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Abstract

Preferences are naturally bipolar: positive
aspirations and rejections are complementary
in order to express agents wishes. Possibil-
ity theory framework allows a simple bipolar
representation, using the ”classical” possibil-
ity and necessity functions, and also the less
usual ”guaranteed possibility” function. This
paper first shows how to deal syntactically
with positive aspirations as well as rejections.
We then discuss the problem of merging mul-
tiple agents preferences in this bipolar frame-
work both at semantic and syntactic levels.
Lastly, we discuss the problem of the consis-
tency between positive aspirations and rejec-
tions, and how to restore it when necessary.

1 Introduction

The problem of the representation of the prefer-
ences of agents has been considered by various re-
searchers in Artificial Intelligence in the recent past
years [23, 10, 5, 1, 18, 3, 6]. Indeed this issue is impor-
tant when we have to represent the desires of users in
information systems (e.g. recommender systems), or
to reason about them and to solve conflicts between
inconsistent goals, as e.g., in multi-agent systems.

Preferences are often expressed in two forms: positive
aspirations and rejections. Indeed, on the one hand,
an agent expresses what he considers as (more or less)
impossible because it is unacceptable for him, and on
the other hand he expresses what he considers as re-
ally satisfactory. For example assume that we have a
one month summer school, and we ask some invited
speaker to express his preference for scheduling his

talk. We assume that the talks can be either given in .

the morning, or in the afternoon. The invited speaker
may provide two kinds of preferences. In the first one,

he specifies satisfactory slots, with satisfaction levels.
This is positive preference. In the second one, he de-
scribes unacceptable slots with levels of tolerance. For
instance, he may strongly refuse to participate one day
(e.g., because it is the birthday of her daughter), and
weakly refuse to speak on the last day. This is nega-
tive preferences or rejections.

This bipolar representation is supported by recent
studies in cognitive psychology which have shown that
positive and negative preferences are processed sep-
arately in the mind, and are felt as independent and
different dimensions by people [8, 7]. Note that in gen-
eral there is no symmetry between positive aspirations
and rejections in the sense that positive aspirations do
not just mirror what is not rejected.

The idea of bipolar representations of preferences has
been considered in different frameworks, such as mul-
ticriteria decision making [16], or in Artificial Intel-
ligence works oriented towards qualitative decision
(22, 17]. However these works usually assume that the
positive and negative parts of the preferences, once
they have been specified and represented can be com-
bined and processed together, rather than separately
as it is done in this paper.

Section 2 gives the necessary background on possibil-
ity theory and possibilistic logic. Section 3 specifies
the bipolar representation of preferences. Sections 4
and 5 discuss the possibilistic encoding of rejections
and positive aspirations. Sections 6 and 7 present the
problems of fusing of agents preferences and restoring
the coherence when they conflict.

2 Background on possibility theory
and possibilistic logic

We consider a propositional language £ over a finite
alphabet P of atoms. 2 denotes the set of all classical
interpretations. [v] denotes the set of models of the
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proposition .

The basic concept in possibilistic theory is the notion
of possibility distribution, denoted by , which is sim-
ply a function from theé set of interpretations to the
unit interval [0,1], or to any totally ordered scale, fi-
nite or not. Thus we can use only a finite set of qual-
itative levels if necessary.

Given a posibility distribution «, two standard mea-
sures are defined for formulas:

e the possibility (or consistency) measure of a for-
mula ¢:

I(¢) = maz{m(w) :w | ¢},

which evaluates the extent to which ¢ is consistent
with the available information expressed by 7, and

e the necessity (or certainty) measure of a formula
¢:
N(¢) =1-1I(=¢),
which evaluates the extent to which ¢ is entailed
by information expressed by .

Given a possibility distribution 7, we define the core
of 7 as the set of interpretations having the highest
possibility degree in 7. Formally,

Definition 1 The core of a possibility distribution m,
denoted by core(r), is defined by:

core(r) = {w:w € Q, I € Q, (W) > m(w)}.

We now define the contextual core as follows:

Definition 2 The contestual core of a possibility dis-
tribution m given a formula ¢ (p represents the con-
test), denoted by core, (), is defined by:

corey(m) = {w :w @, W' W' [ ¢ and m(w') > m(w)}.

Indeed, two kinds of inference can be defined from ,
in the same spirit of [20]:

Definition 3 Plausible and preferential inferences.
Let w be a possibility distribution. The formula ¢ is
said to be a plausible consequence of m, denoted by
TEp Y, if

core(r) C [¥].

% is said to be a preferential consequence of ™ given
the formula o, denoted by m =y ¥, iff

corey(r) C [¥]-
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Prioritized information are represented in the possi-
bilistic logic framework by means of a set of weighted
formulas, called a possibilistic logic base, of the form
L = {(¢i,a;) : i = 1,---,n}, where ¢; is a propo-
sitional formula and a; belongs to a totally ordered
scale such as [0,1]. (¢i,a;) means that the necessity
degree of ¢; is at least equal to a;, i.e. N(¢i) > a;.
Given a possibilistic logic base X, we can generate a
unique possibility distribution, denoted by 7g, defined
by (12]:

Definition 4 Yw € Q,

_ 1 if V(¢i,ai) €EZ,w =i
”E(W) - { 1-— max{ai 3 (qﬁl',a,') € L and w bé ¢g} othc:rvl:isi,

where mg is the largest possibility distribution such
that the necessity measure N associated with 7y is
such that N(¢;) > a; holds for all i.

Besides, N(¢ V¥) > a, N(~¢ V&) 2 bF N(p V) >
min(a,b), which is the basis of the possibilistic infer-
ence machinery [12].

3 Specifying bipolar preferences

In this paper, we propose a bipolar representation of
preferences which can be expressed both at the syn-
tactic and at the semantic levels. We introduce the
syntactic specification of these preferences in this sec-
tion. Preferences of an agent will be represented by
two different sets of equality constraints.

The first set corresponds to what is not unacceptable,
what is more or less acceptable, tolerable for the agent.
It is of the form {R(¢i) = a; : 1 =1,---,n} where ¢;
is a propositional formula, R stands for rejection, and
a; is a real in the interval [0, 1]. R(¢:) = a; expresses
the rejection strength of ¢; by the agent. R(¢i) =1

‘means that the agent strongly rejects ¢;, and any so-

lution where ¢; is true is considered as not feasible
by the agent. R(¢;) = 0 simply means that ¢; is not
rejected, and hence solutions satisfying ¢; are not at
all unacceptable, or are feasible. For R(¢;) = a; with
a; € (0,1), the higher a; is, the less acceptable are
the solutions satisfying ¢;. It turns out that the set of
rejections can be easily handled using standard pos-
sibilistic logic based on the two classical functions of
possibility theory: possibility and necessity measures.
This will be developed in Section 4.

The second set expresses ”positive” goals, or agent’s
aspirations. It is of the form {G(¢;) = b; : J =
1,---,m}, where G stands for positive goals, 9; is &
propositional formula, and b; is a real in the interval

(0,1]. G(#;) = b; expresses the minimal level of sat-

isfaction which is guaranteed if ¥; is true. G(¥;) =1
means that the agent is fully satisfied as soon as ¥j
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is true. G(%;) = 0 means that learning that y; is
satisfied brings no satisfaction to the agent who is in-
different. When G(i;) = b; for b; € (0,1) the larger
b; is, the more satisfied is the agent if ¢; is true. This
kind of positive goals cannot be directly handled by the
possibilistic logic machinery. In fact, positive goals can
be represented using the so-called function of ” guaran-
teed possibility”, denoted by A, in possibility theory.
We will show that the syntactic representation of un-
certain information using A is dual in some sense of
the one used in standard possibilistic logic. This will
be developed in Section 5.

4 Modelling rejections in possibilistic
logic

This section shows that possibilistic logic provides a
natural framework for modelling rejections. Rejec-
tions can be represented, at the semantical level, by
a total pre-order on the set of all possible outcomes,
from what is feasible to what is considered as unaccept-
able by an agent. Outcomes are called here interpreta-
tions, since we use a logic-based representation. The
total pre-order can be encoded, in possibility theory
framework, using the notion of a possibility distribu-
tion, denoted by mg (R for rejections), which is a func-
tion from the set of interpretations to the unit interval
[0,1]. mr(w) represents the degree of acceptability of
w given agent’s preferences. mr(w) = 1 means that w
is fully acceptable, mg(w) = 0 means that w is com-
pletely unacceptable (rejected), and more generally,
mr(w) > mr(w’) means that w’ is more unacceptable
than w.

In practice an agent cannot provide the whole possi-
bility distribution mg, but only a set of specifications
of negative desires, and their level of rejection. Let
= {R(¢i) = a; : i = 1,---,n} be this set of re-
Jjections, where by default, formulas which are not in
R are assumed to have a rejection level equal to 0,
namely they are not explicitely rejected at all.
The question is then how to compute mg. Let us il-
lustrate the construction of mg when we only have
one strong rejection constraint R(¢) = 1. Let w be
an interpretation. Intuitively, if w falsifies ¢ then
w is fully acceptable by the agent, i.e. wg(w) = 1,
and if w satisfies ¢ then w is fully unacceptable, i.e.
mr(w) = 0. Now, assume that ¢ is weakly rejected,
ie. R(¢) = a < 1. Again, if w, falsifies ¢ then it is
fully acceptable. If w satisfies ¢ then the higher is a,
the less acceptable is w. One way to achieve this con-
straint is to assign the value 1 — a to mg(w). More
formally, the possibility distribution associated with
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R ={R(¢) = a} is:

ifwle
ifw k¢

Now assume that the agent both rejects ¢ and ¢ with
R(¢) = a and R(y) = b respectively. Then, we have
three cases:

mr(w) = { !

l-a

o wlt ¢ and w £ ¢, then w is fully acceptable.
Hence mg(w) = 1.

o wl gAY (resp. w = ¢ A —1p) then the higher
is b (resp. a), the less acceptable is w. Hence
mr(w) =1 =05 (resp. 1 —a).

e w |= ¢ Ay then the higher is a or b, the less
acceptable is w. Hence mg(w) = 1 — maz(a,b).

More generally, we have:

Definition 5 The possibility distribution mg associ-
ated with a set of rejections R = {R(¢;) = a; : i =
1,--+,n} s:

mr(w) = 1 —maz{a; : w | ¢;, R(¢i)= a;i € R},
with maz{0} = 0.

Clearly, this definition is very close to the one used in
standard possibilistic logic, for inducing a possibility
distribution 7y from a possibilistic knowledge base %,
viewed as expressing constraints in terms of necessity
measure. Indeed, it is enough to replace ¢; by =¢; in R
in order to obtain X. Hence, a set of rejections can be
directly encoded by means of a possibilistic knowledge
base:

Proposition 1 Let R = {R(¢i) = a; :i=1,---,n}.
Let¥ = {("1(}5,‘,(1,') R(¢,) =a; € R}. Then, Tg = 7y,
where Ty is the semantic counterpart of the set ¥ of
possibilistic logic formulas.

Proofs of Propositions are provided in Appendix.

This result is important since it means that the clas-
sical possibilistic logic machinery can be used for han-
dling negative desires and drawing inferences from
them. Moreover, the complexity of possibilistic logic
is only slightly higher than the one of classical logic
[12].

Example 1 Let co,be and su be three proposi-
tional symbols which stand respectively for "country”,
"beach” and ”"sun”. Assume that the agent provides
the following set of rejections:
R = {R(be A nsu) = 1,R(co A su) = 1,

R(—be A su) = §}.
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w
=co A —be A —su

=co A be A su

co A\ —be A —su

=co A —be A su

other interpretations

mr(w)
1
1
1
L
2
0

Table 1: The possibility distribution associated with
R.

This describes the rejections of an agent regarding
sunny places: a total refusal of beach without sun, a
total refusal of a country place where there is sun.
The last rejection expresses a partial refusal to go to a
sunny place where there is no beach.

Table 1 gives the possibility distribution associated with
R applying Definition 5.

Note that the possibilistic base associated with R is
the following ¥ = {(—be V su, 1), (—co V —su, 1), (be V
—su,3)}. We can check that ¥ generates the same
possibility distribution as given in Table 1, using Ap-
pendiz.

5 Representing positive goals

5.1 Semantic representation

The positive goals of an agent can also be described,
at the semantical level, in terms of a possibility distri-
bution also. Let mg (G for goals) be this distribution.
The range of mg is also [0,1] (or any totally ordered
set finite or not, and may be different from the one
used for mg). mg(w) > mg(w') means that w is more
satisfactory than w’.

The meaning of mg(w) is different from mg(w). In-
deed mg(w) evaluates to what degree w is satisfactory
for the agent, while mg(w) evaluates to what degree
w is acceptable, feasible by the agent. In particular
mg(w) = 1 means that the agent is fully satisfied, while
mg(w) = 0 simply means that the agent is indifferent
(while mg(w) = 0 means that w is impossible).

As for R, in practice, an agent provides a set of positive
goals of the foom G = {G(¢;) = b; : j = 1,---,m},
where by default it is assumed that the agent is indif-
ferent with respect to the truth of propositions which
are not explicitely stated in G. G(%;) = b; means that
the agent will be satisfied to a degree b; if ¢; alone is
satisfied.

In a similar way, let us see how to build the possibility
distribution, denoted by mg, associated with G. We
first consider the case where we only have one con-
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w Tg(w)
—co A be A su

co A\ —be A\ —su

other interpretations

Table 2: The possibility distribution associated with
G.

straint G(¥) = b. Then if a given w satisfies 9, the
associated level of satisfaction will be equal to b. Oth-
erwise, this level will be equal to 0, namely the agent
is indifferent (and not to 1 — b which corresponds to
the rejection of —¢). In the general case, given a set of
positive goals, the level of satisfaction associated with
w is equal to the highest level of a formula appearing
in G satisfied by w:

Definition 6 The possibility degree mg associated
with a set of positive goals G = {G(¥;) = b; : j =
1,--.,m} s:

ro(w) = maz{b; :w k= ¥; and G(;) = b; € G},
with maz{0} = 0.

Note that the addition of positive goals in G can only
lead to the increasing of the satisfaction level associ-
ated with w. Let us emphasize that this contrasts with
the behaviour of mg which is monotonically decreasing
with respect to the number of constraints in R.

Example 2 Let G be the following set of goals G =
{G(~conbeAsu) = 1,G(con-beA-su) = §}. The first
expression means that the agent is fully satisfied when
there is a sun, a beach and he is not in the country.
The second expression means that the agent is weakly
satisfied when he is in the country (without beach or
sun).

The possibility distribution g associated with G is
given in Table 2 following Definition 6.

5.2 Properties of the representation

The set of positive goals, contrarily to the rejections,
cannot be directly handled by standard possibilistic
logic. This is due to the fact that G(1)= b cannot be
directly expressed using possibility and necessity mea-
sures as R. Rather constraints like G()= b have to
be represented using a third function called guaranteed
possibility function, denoted by A [15]. The expression
A(¥) = b means that any interpretation where ¥ is
true, has a satisfactory degree at least equal to b. This
is exactly what is intended by the information encoded
in G, indeed A(y) = min, =y mg(w)l.

'Hence A(¢ V ) = min(A(g), A(p)), so A is decreas-
ing with respect to entailment. Indeed, the semantic en-
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Moreover, there exists few works where the logical ma-
chinery of the A-weighted formulas is described. It
is governed by a cut rule of the form A(¢ A ¢) >
a, A~ AE) > bF A(p AE) > min(a,b) [11] which is
the counterpart of the possibilistic resolution changing
A into a necessity measure and the conjunctions into
disjunctions.

Let us now give some properties of this representation:

Lemma 1 Let G be a set of positive goals containing
Y1 and ¥y at the level b. Let G’ be a set of positive goals
obtained from G by replacing G(v1) = b and G(¢2) = b
by G(y1 V ¥2) = b. Then, G and G' are semantically
equivalent, i.e. g = Tg.

This means that two sets of goals having the same
strength can be replaced by their disjunction with a
same strength. The second lemma concerns redundant
information:

Definition 7 G(¢) = a € G is said to be subsumed if
there exists G(¢) = b € G such that b > a and ¢ F 1.

Lemma 2 Let G(¢) = a be a subsumed goal in G. Let
G' =G -{G(¢) = a}. Then, G and G’ are semanti-

cally equivalent, i.e. g = 7g.

In the following, we define the consistency degree of
a set of goals, which is the dual of the inconsistency
degree of a possibilistic knowledge base:

Definition 8 Let G be a set of positive goals. The
consistency degree of G, denoted by Cons(G), is de-
fined by:

f’ Cons(G)= maz{a; : G(¢:) = ai € G and ¢; is consistent}.

Indeed, we define the consistent subbase of G for mak-
ing inferences as follows:

Definition 9 Let G be a set of positive goals. The
preferred consistent subbase of G, denoted by pa(G),
is:

pa(G)= {¢i : G(¢i) = ai € G and a; = Cons(G)}.

Given these two definitions, we are now able to provide
the syntactic counterpart of the plausible and prefer-
ential inference:

tailment goes here in a way which is the opposite of the
situation in the classical logical representation framework.
Namely, if all the models of ¢ are feasible, we can conclude
from this piece of information that all the worlds in % are
feasible only if the entailment 1 |= ¢ holds, and nothing is
said about the interpretations outside the models of ¢.
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Proposition 2

1. Let G be a set of positive goals and mg be the pos-
sibility distribution associated with G. Then,

6P ¥ iff Vyepaic)®i ¥

2. Let G be a set of goals and p be a formula. Let
G'={G(di Ap) = a; : G(¢:) = ai € G}. Then,
T Ee¥ i Vieoaen®i T Y-

6 Merging multiple agents preferences
in a bipolar representation

This section discusses the problem of merging agents
preferences from the semantic and the syntactic points
of view. The result of the merging process will also be
a pair (Rgy, Gg,), where Rg, is the result of merg-
ing agents rejections, and Gg, is the result of merg-
ing agents positive goals. These two merging steps are
processed separately, using generally different merging
operators. They are described in the next two subsec-
tions.

6.1 Fusion of negative desires

Let {Ry,---,R,} be a set of rejection bases provided
by n agents to be merged with some merging opera-
tor ®r. @ is a function from [0, 1]" to [0,1]. Since
rejections have an immediate encoding in terms of
possibilistic knowledge bases, we can apply the merg-
ing procedures of possibilistic knowledge bases [4] for
merging rejection bases. In particular, this allows to
have the syntactic counterpart of any semantic merg-
ing operator, satisfying minimal properties. See [4] for
details.

In this section, we define a class of operators which
seem to be appropriate for merging rejections. The
idea is that if some piece of information is rejected by
some agent, then it should be explicitely rejected after
the merging process. Such kind of behaviour is cap-
tured by conjunctive operators. Let ¢ be a classical
formula. To see if a formula ¢ should be explicitely
stated as rejected (or not) and with what degree of
rejection in Rg, (the result of merging), we compute
from each R; its level of rejection a;. Then, ¢ will be
explicitely stated in Rg, with a degree ®g(a1, -+, an).

Natural properties of @g are:

i) ®r(0,---,0) = 0.
If a piece of information is not explicitely rejected
by any agent then it should not be explicitely re-
Jjected in Rg,.
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i) fVi=1,---,n, a; > b; then
@R(aly s ":an) 2 @R(blr o '>bn)
(monotonicity property).

i) ©r(0,--+,0,a,0,---,0) = a.
Namely, if a formula is only explicitely rejected
by one agent then its level of rejection should not
increase in the result of merging. In fact, it will
be rejected with the same level.

Note that ¢), ¢¢) and i17) imply:
if a; > 0 for some 4 then &g (a1, -+, an) > 0,

which corresponds to say that if a formula is rejected
by at least one agent then it should be explicitly re-
jected in the result of merging.
It is also easy to check that ®g(ai,---,an) >
maz(ay,---,a,). Indeed, from i) and iii), we
have ®r(a1, -, as) > ®r(0,--+,0,8:,0,---,0) = a;.
Hence, @g = maz represents the most cautious merg-
ing operator, in the sense that a formula is not rejected
more than what is stated by the more exigent agent
(who more rejects ¢). In this case, we simply have (for
two bases):

Rinaz = Ry URs.
Note that combining rejection strengths with the max-
imum operation leads to combine possibility distribu-
tions associated with agents rejections with the mini-
mum operator, namely TrRmaz = Min(Tr1, TrR2).
Since strengths are associated with weights, it is also
possible to express reinforcement. For instance, a for-
mula which is weakly rejected by different agents can
be strongly rejected in the merging result. The op-
erator @gr(a,b) = a + b — ab, which corresponds to
the product of the distributions, allows to go beyond
maz(a,b) without reaching 1 (strong rejection) if a
and b differ from 1 (i.e., it is not strongly rejected by
any agent).

Example 3 Let Ry be the base given in Ezample
1, namely Ry = {R(be A —su) = 1,R(co A su) =
1,R(-be A su) = 3}, Let Ry = {R(be A —su) =
1,R(co A su) = 1,R(mo) = %}, where "mo” stands
for mountain. Let ®r = maz. Then,
Romaz = {R(be A—su) =1, R(coAsu) =1,

R (—be A su) = &, R(mo) = 3}.

6.2 Fusion of positive desires

We now discuss the merging of positive goals. We
first provide a general result on the syntactic fusion of
goals, similar to the one in [4] for classical possibilistic
knowledge bases.

Let Gy, -- -, Gy, be m bases of goals and 7g1, -, Tem
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be their associated possibility distributions given by
Definition 6. Let &g be a merging operator satistying
the following requirements:

o @g(0,++,0) = 0.

o IfVj=1,---,m, a; > b; then
®glar, -+, am) > Sg(b1, -, bm).

The first requirement expresses that if a solution is
not satisfactory for any agent then it should not be
satisfactory in the result of the merging. The second
property is simply the monotonicity property.

Let us restrict ourselves, for the sake of simplicity, to
the case of two bases. Then, the following propo-
sition gives the positive goals base associated with
(761, TG2):

Proposition 3 Let G = {G(¢i) = a : 1 =
1,---,n} and Gz = {g(l/{]) = bj : J =
1,---,m} be two bases of positive goals. Let mg;
and mga be their associated possibility distributions.
Let @g be a merging operator.  Then, the base
of positive goals associated with @g(mg1,Tg2) is:
Goe = {9(¢i) = Dg(ai,0) : G(¢:) = ai € Gy}
U{G(%;) = ®c(0,b5) : G(¥5) = b; € Ga}
U{G(¢:i A95) = Bg(ai, b) -
g(¢,) =a; € Gy and g(t,b]) = bj € Gz}.

The choice of the merging operator for combining 7g1
and g2 is less contrained since several merging op-
erators, can be considered, such as conjunctive, dis-
junctive and also ”intermediary” operators which re-
inforce what is common and discount the goals which
only concern one agent (see [14] for a representation
of such operators).

If the agents are highly cooperative then we can say
that an agent adds to its goals those of the other agent
provided that they do not contradict what is accept-
able for him. In this case ®g = maz is recommended.

Example 4 Let G, be the base given in Ezample 2,
namely
Gy = {G(—co A be A su) = 1,G(co A —be A —su) = i}
Let Gy = {G(co A ~be A —su) = §,G(~be A -su) = i}
Let Guae be the result of combining G, and Go with
®g = maz. Then,
Gmaz = {G(—coAbe A su) = 1,G(co A—be A-su) = b
U{G(co A —be A —su) = L, G(=be A —su) = 3}
U{G(L) = 1,G(co A =be A —su) = %}
which is semantically equivalent to
Gmaz = {G(-co Abe A su) =1,

G(co A —be A msu) = 1,G(—be A ~su) = 1
since G(co A ~be A —su) = 1 is subsumed by

1
G(—be A —su) = % (see Definition 7).
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Note that this mode of merging corresponds to con-
sidering that what is satisfactory by one agent is also
satisfactory by the other.

7 Coherence of positive and negative
desires and how to restore it

Merging agents preferences can lead to conflicts. This
section first defines the notion of coherence between
rejections and positive goals, and shows how to restore
the coherence in case of inconsistency.

Let (R,G) be preferences for an agent (or a group of
agents). Intuitively, f R = {R(¢;) =1:i=1,---,n}
and G ={G(y;) =1:j=1,---,m} are classical logic
bases (without rejection or satisfaction weights) then
R and G are coherent if

Vo owe A -
i=1,,n

)y i=1,-n

namely any solution satisfying at least one goal of G
should falsify all formulas in R. More generally, any
interpretation which is satisfactory to a degree a (w.r.t.
G) should be at least feasible to a degree a (w.r.t. R).

Definition 10 Let mg and mg be the two possibility
distributions representing respectively the positive goals
and rejections of an agent. Then, mg and mg are said
to be coherent iff

'Vw, me(w) < TI']R((J).‘

The coherence checking can also be done syntactically
using the bases G and R.

Proposition 4 Let G and R be respectively the sets
of goals and rejections of an agent. Then, G and R
are said to be coherent (in the sense of Definition 10)
if: Ya >0,

Vg(¢1)=GJEGv“jZa¢j F /\‘R(¢i)=aiER,a.>l—a_'¢i-

In the merging process, the consistency of each pair
(R, G;) does not guarantee the coherence of the pair
(R,G), where R (resp. G) is the result of merging R;’s
(resp. G; ’s), for most of the operators (@g, ®g).

Example 5 Let R and G be respectively the sets of
merging rejections and merging goals computed in Ez-
amples 8 and 4. We have
R={R(be A =su) = 1,R(co A su) =1,

R(-be A su) = 3, R(mo) = £}, and
G={G(-conbeAsu) =1,

G(co A —be A ~su) = 3,G(~be A -su) = 1}
At the semantic level, consider the interpretation wy =

SuA=coAbeAmo. Then, we can check that mg(wo) = %
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while mg(wg) = 1.

Observe that mg(wo) £ mr(wo), then mg and mg are
not coherent.

At the syntactic level, let a = 1. Then,

V{¥; : G(¥;) = aj € G,a; > 1} = =co A be A su, and
AR(#:)=a:eR,a:>07¢i = (mbeV su) A (—coV —su) A (beV
—su) A —mo.

We have —=co A be A su tf (=be V su) A (=co V —su) A
(be V =su) A —mo. Then, (R,G) is not coherent.

When the coherence condition is not satisfied by the
results of the merging, this means that the set of goals
resulting from merging the goals of the agents is not
compatible with what is acceptable by the agents. A
way to restore the coherence in the sense of Defini-
tion 10 is to revise either the possibility distribution
mg or the possibility distribution mg. We choose to re-
vise mg since in practice it is more difficult to question
mr which expresses rejections. The revision of 7g in
this case consists in decreasing the possibility degree
of each interpretation in 7g to the possibility degree
of this interpretation in mg. In other terms, restoring
the coherence leads to revise 7g into mgre, as follows:
YW, TGrey (W) = min(rg(w), Tr(w)).

At the syntactic level, this leads to weaken goals and
to decrease the level of satisfaction associated with
goals in G, in the following way: let aj, -, a, be
the weights of R such that a; > -+ > ap, > 0 i,
R = {R(¢1) = a1, -+, R(¢n) = an}. This is always
possible by gathering formulas of the same weight in
a unique formula.

Let G(¢) = b € G, and let a; be the minimal weight
such that 1 — a; < b. Then, Gy, is obtained by re-
placing each G(¥) = b in G by:
{G(~61 A+ A=gi A) = b)

U{Q’(—'¢1/\-- -/\“¢k/\¢) =l—-ak4 k= 1,~-~,i—1}
U{G(¥) =1-ar}.

Intuitively this means that each solution satisfying the
goal ¥ and at least the formulas —¢,, - -, ~¢; is con-
sidered as satisfactory to at least the degree b. How-
ever we decrease the satisfaction degree of solutions
which satisfy 9 but falsify at least one formula from
{=1,- -, i}

This approach leads to the following result:

Proposition 5 Let G and R be the sets of goals and
rejections respectively. Let g and mg be their associ-
ated possibility distributions respectively. Let mgre, be
defined as follows: Yw, Tgrey (w) = min(rg(w), tr(w)).
Let Grey be the base constructed from G and R above.
Then, Tgrey is the possibility distribution associated
with Grey following Definition 6.
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Example 6 Let us consider again the possibility dis-
tributions Tr and Tg associated with R and G com-
puted in Ezamples 3 and 4 respectively. We have
R = {R(be A —=su) = 1, R(coA su) =1,

R(-be A su) = §,R(mo) = +} and
G = {G(—coNbe A su) =1,

G(co A —be A —su) = 3,G(-ben -su) = 1}
Let Tgrev = min(Tg, TR)-
The goals base associated with mgrey 18 obtained by
weakening (when necessary) the goals of G. For exam-
ple the goal G(—coAbeAsu) =115 replaced by two goals
G(~co A be A suA—mo) =1 and G(—co Abe A su) = 5
because the situation —co A be A su A —-mno (induced by
—coAbe Asu) does not satisfy any formula in R, while
the situation —co A be A su A mo satisfies mo so it is
decreased to the degree % With a similar treatment of
other goals we get:
Giay = {g(—wco/\be/\sul\ﬂmo) = 1,g(ﬂc0/\be/\su) =
1, G(co A-be A su) = 1,G(—be A —su) = i)

8 Conclusion

This paper has advocated a bipolar framework for rep-
resenting preferences accurately under the form of two
sets of formulas having different semantics, both of
them being encoded in the framework of possibilty
theory. The representation framework remains simple
(although each of the two sets could be equivalently
represented under a graphical form, or as a set of con-
ditionals [2]). Besides, the proposed model remains
qualitative since only the ordering between the satis-
faction levels or the rejection levels is meaningful.
The idea of a bipolar representation framework could
accommodate more quantitative frameworks, like
penalty logic [9], as well as when the weights are
thought as penalities (e.g., as in [22, 13]).

In the penalty logic framework, one can also distin-
guish between two penalty bases representing rejec-
tions and positive goals respectively. The weights
(which are then integer values) associated to formu-
las in the rejection base express the price to pay if
the rejection is not respected. While the weights asso-
ciated with formulas in the base of goals express the
bonus to win if the desires are satisfied. In both cases,
the weight associated with a given solution is the sum
of the weights of falsified (in case of rejection), or sat-
isfied (for the goals) formulas.

Another quantitative framework is the evidence the-
ory framework [19, 21]. Belief functions have already
been used for representing rejections. One can also
use the so-called ” commonality” function Q for repre-
senting positive goals. Indeed, a commonality function
plays a role similar to the one of the guaranteed pos-
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sibility measure A. Particularly when focal elements
are nested, then the commonality function simply co-
incides with a guaranteed possibility measure.

Such a bipolar representation is also of interest when
representing knowledge rather than preferences, as is
discussed in [11], where the negative parts correspond
to what is known as being (more or less impossible),
while the positive parts gather worlds wich are guar-
anteed to be feasible because they have been observed
or reported. This is why integrity constraints which
are pieces of knowledge of the first kind, can be added
when necessary to the negative part of the represen-
tation of the preferences, leading to the specification
of what is acceptable because it is not impossible by
integrity constraints or because of the taste of the
user. Beyond the interest of representing preferences of
agents for fusing them, and restoring coherence when
necessary, the inference machinery of the possibilis-
tic logic framework (extended to formulas weighted in
terms of the function A) enables us to reason about
preferences.

In the long range, such a representation scheme for
preferences should turn to be useful for elicitating
user’s wishes in information or recommender systems,
and handling preferences conflict between agents. In
the full paper, we will also provide a comparative study
with recent related works on preferences, e.g. [22].
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