,
Hogger, C. and Robinson, J., editors, Handbook of Logic in Artificial Intelligence
and Logic Programming, volume 3, Nonmonotonic Reasoning and Uncertain Rea-

soning, pages 439-513. Claredon Press.

Dubois, D., Prade, H. and Sandri, S. (1996). Possibilistic logic augmented with
fuzzy unification. In Proceedings of the Sizth International Conference on In-
formation Processing and Management of Uncertainty in Knowledge-Based Sys-
tems, IPMU-96, pages 1009-1014, Granada, Spain.

Dubois, D. and Prade, H. (1998a). Possibility Theory: An Approach to Com-

puterized Processing of Uncertainty. Plenum Press.

Dubois, D., Prade, H. and Sandri, S. (1998b). Possibilistic logic with fuzzy
constants and fuzzily restricted quantifiers. In Arcelli, F. and Martin, T., edi-
tors, Logic Programming and Soft Computing, chapter 4, pages 69—90. Research

Studies Press.

Duda, R., Gaschnig, J. and Hart, P. (1981). Model design in the prospector
consultant system for mineral exploration. In Michie, D., editor, Expert Systems

in the Microelectronic Age, pages 153—-167. Edinburgh University Press.

Escalada-Imaz, G. and Manya, F. (1994). An approach to first-order multiple-
valued logic programming. In Actas del IV Congreso Espanol sobre Tecnologias
y Ldgica Fuzzy, ESTYLF-94, pages 151-156, Blanes, Spain.

Escalada-Imaz, G. and Manya, F. (1995). Efficient interpretation of propo-
sitional multiple-valued logic programs. In Bouchon-Meunier, B., Yager, R.
and Zadeh, L., editors, Advances in Intelligent Computing, pages 428-439.
Springer-Verlag, LNCS 945.

262 References

Escalada-Imaz, G., Manya, F. and Sobrino, A. (September 1996). Principles of
logic programming with uncertain information. description of some of the most
relevant systems. Theoria, 11(27):123-148.

Esteva, F., Godo, L., H4jek, P. and Navara, M. (2000). Residuated fuzzy logics
with an involutive negation. Archive for Mathematical Logic, 39:103—124.

Feingenbaum, E. (1987). Knowledge engineering in the 1980’s. Technical report,
Department of Computer Science, Stanford University, Stanford, CA.

Formato, F. (1998). On Similarity and its Application to Logic Programming.
PhD thesis, Universita di Napoli Federico II.

Formato, F., Gerla, G. and Sessa, M. (2000). Similarity-based unification. Fun-

damenta Informaticae, 40:1-22.

Freksa, C. (1981). Linguistic Pattern Characterization and Analysis. PhD thesis,

University of California, Berkeley.

Gerla, G. and Sessa, M. (1999). Similarity in logic programming. In Chen, G.,
Ying, M. and Cai, K., editors, Fuzzy Logic and Soft Computing, chapter 2, pages
19-31. Kluwer.

Gilmore, P. C. (1960). A proof method for quantification theory. IBM Journal
Res. Develop, 4:28-35.

Godel, K. (1932). Zum intuitionistischen aussagenkalkill. Anzeiger Akademie
der Wissenschaften Wien, mathematisch-naturwiss. Klasse, 32:65-66. Reprinted
and translated in (G6del, 1986).

Godel, K. (1986). Collected Works: Publications 1929-1936, volume 1. Oxford
University Press. Edited by S. Feferman, J. Dawson and S. Kleene.

Godo, L., Lépez de Mantaras, R., Sierra, C. and Verdaguer, A. (1987). Managing
linguistically expressed uncertainty in MILORD - Application to medical diag-
nosis. In Proceedings of the Seventh International Workshop on Expert Systems

and their Applications, pages 571-596, Avignon, France.

Godo, L., Lépez de Méntaras, R., Sierra, C. and Verdaguer, A. (1989). MILORD:
The architecture and the management of linguistically expressed uncertainty.
International Journal of Intelligent Systems, 4:471-501.

References 263

Godo, L. (1990). Contribucié a I’Estudi de Models d’inferéncia en els Sistemes
Possibilistics. PhD thesis, Facultat d’Informatica de Barcelona, Universitat

Politecnica de Catalunya.

Godo, L. and Vila, L. (1995). Possibilistic temporal reasoning based on fuzzy
temporal constraint. In Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence, IJCAI-95, pages 1916-1922, Montreal, Canada.

Morgan Kaufmann.

Godo, L., Esteva, F. and Hajek, P. (2000). Reasoning about probability using
fuzzy logic. Neural Network World, 10(5):811-824.

Godo, L., Héjek, P. and Esteva, F. (2001). A fuzzy modal logic for belief func-
tions. In Proceedings of the Seventeenth International Joint Conference on Ar-
tificial Intelligence, IJCAI-2001, Seattle, WA. Morgan Kaufmann. In press.

Gottwald, S. (1999). Many-valued logic and fuzzy set theory. In Hohle, U.
and Rodabaugh, S., editors, Mathematics of Fuzzy Sets: Logic, Topology, and
Measure Theory, Fuzzy Sets Series, pages 5—90. Kluwer.

Gottwald, S. (2001). A Treatise on Many-Valued Logics. Research Studies Press.

Hahnle, R. (1994a). Automated Deduction in Multiple- Valued Logics, volume 10
of International Series of Monographs in Computer Science. Oxford University

Press.

Hahnle, R. (1994b). Short conjunctive normal forms in finitely-valued logics.
Journal of Logic and Computation, 4(6):905-927.

Hahnle, R. (1996). Exploiting data dependencies in many-valued logics. Journal
of Applied Non-Classical Logics, 6:49-69.

Hihnle, R. and Escalada-Imaz, G. (1997). Deduction in many-valued logics: A
survey. Mathware and Soft Computing, 4(2):69-97.

H&hnle, R. (to appear, 2001). Advanced many-valued logics. In Gabbay, D.,
editor, Handbook of Philosophical Logic, volume 2, chapter 5. Kluwer, second

edition.

Héjek, P. (1995a). Fuzzy logic and arithmetical hierarchy. Fuzzy Sets and Sys-
tems, 73:359-363.

264 References

Hajek, P., Godo, L. and Esteva, F. (1995b). Fuzzy logic and probability. In
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,
UAI-95, pages 237-244, Montreal, Canada. Morgan Kaufmann.

Héjek, P., Godo, L. and Esteva, F. (1996). A complete many-valued logic with
product-conjunction. Archive for Mathematical Logic, 35:191-208.

Héjek, P. and Godo, L. (1997). Deductive systems of fuzzy logic. Tatra Moun-
tains Math. Publ., 13:35—66.

Héjek, P. (1998a). Basic fuzzy logic and BL-algebras. Soft Computing, 2:124—
128.

Héjek, P. (1998b). Metamathematics of Fuzzy Logic. Kluwer.

Heinsohn, J. (1994). Probabilistic description logics. In Proceedings of the Tenth
Conference on Uncertainty in Artificial Intelligence, UAI-94, pages 311-326,
Seattle, WA. Morgan Kaufmann.

Herbrand, J. (1967). Investigations in proof theory. In van Heijenoort, J., ,
editor, From Frege to Géodel: A Source Book in Mathematical Logic, 1879-1931,
pages 525-581. Harvard University Press, Cambridge, Mass.

Hinde, C. (1986). Fuzzy Prolog. International Journal Man-Machine Studies,
24:569-595.

Ishizuka, M. and Kanai, N. (1985). Prolog-ELF incorporating fuzzy logic. In Pro-
ceedings of the Ninth International Joint Conference on Artificial Intelligence,
IJCAI-85, pages 701-703, Los Angeles, CA. Morgan Kaufmann.

Ivének, J., Svenda, J. and Ferjencik, J. (1988). Inference in expert systems based
on complete multivalued logic. In Kybernetica, Proceedings of the Workshop on

Uncertainty Processing in Expert Systems, pages 25-32, Alsovice.

Ivének, J. (1991). Representation of expert knowledge as a fuzzy axiomatic

theory. International Journal of General Systems, 20:55-58.

Kikuchi, H. and Mukaidono, M. (1988). PROFIL: fuzzy interval logic Prolog. In
Proceedings of the International Workshop of Fuzzy Systems Applications, pages
205-206, lizuka, Japan.

References 265

Klawonn, F. and Kruse, R. (1994). A Lukasiewicz logic based Prolog. Mathware
and Soft Computing, 1:5-29.

Klawonn, F. (1995). Prolog extensions to many-valued logics. In Hohle, U. and
Klement, E.P., , editor, Non-Classical Logics and Their Applications to Fuzzy
Subsets. A Handbook of the Mathematical Foundations of Fussy Sets Theory,
pages 271-289. Kluwer.

Klement, E. and Navara, M. (1999). Propositional fuzzy logics based on frank
t-norms: A comparison. In Dubois, D., Prade, H. and Klement, E., editors,

Fuzzy Sets, Logics and Reasoning about knowledge, pages 25-47. Kluwer.
Klement, E., Mesiar, R. and Pap, E. (2000). Triangular Norms. Kluwer.

Kowalski, R. (1974). Predicate logic as a programming language. Information
Processing, 74:569-574.

Kowalski, R. (1979a). Algorithm = logic + control. Communications of the
ACM, 22:424-436.

Kowalski, R. (1979b). Logic for Problem Solving. North-Holland.

Kullman, P. and Sandri, S. (1999). Possibilistic logic as an annotated logic.
In Proceedings of the Eighth IEEFE International Conference on Fuzzy Systems,
Fuzz-IEEE-99, pages 210-215, Seul, South Korea. IEEE Press.

Lassez, J., Maher, M. and Marriott, K. (1988). Unification revisited. In Minker,
J., editor, Foundations of Deductive Databases and Logic Programming. Morgan

Kaufmann.

Léa Sombé, (Besnard, P., Cordier, M., Dubois, D., Farifias del Cerro, L., Froide-
vaux, C., Moinard, Y., Prade, H., Schwind, C. and Siegel, P.), (1990). Reasoning

under Incomplete Information in Artificial Intelligence. Wiley.

Lee, R. and Chang, C. (1971). Some properties of fuzzy logic. Information and
Control, 19(5):417-431.

Lee, R. (1972). Fuzzy logic and the resolution principle. Journal of the ACM,
19(1):109-119.

266 References

LeFaivre, R. (1974a). Fuzzy Problem-Solving. PhD thesis, University of Wiscon-

sin.

LeFaivre, R. (1974b). The representation of fuzzy knowledge. Journal of Cyber-
netics, 4(2):57-66.

Lehmke, S. (1995). On resolution-based theorem proving in propositional fuzzy
logic with ‘bold’ connectives. Universitdt Dortmund, Fachbereich Informatik.
Master’s Thesis.

Lesmo, L., Saitta, L. and Torasso, P. (1983). Fuzzy production rules: A learning
methodology. In Wang, P., editor, Advances in Fuzzy Sets, Possibility Theory,
and Applications, pages 181-198. Plenum Press.

Li, D. and Liu, G. (1990). A Fuzzy Prolog Database System. Research Studies
Press and John Wiley and Sons.

Liau, C. and Lin, B. (1988). Fuzzy logic with equality. International Journal
Pattern Recognition and Artificial Intelligence, 2(2):351-365.

Liu, X. and Xiao, H. (1985). Operator fuzzy logic and resolution. In Proceedings
of the Fifteenth International Symposium on Multiple- Valued Logic, ISMVL-85,
pages 68-75, Kingston, Canada. IEEE Press.

Liu, X. (1989). Linear A-paramodulation in operator fuzzy logic. In Proceed-
ings of the Eleventh International Joint Conference on Artificial Intelligence,
IJCAI-89, pages 435-440, Detroit, MI. Morgan Kaufmann.

Lu, J., Henschen, L., , Subrahmanian, V. and da Costa, N. (1991). Reasoning
in paraconsistent logics. In Boyer, R., editor, Automated Reasoning: Essays in
Honor of Woody Bledsoe, pages 181-210. Kluwer.

Lukasieewicz, T. (1998). Probabilistic logic programming. In Proceedings of
the Thirteenth FEuropean Conference on Artificial Intelligence, ECAI-98, pages
388-392, Brighton, UK. John Wiley and Sons.

Lukasiewicz, J. (1970). Selected works. North-Holland.

Magrez, P. and Smets, P. (1989). Fuzzy modus ponens: A new model suitable
for applications in knowledge-based systems. International Journal of Intelligent
Systems, 4:181-200.

References 267

Manya, F. (1996). Proof Procedures for Multiple- Valued Propositional Logics.
PhD thesis, Facultat de Ciencies, Universitat Autonoma de Barcelona. Published
as (Manya, 1999).

Manya, F. (1999). Proof Procedures for Multiple-Valued Propositional Logics.
Number 9 in Monografies de I'Institut d’Investigacié en Intel-ligéncia Artificial.
ITTA-CSIC.

Martelli, A. and Montanari, U. (1982). An efficient unification algorithm. ACM
Transactions on Programming Language Systems, 4(2):258-282.

Martin-Clouaire, R. and Prade, H. (1985). On the problems of representation
and propagation of uncertainty in expert systems. International Journal Man-
Machine Studies, 22:251-264.

Martin, T. and Arcelli, F. (1998). Logic programming and soft computing - An
introduction. In Arcelli, F. and Martin, T., editors, Logic Programming and Soft

Computing, chapter 1, pages 1-18. Research Studies Press.

McNaughton, R. (1951). A theorem about infinite-valued sentencial logic. Jour-
nal of Symbolic Logic, 16:1-13.

Morgan, C. (1976). A resolution principle for a class of many-valued logics.
Logique et Analyse, 19(74-75-76):311-339.

Morlén, J. J. (2000). Implementacion de un Compilador de Programacién Ldgica
Posibilistica con Constantes Difusas. EUP-Universitat de Lleida. Master’s The-
sis. Available at http://alumnes.eup.udl.es/~e1803912/.

Mukaidono, M., Shen, Z. and Ding, L. (1989). Fundamentals of fuzzy Prolog.

International Journal of Approximate Reasoning, 3:179-193.

Mukaidono, M. and Yasui, H. (1994). Postulates and proposals of fuzzy Prolog.
In Proceedings of the Second FEuropean Congress on Intelligent Techniques and
Soft Computing, EUFIT-9/, pages 1080-1086, Aachen, Germany.

Mundici, D. (1994). A constructive proof of McNaughton’s theorem in infinite-
valued logic. Journal of Symbolic Logic, 59(2):596-602.

Murray, N. and Rosenthal, E. (1993). Signed formulas: A liftable meta logic

for multiple-valued logics. In Proceedings of the International Symposium on

268 References

Methodologies for Intelligent Systems, ISMIS-93, pages 275-284. Springer LNAT
689.

Novék, V. (1990). On the syntactico-semantical completeness of first-order fuzzy
logic. Part I: Syntax and semantics. Part IT: Main results. Kibernetika, 26(1):47—
66 and 134-154.

Novék, V. (1992). The Alternative Mathematical Model of Linguistic Semantics

and Pragmatics. Plenum.

Novak, V. (1995a). A new proof of completeness of fuzzy logic and some con-
clusions for approximate reasoning. In Proceedings of the Fourth IEEE Inter-
national Conference on Fuzzy Systems, Fuzz-IEEE-95, pages 1461-1468, Yoko-
hama, Japan. IEEE Press.

Novék, V. and Ivédnek, J. (1995b). The position of fuzzy logic in rule-based expert
systems. In Proceedings of the Fifth International Fuzzy Systems Association
World Congress, IFSA-95, pages 33-35, Sdo Paulo, Brazil.

Novék, V. (1999). Weighted inference systems. In Bezdek, J., Dubois, D. and
Prade, H., editors, Fuzzy Sets in Approximate Reasoning and Information Sys-

tems, Fuzzy Sets Series, pages 191-241. Kluwer.

Novéak, V. and Perfilieva, I. (2000). Some consequences of Herbrand and Mc-
Naughton theorems in fuzzy logic. In Novak, V. and Perfilieva, 1., editors, Dis-
covering the World with Fuzzy Logic, Studies in Fuzziness and Soft Computing,
pages 271-295. Physica-Verlag.

Orci, I. (1989). Programming in possibilistic logic. International Journal of
Expert Systems, 2(1):79-94.

Orlowska, E. (1978). The resolution principle for w*-valued logic. Fundamenta
Informaticae, 11(1):1-15.

Orlowska, E. and Wierzchon, S. (1985). Mechanical reasoning in fuzzy logics.
Logique et Analyse, 110-11:193-207.

Pavelka, J. (1979). On fuzzy logic I - Many-valued rules of inference. II - En-

riched residuated lattices and semantics of propositional calculi. III - Semantical

References 269

completeness of some many-valued propositional calculi. Zeitschr. f. Math. Logik
und Grundlagen d. Math., 25:45-52, 119-134, 447-464.

Prade, H. (1982). Modal semantics and fuzzy set theory. In Yager, R., edi-
tor, Fuzzy Sets and Possibility Theory - Recent Developments, pages 232—-246.

Pergamon Press.
Prawitz, D. (1960). An improved proof procedure. Theoria, 26:102-139.

Puyol, J. (1994). Modularization, Uncertainty, Reflective Control and Deduction
by Specialization in MILORD II, a Language for Knowledge-Based Systems. PhD
thesis, Facultat de Ciéncies, Universitat Autonoma de Barcelona. Published as
(Puyol, 1996).

Puyol, J. (1996). MILORD II: A Language for Knowledge-Based Systems.
Number 1 in Monografies de I'Institut d’Investigacié en Intel-ligencia Artificial.
IITA-CSIC.

Ray, K. (1990). Bottom-up inferences using fuzzy reasoning. BUSEFAL, 42:81—
90.

Rios-Filho, L. and Sandri, S. (1995). Contextual fuzzy unification. In Proceedings
of the Fifth International Fuzzy Systems Association World Congress, IFSA-95,
pages 81-84, Sao Paulo, Brazil.

Robinson, J. A. (1965). A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12(1):23-41.

Rose, A. and Rosser, J. (1958). Fragments of many-valued statement calculi.
Trans. A.M.S., 87:1-53.

Sanchez, E. (1989). Importance in knowledge systems. Information Systems,
14(6):455-464.

Sandri, S. and Godo, L. (1999). Treatment of temporal information in possibilis-
tic logic with fuzzy constants. In Proceedings of the Eighth International Fuzzy
Systems Association World Congress, IFSA-99, pages 561-565. Taipei, Taiwan.

Schmitt, P. (1986). Computational aspects of three-valued logic. In Siekmann,
J., editor, Proceedings of the FEighth International Conference on Automated
Deduction, CADE-86, pages 190-198. Springer-Verlag, LNCS 230.

270 References

Schwartz, D. (1989). Outline of a naive semantics for reasoning with qualita-
tive linguistic information. In Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, IJCAI-89, pages 1068-1073, Detroit, MI.

Morgan Kaufmann.

Schweizer, B. and Sklar, A. (1963). Associative functions and abstract semi-
groups. Publ. Math., 10:69-81.

Shen, Z., Ding, L. and Mukaidono, M. (1988). Fuzzy resolution principle. In Pro-
ceedings of the FEighteenth International Symposium on Multiple- Valued Logic,
ISMVL-88, pages 210-214, Palma de Mallorca, Spain. IEEE Press.

Shortliffe, E. and Buchanan, B. (1975). A model of inexact reasoning in medicine.
Math. Biosci, 23:351-379.

Sierra, C. (1989). MILORD: Arquitectura multi-nivell per a sistemes experts
en classificacio. PhD thesis, Facultat d’Informatica de Barcelona, Universitat

Politecnica de Catalunya.

Soula, G., Vialettes, B., San marco, J., Thirion, X. and Roux, M. (1986). PRO-
TIS: A fuzzy expert system with medical applications. In Prade, H. and Negoita,
C., editors, Fuzzy Logic in Knowledge Engineering, volume 86 of Interdisciplinary
Systems Research Series, pages 295-310. Verlag TUV Rheinland, Kéln.

Stachniak, Z. and O’Hearn, P. (1990). Resolution in the domain of strongly
finite logics. Fundamenta Informaticae, XI111:333-351.

Stachniak, Z. (1996). Resolution Proof Systems: an Algebraic Theory. Kluwer.

Thiele, H. and Lehmke, S. (1994). On ‘bold’ resolution theory. In Proceedings
of the Third IEEE International Conference on Fuzzy Systems, Fuzz-IEEE-9/,
pages 1945-1950, Orlando, Florida. IEEE Press.

Tong, R. and Shapiro, D. (1985). Experimentals investigations of uncertainty in a
rule-based system for information retrieval. International Journal Man-Machine
Studies, 22:265-282.

Tong, R. and Appelbaum, L. (1988). Experiments with interval-valued uncer-
tainty. In Lemmer, J. and Kanal, L., editors, Uncertainty in Artificial Intelli-
gence 2, pages 63—-75. Noth-Holland.

References 271

Tonis, A. and Perfilieva, I. (2000). Functional system of infinite-valued proposi-
tional calculus. Diskretnij analiz i issledovanie operatsii (Discrete Analysis and
Operation Research), 7(2):75-85.

Umano, M. (1986). A fuzzy production system. In Prade, H. and Negoita, C.,
editors, Fuzzy Logic in Knowledge Engineering, volume 86 of Interdisciplinary
Systems Research Series, pages 194-208. Verlag TUV Rheinland, Kéln.

Umano, M. (1987). Fuzzy set Prolog. In Proceedings of the Second International
Fuzzy Systems Association World Congress, IFSA-87, pages 750-753, Tokyo,

Japan.

Umano, M. (1989). Implementation of fuzzy production system. In Proceedings
of the Third International Fuzzy Systems Association World Congress, IFSA-89,
pages 450-453, Seattle, WA.

Valverde, L. and Trillas, E. (1985). On modus ponens in fuzzy logic. In Pro-
ceedings of the Fifteenth International Symposium on Multiple- Valued Logic,
ISMVL-85, pages 294-301. IEEE Press.

Vinaf, J. and Vojtds, P. (2000). A formal model for fuzzy knowledge based
systems with similarities. Neural Network World, 10(5):891-905.

Virtanen, H. (1994). Fuzzy unification. In Proceedings of the Fifth Interna-
tional Conference on Information Processing and Management of Uncertainty
in Knowledge-Based Systems, IPMU-9/, pages 1147-1152, Paris, France.

Virtanen, H. (1998). Linguistic logic programming. In Arcelli, F. and Martin,
T., editors, Logic Programming and Soft Computing, chapter 5, pages 91-128.

Research Studies Press.

Vojtas, P. and Paulik, L. (1996). Extensions of logic programming. In Dyckhoff,
R., Herre, H. and Schroeder-Heister, P., editors, Soundness and Completeness of
Non-Classical Extended SLD-Resolution, pages 289-301. Springer-Verlag, LNCS
1050.

Vojtas, P. (1998). Fuzzy reasoning with tunable t-operators. Journal for Ad-
vanced Computer Intelligence, 2:121-127.

Vojtés, P. (to appear, 2001a). Fuzzy logic programming. Fuzzy Sets and Systems.

272 References

Vojtas, P., Alsinet, T. and Godo, L. (2001b). Different models of fuzzy logic pro-
gramming with fuzzy unification (towards a revision of fuzzy databases). In Pro-
ceedings of the Ninth International Fuzzy Systems Association World Congress,
IFSA-2001, Vancouver, Canada. In press.

Wagner, G. (1998). Foundations of Knowledge Systems with Applications to

Databases and Agents. Kluwer.

Warren, D. (1983). An abstract Prolog instruction set. Technical Note 309, SRI
International, Menlo Park, CA.

Weigert, T., Tsai, J. and Liu, X. (1993). Fuzzy operator logic and fuzzy resolu-
tion. Journal of Automated Reasoning, 10:59-78.

Yager, R. (1980). An approach to inference in approximate reasoning. Interna-
tional Journal Man-Machine Studies, 13:323—-338.

Yager, R. (1985). Inference in a multivalued logic system. International Journal
Man-Machine Studies, 23:27—44.

Yager, R. (1989). Approximate reasoning as a basis for rule-based expert sys-
tems. IEEE Transactions on Systems, Man and Cybernetics, 14(6):455-464.

Yasui, H., Hamada, Y. and Mukaidono, M. (1995). Fuzzy Prolog based on
Lukasiewicz implication and bounded product. In Proceedings of the Fourth
IEEE International Conference on Fuzzy Systems, Fuzz-IEEE-95, pages 949—
954, Yokohama, Japan. IEEE Press.

Yasui, H. and Mukaidono, M. (1996). A consideration on fuzzy logic program-
ming based on Lukasiewicz implication. Journal of Japan Society for Fuzzy
Theory and Systems, 8(5):937—-946.

Yasui, H. and Mukaidono, M. (1998). Fuzzy Prolog based on Lukasiewicz im-
plication. In Arcelli, F. and Martin, T., editors, Logic Programming and Soft
Computing, chapter 8, pages 147-162. Research Studies Press.

Zadeh, L. (1965). Fuzzy sets. Information and Control, 8:338-353.

Zadeh, L. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets
and Systems, 1(1):3-28.

References 273

Zadeh, L. (1979). A theory of approximate reasoning. In Hayes, J., Michie,
D. and Mikulich, L., editors, Machine Intelligence, volume 9, pages 149-194.

Elsevier.

