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Abstract

In this paper we investigate extensions of Godel and Nilpotent Minimum
logics by adding rational truth-values as truth constants in the language and
by adding corresponding book-keeping axioms for the truth-constants. We
also investigate the rational extensions of some parametric families of Weak
Nilpotent Minimum logics, weaker than both Gdédel and Nilpotent Minimum
logics. Weak and strong standard completeness of these logics are studied in
general and in particular when we restrict ourselves to formulas of the kind
r — ¢, where 7 is a rational in [0, 1] and ¢ is a formula without rational
truth-constants.
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1 Introduction

As Pavelka pointed out in [11], it seems natural to introduce truth values in
the language in order to be able to deal with partial truth. With this aim,
he built a many-valued logical system over Lukasiewicz logic by adding into
the language as many truth constants as truth values, i.e. a truth constant
r for each real r € [0,1], and a number of additional axioms. Although this
Lukasiewicz logic extended with truth-constants, PL, is not strong complete
(like Lukasiewicz logic), Pavelka proved that it is complete in a weaker sense.
Indeed, he introduced a weaker notion of strong completeness based on the
degrees of provability and truth of a formula ¢ in an arbitrary theory 7. The
truth degree of ¢ in T is defined as

|| ¢ ||l7= inf{e(y) | e evaluation model of T}



and the degree of provability of ¢ in T as
| |r=sup{r | TFprr — ¢}

Pavelka proved that these degrees coincide. This kind of completeness, which
strongly relies in the continuity of Lukasiewicz logic truth functions, is usually
known as Pavelka-style completeness. Moreover he also proved that Pavelka-
style completeness is preserved if and only if the language is extended with
any connective whose corresponding truth-function on the real unit interval is
a continuous (real) function.

Later, H4jek [10] proved that Pavelka’s logic PL could be significantly simplified
while keeping the completeness results. Namely, Hajek’s system is an extension
of Lukasiewicz logic by only a countable number of truth-constants, r for each
rational r € [0,1], and by two additional axiom schemata to deal with the
truth-constants, called book-keeping axioms:

r&s «—rx*s
rT— ST =8

where * and = are the t-norm of Lukasiewicz and its residuum respectively. He
denoted this new system as RPL, for Rational Pavelka Logic, and proved the
same results that Pavelka proved for his system with continuously many truth-
constants. Moreover, in [10] it is proved that RPL is strong complete for finite
theories. Remark that the semantics of RPL is kept on the real unit interval [0,
1].

Similar rational extensions for other popular fuzzy logics can be obviously de-
fined, but Pavelka-style completeness cannot be obtained since Lukasiewicz is
the only fuzzy logic with continuous truth-functions in the real unit interval
[0, 1]. For instance, in [10] H4jek defines an extension of Ga, the extension of
Godel logic with Baaz’s Delta operator, with a finite number of rational truth-
constants. Later, in [4] the authors define logical systems obtained by adding
(rational) truth-constants to G.. (Godel logic with an involutive negation) and
to II (Product logic) and II.. (Product logic with an involutive negation). For
the first system, RGL.., usual strong completeness is proved for finite theories,
while for the second systems, RIIL and RIIL., it is possible to prove Pavelka-
style completeness provided an infinitary inference rule is added to overcome the
problem that the residuum of the product t-norm is not continuous at the point
(0,0). Finally also notice that in [1] standard completeness of Gédel logic with
rational truth-constants is stated. Although the result holds true (see Section
3), the proof given there has some flaws.

Another different approach to reasoning with partial degrees of truth is the
framework of abstract fuzzy logics developed by Gerla [7] based on the notion
of fuzzy consequence or deduction operators over fuzzy sets of formulas, where
the membership degree of formulas are interpreted as lower bounds on their
truth degrees.



In the first part of the paper we investigate the extensions of Godel logic G and
Nilpotent minimum logic NM with rational truth-constants similar to RPL, that
we call respectively RG and RNM, and we prove different completeness results,
in the usual sense, for RG and for RNM.

In the second part of the paper we generalize the results to some particular
extensions of the Weak Nilpotent minimum logic WNM. WNM was introduced
in [3] as the axiomatic extension of MTL by the following axiom,

(WNM) (p&tp — 0) V(o AP — p&p)

and proved to be standard complete with respect to the family of WNM t-
norms and their residua. WNM t-norms are left-continuous t-norms defined
from a weak negation function n and the minimum t-norm in the following way

R if x < n(y)
THn Y = min(z,y), otherwise

Well-known particular cases of WNM t-norms are the minimum t-norm (when
n is Godel negation) and Fodor’s nilpotent t-norm (when n(z) =1 — x).

The paper is structured as follows. In next section we give a general formal
account of algebraic semantics for the expansions of usual fuzzy logics with
rational truth-constants. This is done by means of Blok and Pigozzi’s theory of
algebraization of propositional logics. Sections 3 and 4 is devoted to the rational
extensions of Godel and Nilpotent Minimum logics and different completeness
results for them. In the first part of Section 5 we consider three different WNM
logics and prove their standard completeness. The rest of the section is devoted
to several standard completeness results for the rational expansions of these
logics. We conclude with some final remarks.

2 Preliminaries

Our general logical framework for this section will be that of MTL and its
axiomatic extensions. MTL logic was defined in [3] as a propositional logic in
the language £ = {&,—, A, 0}. We will denote by F'm, the set of well-formed
formulas built over the language £ and a set of propositional variables. Axioms
of MTL are:
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The rule of inference of MTL is modus ponens.

In the frame of MTL extensions, other usual connectives are definable, in par-
ticular 1is ¢ — ¢, ~pis ¢ — 0, eV is ((p — ¥) = V) A (¥ — ¢) — ), and
peois(p—=Y) AW — ).

In [3] an algebraic semantics for MTL was given, based on the notion of MTL-
algebras, i.e. bounded residuated lattices satisfying the prelinearity equation:
(x = y) V(y — x) = 1. Let MITL be the variety of all MTL-algebras.

Definition 1. Given T' U{¢} C Fm., we define:

If A € MTL, T FA ¢ iff and for all evaluations v in A, we have v(p) = 1
whenever v(¢) =1 for allyp € T.

T'E ¢ iff for all A € MTL we have T'E4 ¢

Then, one can prove this theorem of strong completeness for MTL logic:
Theorem 2. IfT'U {p} C Fm,, then
'k "2} Zﬁr l_MTL ®.

But this result can be improved by means of the equational consequence:

Definition 3. Let Eq. be the set of L-equations and let AU {p ~ )} C Eqr.
We define the equational consequence by:

A Fymn @ = ¢ iff for all A € MTL and for all evaluation v in A, we have
v(p) = v(y) whenever v(a) = v(B) for alla~ € A.

Theorem 4. The relation of derivability in the system MT L and the equational
consequence in the variety MTIL are mutually translatable:

1. For everyTU{¢} C Fme, Thyrrn o iff {v = 1:9 €T} Fum ¢ = 1.
2. For every AU{p =Y} C Eqr, A By ¢ = ¥ iff
{aHﬁ:a%ﬁEH}I—MTL(pr

In addition, each one of these translations is the inverse of the other, that is:
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4' (pl_MTL(le;
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Therefore, MTL is an algebraizable logic in the sense of Blok and Pigozzi (see
[2]) whose equivalent algebraic semantics is the variety MTL. Thus, using the
general theory of [2], all axiomatic extensions of MTL are also algebraizable in
this strong sense. Namely, if L denotes the extension of MTL by a given set of
axiom schemata 3, the equivalent algebraic semantics of L is the subvariety of
MTL defined by the translation of the formulas in ¥ into equations. We will
refer to the algebras of this subvariety as L-algebras.

There is another useful kind of completeness result for MTL, completeness with
respect to the totally ordered algebras (we will call them ’chains’):

Theorem 5. [3] Each MTL-algebra is isomorphic to a subdirect product of
MTL-chains.

As a consequence, Theorem 2 remains valid if the logical consequence = in
Definition 1 is restricted to evaluations over MTL-chains. This is also true for
every axiomatic extension of MTL.

Now we will consider the algebraization of fuzzy logics with constant symbols
for the rationals. The new language we will use is RL = LU{r : r € QN (0, 1]},
the expansion of £ with new constant symbols, one for every rational in (0, 1].

Definition 6. Let L be MTL or any axiomatic extension of MTL and let
be a left-continuous t-norm and = its residuum such that [0,1]. = ([0, 1], *, =
,min, max, 0, 1) is an L-algebra. By RL(x) we will denote the propositional logic
in the language RL obtained by adding to L the so-called ’book-keeping axioms’:

r&s < rxs
r As < min(r,s)
r—oseor=s
for everyr,s € QN [0, 1].
RL()-algebras are structures A = (A, &, —, A\, V,{r* : r € QN 0,1]}) such
that:
1. (A, &, —, A, V,OA, 1A) is a L-algebra
2. for everyr,s € QNI0,1]:

rA&sA = rx g4

rA A sA = min(r, s)

A = A =r = A



Given T'U{¢} C Fmgr, we define T F 4 ¢ iff for all evaluations e in A (i.e.
such that e(r) = r*), we have e(p) = 1" whenever e(y)) = 1 forally €T

When A = [0,1] and 7 = r for all € QN [0, 1], we say that A is the standard
RL(x)-algebral.

Using [2], it is easy to prove that RL(x) is an algebraizable logic whose equiv-
alent algebraic semantics is the variety of RL(x)-algebras. Also, using stan-
dard techniques, we obtain completeness RL(*) with respect to linearly ordered
RL(*)-algebras.

Theorem 7. For any T'U{¢} C Fmge, I'Frpe) ¢ iff I =4 ¢ for all RL(x)-
chains A.

If L, is an extension of MTL such that is standard complete with respect the
left-continuous t-norm *, then for simplicity we will write RL. instead of RL. (x).

Proposition 8.

o If L is strong standard complete for arbitrary theories w.r.t. [0,1]., then
RL(x) is a conservative extension of L.

o If L is strong standard complete for finite theories w.r.t. [0,1]., then RL(*)
is a conservative extension of L for finite theories.

o If L is weak standard complete w.r.t. [0,1]., then RL(x) is a conservative
extension of L for theorems.

Proof: We shall prove the first claim as an example. Let T' U {¢} C Fm, be
such that I - (4) ¢. Since RL(x)-algebras are an algebraic semantics, we have
I' E4 ¢ where A is the standard L(x)-algebra. Hence, using that these formulas
are written in £, I' Fjg 1}, ¢, so ' ¢. O

In the definition of RL(x) we could wonder what happens if we consider an
isomorphic t-norm o instead of *. In that case, we would obtain a different logic
(actually, the book-keeping axioms of RL(o) are different from those of RL(x)),
but both logics are translatable one to another as the following theorem proves.

Theorem 9. Let L be MTL or an extension of it, and let x, o be two isomorphic
left-continuous t-norms such that [0, 1], and [0, 1], are L-algebras. Let F be such
an isomorphism? from * to o. For any ¢ € Fmge we write o(r1,...,7,) to
explicitely denote that the truth-constants ri,...,r, appear in @, and for every
o(r1,...,mn) € Fmge we define 7(p(r1,...,mn)) == @(F(r1), ..., F(ry)). Then
T 4s a translation between RL(x) and RL(o), i. e., for every T'U{¢} C Fmg,
Lhrp) ¢ iff T[T FrLe) T(9)-

!Notice that in such a case & and * necessarily coincide (hence — and = as well),
since they coincide on the rationals and are left-continuous t-norms.

2That is, an order preserving bijection F : [0,1] — [0, 1] such that zoy = F~ (F(z)*
F(y)) for all z,y € [0,1].



Proof: Suppose (¢1,...,¢0n-1,¢n = @) is a proof in RL(x) of ¢ from T". It is
sufficient to show that (7(¢1),...,7(¢n-1),7(¢n) = 7(¢)) is a proof in RL(o) of
7(¢) from 7[I']. Take any ¢ < n. If ¢; is an axiom, then 7(y;) it is also an axiom.
Observe that since F' is a morphism for the pairs (*, o), hence also for (=, =),
the translation by 7 of a book-keeping axiom of RL(x) is a book-keeping axiom
of RL(0)). It is also clear that if ¢; € T', then 7(p;) € 7[I'], and if ¢; is obtained
by Modus Ponens, then also 7(y;) is obtained by Modus Ponens. O

3 Standard completeness results for RG and
RNM

From now on we will consider two particular logics of the type RL(x), namely
for L being Godel logic G and Nilpotent Minimum logic NM. Gédel logic is the
well-known extension of Héjek’s BL logic with the contraction axiom:

0 — p&p (G)

which forces the equivalence of the connectives & and A. G is strong complete
w.r.t. the standard G-algebra [0, 1] = ([0, 1], min, =, 0, 1), defined by taking
* = min. = is its residuum, ie. z =gy =1ifx <y, * =2¢ y = vy,
otherwise. This is actually the only G-algebra on [0, 1]. Moreover G has the
usual deduction theorem. Nilpotent Minimum logic NM was defined in [3] as
the axiomatic extension of MTL with the following axioms:

i — @ (Inv)
(p&tp — 0) V (p&tp — o A1) (WNM)

NM is standard complete with respect to any NM-algebra on [0,1] (all are iso-
morphic), in particular with respect to the NM-algebra [0, 1]yas defined by the
so-called nilpotent minimum t-norm [6], defined as

| min(z,y), fx>1-y
THINMY = { 0, otherwise
and its residuum
N 1, ifx <y
T=NMY = max(l —z,y), otherwise

NM has a weaker form of deduction theorem, namely I';v Fyns @ iff T By
(V&y)) — o, for any T'U {p, ¢} € Fm.

In the following we will simplify the notation and we shall write RG for RG(min)
and RNM for RNM(xy)s) and we will denote by [0, 1]re and [0, 1]gnas their
corresponding standard algebras.

Next Theorems 12 and 13 prove weak standard completeness for RG and RNM
logics. But first we need to show how RG-chains and RNM-chains look like.



Lemma 10. For any RG-chain A= (A, &, —,A,V,{r* 7€ QnN0,1]}) there
exists a real o € [0, 1] such that:

(i) r* =1 for any rational r > o, and

(ii) if o > 0, then r* < s for any rationals r < s < a.

Proof: Assume that for two rationals r < s we have that r* = s*. Then, on

the one hand s* — 4 = 1, but on the other hand, s =¢ r* = r, thus by

. . A .
the book-keeping axioms we have rA =1, and hence 7'~ = 1 for each rational

' > 1 as well. Finally take o = inf{r | 74 = 1}. Notice that a can be 0 in the
special case that for all rationals r # 0, r = 1. O

Lemma 11. For any RNM-chain A = (A, &,—,A,V,{r* : € QN [0,1]})
there exists a real a € [1,1] such that:

(i) r* = 1 for any rational r > a,

(i3) 74 = 0 for any rational r < 1 — a, and

(iii) if o > 1, then rA < sA for any rationals r and s such that 1 —a < r <
s < a.

A
Proof: From book-keeping axioms, any RNM chain has to be a fix point é for
A
é < 14, Moreover if for two rationals é <r<s

= sA, then, for one hand s* — r* = 1, and on the other hand,
A
/r )

its negation such that 04 <

we have 74

S =>NM TA

A
=max(l —s,7) = which imply, by the book-keeping axioms,
that »* = 1, and hence 7 =1 for each rational 7' > r as well. (ii) and (iii)
easily follow from the involutiveness of the negation. Finally notice that it is

possible that inf{r |r > 1,74 =1} = 1. O

Notice that Lemma 11 is a natural consequence of previous Lemma 10 taking
into account that a NM-chain is always isomorphic to a rotation of a Gédel hoop
in the sense of Jenei [9)].

Theorem 12. Frg ¢ if and only if Fjo1]pe ¢

Proof: The soundness part is trivial as usual. To prove completeness, suppose
¥ re ¢, then by completeness of RG w.r.t. the RG-chains, there exist a countable
RG-chain C and an evaluation e over C such that e(¢) <¢ 1°. We have to show
there is an evaluation ¢’ on the standard algebra [0, 1]ge such that €'(p) < 1.
Let X = {e(¥),nc(e(¥)),nZ(e(y)) | 1 subformula of ¢} U {0, 1¢}. Consider
first the case that o = inf{r | e(r) = 1C} > 0 (or equivalently, « = inf{r |
r¢ = 1C} > 0). Now we can take an order-preserving injection g : (X, <¢) —
([0,1], <) which is strictly increasing and such that g(r¢) = r for all rational
r¢ € X. Then we define an RG-evaluation ¢’ on the standard RG-algebra [0, 1]
as follows: for all propositional variable p, €'(p) = g(e(p)) if p appears in ¢ and
€/ (p) = 1 otherwise (and, of course, with ¢'(r) = r), i.e., € (x) = g(e(zx)) for all
x being a propositional variable or a truth-constant belonging to X. Then €’ is



extended to RG-formulas as usual. We want to show that €/() < 1. Actually,
one can prove, by induction on the complexity, that for any formula 1 that is
either a subformula of ¢ or a negation or a double negation of a subformula
of ¢, the following statement holds: “if e(y)) = 1€ then ¢ (¥) > «, and if

c i, .
e() = e(x) < 1 for some atom (propositional variable or truth-constant) x
in ¢ then €'(¢)) = €/(x) < o”. We omit details here. In particular, then from

e(p) < 1° we can derive €'(p) < 1, and the theorem is proved.

Consider now the case o = 0, i.e. ¢ = 1€ for all 7 € Q, r #0. In such a
case we can build a new RG-chain C; and an evaluation e; over C; such that
e1(p) < 1“ and inf{r | e(r) = 161} > 0 and then we will be able to apply the
proof of the previous case. To build this chain let s = min{r € Q | r # 0,r
appears in ¢}. Without loss of generality we can assume CNQ = (). Then take

Cy = (C\ {OC} U0, s)g and let C; be the RG-chain defined over Cy by the meet
operation:

xAcy, ifz,yelC

x Aoy, fz,yeQ

T, ifxreQueC

Y, ifxeC,yeQ

T N\e, Yy =

and define the constants ¢ as follows:

o f 1% ifrels1]
rt = .
r, if r €]0,s)

Now define e; as the RG-evaluation over C; such that ej(x) = e(z) for each
propositional variable x. Obviously e; is an RG-evaluation over the countable
RG-chain C; where inf{r | e(r) = 1’} = s > 0 such that e;(y) < 1°* as
required. O

Theorem 13. Fryu ¢ if, and only if, Flo1]pn ©-

Proof: The proof can be done in a analogous way to the previous theorem for

RG, with some necessary changes. Assume e(p) < 1 over a countable RNM-
chain C and let X = {e(y),nc(e(¥)) | ¢ subformula of ¢} U {0 1¢}. Let
§ = inf{r | r¢ = 1C} (=1 —sup{r | r¢ = OC}). By Lemma 11 we know that
6 > é Suppose first that § > é One can define then an order-preserving
injection g : (X, <¢) — (]0,1], <) which is strictly increasing and negation
preserving over the elements of X and such that g(r¢) = r for all ¥ € X. Take
into account that the negation is involutive and thus the strict order is preserved
by negation. Then, an RNM-evaluation ¢’ over the standard RNM-algebra can
be defined by putting for any propositional variable p: €'(p) = g(e(p)) if p
appears in ¢ and €’(p) = 1 otherwise. Notice that if  is a propositional variable
or a truth constant belonging to X, then €’(z) = g(e(z)). Finally, one can show
that ¢’ so defined fulfills the following conditions for any formula v which is
either a subformula of ¢ or the negation of a subformula of ¢: (i) if e(¢p) = 1



then €'(v) > 6, (ii) if 0¢ < e(®) = e(x) < 1° for some atom (propositional
variable or truth-constant) x in ¢ then 1 —§ < €/(¢p) = €/(z) < §, and (iii) if

e(y) = 0° then ¢/ (¢) <1 — 0. Therefore, in particular, ¢’(¢) < 1.

Suppose now that § = é As in case of RG, we can build a new RNM-chain C;
and an RNM-evaluation e; on C; such that e;(¢) < 1 and inf{r | r > é,rcl —
161} > 1. To this end, take s = min{r > } | r or 1 —r appears in ¢} > 1.
Without loss of generality we can suppose that C N Q = (). We define a RNM-

c
chain C; over C7 = (C'\ {1/2 }) U (1 — s, s)g with the lattice meet given by:

xAcy, ifz,yelC
r Ny, ifz,yeQ
T, ifreQandye Cy
x, ifzelC_andyeQ

T N\c, Yy =

where Cy = {x € C |2 > ne(x)} and C- = {x € C | x < ne(x)}, and with
constants
1, ifrelfs 1]
=4, ifre(l-—s,s)
0%, ifrel0,1— s

Finally define e; as the RNM-evaluation over C; such that e;(x) = e(z) for each
propositional variable z. Obviously, C; and e; satisfy the conditions required
and we can apply the proof of the previous case. a

4 On finite strong completeness for RG and
RNM

G and NM are strongly standard complete® for arbitrary theories, hence, by
Proposition 8, RG and RNM are conservative extensions of G an NM respec-
tively. On the other hand RG and RNM are not strong standard complete for
arbitrary theories, even for finite theories. Namely, for any rational 0 < r < 1
and any propositional variable p, r ¥ gg p but it trivially holds that r Fig 1], P
since there is no evaluation which is a model of r. The same is also true for
RNM. Looking at this example, one could think that the reason of failure is that
the theory used, T' = {r}, is somewhat special, in the sense that it is not sat-
isfiable. So we could try to check whether strong standard completeness holds
restricted to satisfiable theories. Unfortunately, being satisfiable is not a suffi-
cient condition either for strong standard completeness, even for Pavelka-style
completeness, as the following example shows.

Example 1. Let T = {r V p}, where 0 < r < 1 and p is a propositional
variable. It is clear that T is satisfiable for any evaluation e such that e(p) = 1,

3In [10] it is proved for G and an analogous proof shows the completeness of NM.

10



and that T' F(g 1],, p- But again T'I/ p since if so, by the deduction and weak
completeness theorems for RG, it should also be true that Fjg 1], (rvp) —
p, which is false for any evaluation with e(p) < r. Moreover Pavelka-style
completeness also fails. Namely, it is clear that,

Ip [[r=inf{e(p) [ e(T) = e(r Vp) =1} =1

but
| p |lr=sup{s | T Fre s — p} =0.

To prove this last equality take into account that again by the deduction and
weak-standard completeness theorems for RG, T'Frg s — p iff Fjg 1), 7V p —
(s — p) and this only holds true for s = 0. Indeed, if s # 0, take an evaluation
such that e(p) = 0, then e((r Vp) — (s = p)) =r =5 0=0. *

The same example is also valid for RNM. If T' kg 1j,,,, p were true, then
we would have Fp 1)y, ((r Vp)&(r V p)) — p, but this is false (take e such
that e(p) = 0 and r > 0.5). For Pavelka-style completeness notice that similar
arguments to the case of RG lead to || p||r=1and | p |[r<1— (r*ynpr). O

Finally we will prove that RG is strong-standard complete if we restrict ourselves
to formulas of the type r — ¢, where ¢ is a formula without rational truth-
constants (a formula of G), and expressing that ¢ is true at least to the degree
r. This type of formulas are also commonly denoted in the fuzzy logic setting as
pairs (¢, ). We shall also adopt this notation from now on. Notice that Gerla’s
fuzzy sets of formulas [7] exactly correspond to sets of this kind of formulas.

We want to show that the following equivalence holds true:

{(wiar’i) | 1= 1) 2) "7”} l_RG ((p) 5)
if and only if

{(wia”) | i=1,2, "7n} ':[071]1%0 (90, s)

To prove this result we need some previous results and lemmas. Actually, due
to the fact that RG enjoys the (syntactical) deduction theorem and to the weak
standard completeness, one can easily notice that proving the above restricted
(finite) strong standard completeness for RG amounts to prove the following
semantical version of the deduction theorem:

{(wia 7i) | i=1,2, "7n} ':[071]1%0 (90, s)
if, and only if],

Fo.1]re (/\i:l,Q,..,n(wiaTi)) — (¢, 5).
Accordingly, in what follows we prove this.
4Notice that these negative results are also valid for any logic standard complete

with respect to a continuous t-norm defining a SBL-algebra, because in such a logic the
generalized deduction theorem (like in BL) holds and the negation is Godel negation.

11



Lemma 14. Let a € (0,1] and define a mapping f, : [0,1] — [0, 1] as follows:

1, ifz>a
falw) = { xr, otherwise

Then f, is a morphism with respect to the standard Gdodel truth functions.
Therefore, if e is a G-evaluation of formulas, then e, = f, o e is another G-
evaluation.

Proof: We have to prove: (i) fa(0) = 0, (ii) fo(min(z,y)) = min(fa(2), fa(y)),
and (iii) fo(x =¢ y) = fu(x) =¢ fo(y). (i) is obvious and (ii) is also easy
immediate since f, is a non-decreasing function. So let us prove (iii). We
consider two cases:

Case A : 2z <y, ¢ =¢ y = 1. In this case, fo(x) < fu(y) as well, hence

fa(x =a y) = f(l) =1= fa(x) =a fa(y)'
Case B:z >y, © =¢y =y. Now we distinguish the following three sub-cases:

Bl:a<y<uz folr =¢y) =1. In this case fy(z) = fo(y) =1 and
hence f,(z) =c fu(y) = 1;

B2:y<a<uz fo(r =¢y) =y. In this case fo(x) =1, fo(y) = y and
hence f,(7) =¢ fa(y) = y;

B3 : y<a<a, falx =¢ y) =y. In this case f,(y) =y, fu(z) = z, and
hence fo(z) =¢ faly) =y.

So, in any of the subcases, f,(x =g y) = fo(x) =¢ fa(y).

This ends the proof. O
Theorem 15.
{(901) al)a SRRE) ((Pn; Oén)} ':[071]1%0 (wa 5) Zﬁ ':[071]RG (/\?:1(901'; Oéi)) - (w, 5)

Proof: One direction is easy. As for the difficult one, it is enough to prove that
if there is an evaluation e which is not a model of (A} (¢i, ;) — (¢, 3), then

we can find another evaluation e’ which is model of {(¢1, 1), ..., (¢n, @y)} and
not of (¢, 5).

So let e be such that e((A;—, (i, ;) — (¥,0)) < 1. If e is a model of
every (¢, ;) for i = 1,...,n, then we can take ¢ = e and the problem is

solved. Otherwise, there exists some 1 < j < n for which a; > e(y;) and thus
e((j, ) = e(p;) < 1. Let J = {j | a; > e(p;)} and let a = e(A[ (¢s, i) =
min{e(y;) | 7 € J}. Then the RG-evaluation e’ such that ¢’ = e, over the propo-
sitional variables does the job. Namely, by Lemma 14, over Gédel formulas we
have ¢/ = e, > e, so ¢ is still model of those (¢;, a;)’s fori € {1,...,n}\J. But
now, €' (p;) =1 for every j € J, so € is also a model of {(p1, @1), ..., (¢n, an)}.
On the other hand, since e((A;_; (@i, a;)) — (1, 8)) < 1, it must be 3 > e(¢))
and a = e(A]_,(¢i, @) > e(y). Now, by Lemma 14, €/(¢)) = eq(v)) = e(v)),
hence €' (v, 8)) = e(y, 5) < 1. Therefore we have proved the theorem. O
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After this last theorem, the announced result of finite strong completeness of
RG when restricted to formulas of the kind (p, «) comes as an easy corollary
Theorem 16. {(¢;, 1) | i =1,2,..,n}tre (p,5) if, and only if, {(¢i,ri) | i=
1,2,..,n} Fl0.1)re (p,8) .

Remark 1. Last theorem is valid for the restricted language of formulas of the
kind r — ¢. The validity of these type of formulas expresses that r is a lower
bound for the truth value of . We might wonder whether an analogous theorem
could be also valid for formulas of the type ¢ — 7, whose validity expresses that

r is an upper bound for the truth value of p. Unfortunately this is not true as
we can see it with the following simple example. It is easy to check that

—-—p — 0.3 ':[071]30 p—20
since the premise is only true if e(p) = 0, while
1#[071]130 (ﬂﬂp - 0'3) - (p - 0)

since if e(p) = ¢ for ¢ > 0.3 an easy computation shows that e((——p — 0.3) —
(p—0))=0.

Finally, we show that similar, although a bit weaker, complenetess results hold
for RNM.

Lemma 17. Let a € (3,1] and define a mapping f* : [0,1] — [0,1] as follows:

1, ifzx>a
ffx)=< 0, ifx<l-a
otherwise

Then f® is a morphism with respect to the standard Nilpotent Minimum logic
truth functions. Therefore, if e is a NM-evaluation of formulas, then e®* = f®oe
is another NM-evaluation.

Proof: Since = s is definable from xyp; and the standard negation n(x) =
1 —x, it is enough to prove: (i) f*(0) =0, (ii) f*(z*npmy) = f*(z) *nar [ (y)
and (iii) f*(1 —x) = 1 — f%(x). (i) is obvious and (iii) is easy. As for (ii
we consider the following cases. For x,y > é, x *np Yy = min(z,y) and f@ is
non-decreasing, so (ii) easily holds true. For z,y < 1, z *yy y = 0 and f°
is non-increasing, so f*(z *nn y) = f*(z) *nm f*(y) = 0. Finally, assume
T > é > y. In this case a careful check shows that

if y > max(1—2,1—a)
otherwise.

[ xnmy) = () xnm f4(y) = { ‘g:

Hence, the lemma is proved. o
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Theorem 18. Let ay,...,an € (5,1]. Then:
g(‘pla al)a SRRE) ((Pn; Oén)} ':[071]RN]\/1 (wa 5) Zﬁ ':[071]RN]\/1 (&'znzl((pia ai))Q -
¥, B).

Proof: One direction is easy. As for the difficult one, it is enough to prove that
if there is an evaluation e which is not a model of (&7, (¢4, @;))? — (1, 8), then
we can find another evaluation e’ which is model of {(¢1, 1), ..., (¢n, @n)} and

not of (¢, 5).

So let e be such that e((&1; (@4, i))? — (¥, 3)) < 1, i.e. (&P (i, i))?) >
e((, 8)). This means that:

(i) e((&™ (¢i, ;))?) > 0, hence for all i we have e((¢;, a;)?) > 0, hence for all
i we have e((¢;, a;)%) = e((i, o)) = max(1 — az, e(g;)) = e(;) > 3, and also
e((&fy (wi, 2))?) = miniy e((pi, i) );

(ii) e((¢), B)) < 1, hence 8 > e(v)) and e((¢, B)) = max(1 — 3, e(y))).

Therefore we are assuming an evaluation e such that minf_; e((¢;, ;) >

max(1 — 5, e(v)), with 8 > e(y).

If e is a model every (p;, a;) for i = 1,...,n, then we can take ¢/ = e and the
problem is solved. Otherwise, there exists some 1 < j < n for which a; > e(y;)
and thus e((¢;, oj)) = max(l — a;, e(p;)) = e(p;) < 1, the last equality due to
the fact that we are assuming max(1 — aj, e(¢;)) > 5 and a; > 3.

Let J = {j | a; > e(p;)} and let a = e((&, (i, 0))?) = min{e(;) | j € J}.
Then the RNM-evaluation e’ such that €/ = e® over the propositional variables
does the job. Namely, by Lemma 17, over NM-formulas x such that e(x) >
1 — a, we have €'(x) = e®(x) > e(x), so € is still model of those (¢;, a;)’s for
i€ {1,...,n}\ J. Moreover now, ¢'(¢;) = 1 for every j € J, so € is also a

model of {(p1,a1),..., (pn,an)}.

On the other hand, since 5 > (1) and e(¢)) < a, it turns out, due to Lemma 17,
that €' (v)) = e*(¢) < e(y)) and therefore 3 > €/(v) as well. So, €'((¢, 3)) < 1.
This ends the proof. O

As in the case of RG, from this last result it follows the next restricted form of
finite strong standard completeness for RNM.

Theorem 19. Let o, ..., an € (5,1]. Then:

{(901,041);---7(<Pn,04n)} FryM (waﬁ) Zﬁ {((Pl,al);---7(§0n;an)} ':[071]RN]\/1
(¥, B).

One could ask whether the conditions v, ..., a;, € (4,1] in the above theorem
are actually necessary. In fact this is so, as the following example shows. It is
easy to check that

{(p VvV q,0.7), (ﬂpa 0'35)} ':[Ovl]RN]\/I (q, 0.7)

since for any evaluation e in [0,1]gnas such that max(e(p),e(q)) > 0.7) and
e(p) < 0.65 necessarily it must be e(q) > 0.7. On the other hand, it is also not
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difficult to check that

0,1 mnar [(PV @,0.7)%&(=p, 0.35)%] — (g, 0.7).

It is enough to take an RNM-evaluation e such that e(p) = 0.7 and e(q) = 0.6:
the left-hand side of the implication is evaluated to 0.65 while the right-hand
side is evaluated to 0.6.

Finally notice in this case the fact that negation is involutive implies the equiv-
alence between formulas ¢ — r and —-r — -, which in turn implies that,
in contrast to what happens with RG, Theorem 18, and thus the finite strong

completeness as well, is also valid for formulas of type ¢ — r with r € [0, é)

5 Three families of rational extensions of the
Weak Nilpotent logic

Weak Nilpotent Minimum logic was introduced in [3] as the axiomatic extension
of MTL by the following axiom,

(WNM) (p&ip — 0) V(o AP — p&p)

and proved to be standard complete with respect to the family of WNM t-
norms and their residua. WNM t-norms are left-continuous t-norms defined
from a weak negation function n and the minimum t-norm in the following way

e — 0, if x <n(y)
n¥= min(z,y), otherwise

Well-known particular cases of WNM t-norms are the minimum t-norm (when
n is Godel negation) and Fodor’s nilpotent t-norm (when n(z) =1 — x).

WNM logic enjoys the same type of deduction theorem as for NM logic, that is,
it holds that T U {p} Fwaa ¢ il T Fwna & — 1.

The structure of the variety of WNM-algebras is still not known and there is not
a general result giving, for each WNM t-norm *, the axiomatic characterization
of the logic W N M, (the logic complete with respect to * and its residuum). The
lack of this axiomatics makes impossible to define in general its corresponding
rational logic RW N M, (using the notation introduced in the previous section),
with the exception of Godel logic (G) and Nilpotent Minimum logic (NM), both
extensions of WNM logic, whose rational expansions have been studied in the
previous sections.

In this section we first introduce three new axiomatic extensions of WNM,
weaker than G and RNM, whose corresponding varieties are proved to be gen-
erated by a WNM t-norm and hence they are suitable for defining their rational
expansions. We then prove the (weak) standard completeness of these rational
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Next we define three corresponding axiomatic extensions of WNM logic. W N M,
is the axiomatic extension of WNM by adding the axiom

(o = %) = ((p AY) — (p&et))),

W N M, is the axiomatic extension of WNM by adding the axiom

(== — ) V (77 < ),

and W N M, is the axiomatic extension of WNM by adding the axioms

(7= — ) V (== )V (2@ = ) A (—p — @)
(—=p(p) = ple)) vV ((wpw) p(¥)) — (p(e) — p(¥)))

where p() denotes x V —x. Next we will prove that, for any 0 < ¢ < 1, WN M,
is the logic of the t-norm #., and for any 1/2 < ¢ < 1, WNM, and WN M, .
are the logics of x. and o, respectively.

Lemma 20. Let A be a WNM-chain . Then:
(i) Ais a WNDM,-chain iff there exists an element ¢ € A such that the negation

. .. . A A
in A is like ny,, t.e. "z =c for 0 <z <cand ~z=0" forz>c

(ii) A is a W N M,-chain iff it has a fized point ¢ and it is such that the negation
is involutive except for a segment ending in ¢ in which — is constantly c.

(iti) A is @ WN M,-chain iff there exists an element d such that d < —d and

that — is involutive in the segments [OA, d] and in [d, 1A] and ~x = d for
x € (d, ﬂd].

Proof. (1) If ~z = 0™ for all z different from OA, then — is Godel negation and
&,A: min. Otherwise assume there exists z € A different from 0™ stjlch that - >
0", and let ¢ = —x. Let us show that ¢ = max{x € A | &z = 0" }. Indeed, if
c&e = n(x)&n(z) > 0 then, by the axiom of WNM,, n(z)&z = z An(z) > 0,
contradiction. Hence c&c = 0™, On the other hand, if y&y > 0 then it must be
y > n(z) = c (otherwise, if y < n(z), then y&y < n(z)&n(z) = 0).

Moreover, by the axiom of WNM,, if y > ¢, then y&x = = Ay for all x.
Altogether leads to , for all z,y € A: have

_J Ay, fzy>c
véey = { 0, otherwise
This proves (i).

(ii) If x = ——x for all « then — is involutive and A is an NM-chain. Otherwise
assume there exists x € A such that z < —-—z, and let ¢ = —x. Observe that
—c = ¢ since, by axiom (%), z < ——z implies -¢ = =—z = -2 = ¢. Hence also
r < ~—x = c. Let us show:
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(1) If y < ==y then -y =c.

proof: if y < ——y then -y = ——y, hence —y is a fix point of = and thus
necessarily -y = ¢ (since ¢ is a fix point and at most there is one).

(2) If y > ¢ then y = .

proof: if y > ¢ then -y < ¢. If =y < ¢ then by (1) y = ——y. If -y = ¢ assume
y < -y, hence ¢ = ~y = =y > y, contradiction.

(3) If y < ~y and —y # ¢ then y = 7.

proof: otherwise, by the axiom of WNM,, it would be ==y = -y, and hence
-y = ¢, contradiction.

Therefore, — is such that it is involutive on the set B = {x,—x | > ¢} and
-z =cfor x € A\ B. This proves (ii).

(iii) If # = ——a for all  then — is involutive and A is an NM-chain. Otherwise
assume there exists x € A such that x < -—x, and let d = -z and ¢ = ~d = ——c.
Observe the following:

(1) By the first axiom of WNMS,, if y and z are such that y < -—y and z < ~—z
implies =y = -z = d. Moreover, if y < ——y then -y < y and reciprocally if
-y > y then y = ——y. If also follows that d < ¢. Otherwise, if d > ¢ then
-x =d > c¢= -~z > x, contradiction.

(2) If y > ¢ then y = —~y.

proof: indeed, if y < ~—y then —y = d, hence y < ==y = ¢, contradiction.
(3) If y = -~y > -y and z < =~z then z > y.

proof: this follows from the second axiom of WNM,.

(4) If y > d then y > —.

proof: If y > d then -y < —d = ¢. Now assume y < -y, then by (3) -y > ¢,
hence —y = ¢, hence =—y = =¢ = d < y, contradiction.

All these properties lead to have — defined as follows: if d < z < ¢ then —x = d,
otherwise it is such that -—x = x.

Corollary 21. Let A be a WNM-chain on [0, 1] and let — be its negation.
Then:
o Ais a WNM,-chain iff there exists ¢ < 1 such that = = n,,.
o A is a WN M, -chain iff there exists c € [1/2,1) such that = is isomorphic®
to ny, (resp. no,).
o A is a WNM,-chain iff there exists ¢ € [1/2,1) such that = is isomorphic
to N,

Theorem 22. If + denotes x, x or o, the logic W N M is complete with respect
to each one of the following sets of chains:

5Tn the sense of Trillas [12].
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(1) the linearly ordered W N M -chains.

(2) the W N M, -chains over [0,1].

(8) the WN M -chain over [0,1] defined by a t-norm +., where 0 < ¢ < 1 for
+ being * and 1/2 < ¢ < 1 for + being * or o.

Proof. We sketch the proof for W N M, the proofs for W N M, and W N M, are
similar. The first result (1) is a particular case of the general result about all
axiomatic extensions of MTL (see preliminaries). The proof of (2) is actually
completely analogous with the obvious changes to the proof of standard com-
pleteness of WNM given in [3]. Finally, from the last lemma, the only W N M,-
chains on [0, 1] are those defined by the WNM t-norms ., for ¢ € [0,1). But
it is easy to prove that all t-norms %, with ¢ > 0 are isomorphic and that xq
(= min) is isomorphic to the subalgebra of any of them defined on the subset
{0}U (¢, 1]. Thus any W N M,-chain over [0,1] defined by a t-norm s, with ¢ > 0
generates the whole variety of W N M,-algebras. Hence (3) is proved.

Notice that, according to Footnote 5, in (3) of the above theorem we could also
consider other isomorphic t-norms for the cases of + being x and o.

5.2 Standard completeness of logics RW NM,, RW NM,
and RW NM,

Now we will consider rational expansions of the logics WNM,, WNM, and
WNDM,. To do so, as previously done, we add to the language as many truth-
constants as rationals in [0,1], and we add to the each one of these logics a set
of book-keeping axioms corresponding to one t-norm whose induced standard
algebra belongs to the corresponding variety of the logic. Actually, given any
of the three logics, we obtain a different rational expansion for each particular
t-norm used to define the book-keeping axioms, since these axioms are obvi-
oulsly different. However, for each one of these three logics, only two of their
rational expansions are really different, in the sense of Theorem 9 of not being
translatable. Namely, according to Remark 2 and Corollary 21, it will suffice
for WNM, to consider the rational expansions RW N M, (x.) only for two t-
norms, *g = min and one %, for some ¢ > 0, while for the cases of W N M,
and WN M, it will suffice to consider the rational expansions RW N M, (x.) and
RWNM,(o.) only for the t-norm 1,9 = 01/2 and for one pair of t-norms .
and o, respectively for some ¢ > 1/2.

In order to prove standard completeness for these rational expansions, we start
with the following general lemma that describes how rational constants are
distributed in the linearly ordered algebras of these logics.

Lemma 23. Let + denote x, x or o, and let ¢ any suitable parameter defining
the t-norms %, x. oro.. For any RW N M, (4.)-chain A = (A, &, —, A, V, {r*
r € QN [0,1]}) (hence satisfying the book-keeping axioms of +.) the following
conditions hold:

19



(i) The set Ry = {r € Q| r* = 1A} is a right-closed interval with 1 as upper
bound.

(i) The set R ={r € Q| r4 = OA} coincides with ny,(Ry).
(iii) 4 < s for any rationals v < s not belonging to Ry U Ry.
(iv) If r € Ry then —rA <A Ifr € Ry then —rA > 1A,

(v) If r < ny (1) then r* < —rA

(vi) If 7 = ny (r) then r* = —rA
(vii) If r > ny_(r) then r* > =4

(v) If ny (r) =n (s) then —r? = —sA

(v) If r =ny_(ng (1)) then r = ——rA

Proof. Ttems (i), and (ii) and (iii) are generalizations of Lemmas 10 and 11 and
are proved very similarly. The rest of items are quite straightforward.

Let RWNM,,, RWNM,, and RWNDM,, be these logics respectively, where c
is any suitable parameter defining the t-norms *., . or o..

Next result establishes the (weak) standard completeness of the logics with
respect any WNM t-norm of their corresponding families.

Theorem 24. If+ denotes *x, x or o, and ¢ any suitable parameter defining the
t-norms *c, *c or o¢, then Frwnnm, ¢ if, and only if, Fo 1), ¢-

Proof: The proof for RW N M, is very similar to that of Theorem 12 for RG
and the proofs for RW N M, . and RW N M,, are very similar to that of Theorem
13 for RNM. We will not repeat them here since the contructions are esentially
the same, but just comment a few remarks. Given that ¥ grwnar, @, there exists

a countable RW N M, -chain C and an evaluation over C' such that e(y) < 1C,
and the task is to define another evaluation ¢’ over a RW N M -chain on [0,
1] such that €'(p) < 1. Let again X = {e(v)),nc(e(v)) | ¥ subformula of
©} U{0¢,1¢} and define o = inf{r | 7€ = 1C} > c. The two relevant cases to
consider now are o > c and o = c.

In the first case, the previous Lemma 23 allows to define an strictly increasing
injection

g: <Xa SC) — <[0,0é), S>
which also preseves the negation in X and such that g(r®) = r for each 7€ €
X. Then the evalution ¢ we are looking for is defined by putting for each
propositional variable p, €'(p) = g(e(p)) if p € X and €'(p) = 1 otherwise,
together with e’(r) = r for each rational r.
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In the second case, a = c,

Consider first the case that o = inf{r | e(r) = 1C} > ¢. Now we can take
an order-preserving injection g : ([OC, 1C), <¢) < ([0,a), <) which is strictly
increasing and such that g(e(r)) = r for all rational r < «. Then we define
an RW N M., -evaluation €' on the standard RW N M, -algebra [0, 1] as follows:

e’ (p) = g(e(p)) for all those propositional variables p such that e(p) < 1C, and
e'(p) = 1 for those p such that e(p) = 1€, Then ¢ is extended to RWNM.,-
formulas as usual. We want to show that €' () < 1. Actually, one can prove,
by induction on the complexity, that for any formula v the following statement
holds: “if e(v)) = 1€ then () > a, and if e(y)) = e(z) < 1¢ for some atom
(propositional variable or truth-constant) x in v then € (¢) = €'(z) < a”. We
omit details here. In particular, then from e(p) < 17 we can derive €' (¢) < 1,

and the theorem is proved. Consider now the case a = ¢, i.e. ¢ = 1¢ for
all r € QN (e, 1]. In such a case we can build a new RW N M,-chain C; and

an evaluation eq over Ci such that e1(p) < 1° and inf{r | e(r) = 161} >0
and then we will be able to apply the proof of the previous case. To build this
chain let s = min{r € QN (c,1] | r appears in p}. Without loss of generality
we can assume C N Q = 0. Then take C1 = C U ([0,5) N Q) and let Cy be the
RW N M, -chain defined over Cy by the meet operation:

xAcy, ifxzyelC
x Ny, fz,yeQ
T, ifzeQ,yeC
Y, ifzeCyeQ

T N\c, Yy =

and define the constants v as follows:

e 15 ifrels]]
= .
r, if re|o0,s)

Now define ey as the RW N M, -evaluation over Cy such that e1(x) = e(x) for
each propositional variable x. Obviously ey is an RW N M, -evaluation over the

countable RW N M,-chain C; where inf{r | e(r) = 161} = s > c such that
e1(p) < 19 as required.

5.3 On finite strong completeness for RW NM,, RW N M,
and RW NM,

Regarding the issue of strong (standard) completeness the situation is again
very similar to that for RG and RNM. Actually, the same examples given in
Section 4 also work, with slight adaptations, to show that the rational logic
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RWNM,, RWNM, and RW N M, have neither (finite) strong standard com-
pleteness nor Pavelka-style completeness. Nevertheless, again as in the cases of
RG and RNM, these logics are (fiinite) strong standard complete if we restrict
ourselves to formulas of type r — ¢. And again, due to the (syntactical) de-
duction theorem for WNM, to show these results it will be enough to prove the
following semantical counterpart of the deduction theorem for our logics.

Lemma 25. Let a € (¢,1] and define a mapping f* : [0,1] — [0,1] as follows:

1, ifz>a
fix)=< 0, ifx<mny,
otherwise

Then f® is a morphism with respect to the operations of the algebra [0,1]4..
Therefore, if e is a W N My -evaluation of formulas, then e* = f®oe is another
W N My -evaluation.

Proof. To be written.

Theorem 26. Letry,...,1, € (¢,1] and s € [0,1]. Then:
{((Pl; Tl)a R} ((Pn; TTL)} ':[0,1]+C (wa 5) iff ':[0,1]+C (&?zl ((p’ia Ti))Q - (wa 5)

Proof: One direction is easy. As for the difficult one, it is enough to prove that
if there is an evaluation e which is not a model of (&7, (¢4, 7:))* — (¢, s), then
we can find another evaluation e’ which is model of {(¢1,71), ..., (¥n, )} and
not of (¢, s).

Let e be an evaluation such that e((&?";(pi,7:))? — (¥,5)) < 1, ie.
e((&"_; (pi,7:))?) > e((1, 5)). This means that:

(i) e((&™(pi,7:))?) > 0, hence this is also valid for each i and thus
e((i,13)?) = e((i, 1)) > c and e((&fy (95, 74))?) = ming_y e((¢i, 73)) > ¢;

(ii) e((¢, s)) < 1, hence s > e(y)) and e((¢, s)) = max(1 — s, e())).

Therefore we are assuming an evaluation e such that min}_; e((p;, 7)) >
max(1 — s, e(v))), with s > e(¢).

If e is a model of every (p;,r;) for i = 1,...,n, then we can take ¢’ = e¢ and the
problem is solved. Otherwise, there exists some 1 < j < n for which r; > e(y;)
and thus e((¢;,7;)) = max(l —r;,e(p;)) = e(p;) < 1, the last equality due to
the fact that we are assuming max(1 —rj, e(¢;)) > cand r; > c.

Let J = {j | r; > e(p;)} and let a = e((&] (i, 74))?) = minfe(p;) | j €
J}. Then the RW N M -evaluation €’ such that ¢/ = e® over the propositional
variables does the job. Namely, by the corresponding transformation of Lemma
25, over RW N M -formulas, €’ is a model of (¢;,r;)’s for all 4.

On the other hand, since s > e(y) and e(y)) < a, it turns out, due to the
corresponding translation of Lemma 14, that e’ (1)) = e®(¢)) < e(v)) and therefore
s> €' () as well. So, €/'((¥, s)) < 1 and the proof is completed. O

22



Finally, finite strong completeness results for RWNM,, RWNM, and
RW N M,, when restricted to formulas of the kind (¢, ), come as an easy conse-
quence as the last theorem. Next corollary sumarizes these three results (for +
being any one of the three symbols %, x or o) with the restriction for the values
r; as in the corresponding theorem.

Corollary 27. {(¢i,73) | i = 1,2,..,n} Frwnm,, (@,s) if, and only if,
{(@Wiyri) [i=1,2,..,n} Foy,, (¢,5) -

6 Conclusions and further work

Book-keeping axioms can be defined only when we have chosen a t-norm and its
residuum. Thus the process to create a new logic by adding truth constants has
only sense if the initial logic is “the” logic of a left continuous t-norm and its
residuum. RPL, RG (rational Gédel), RNM (rational Nilpotent Minimum) and
the examples of RWNM studied in the paper, have sense since L, G and NM
and the consisered axiomatic extensions of WNM are “the” logics of Lukasiewicz
t-norm, of minimum t-norm, nilpotent minimum t-norm and of the t-norms *.,
*c and o, (and their residua) respectively. For example, RBL has no sense
since BL, the logic of all continuous t-norms and their residua, is the logic of a
family of t-norms and thus it is not determined what t-norm can be used in the
book-keeping axioms.

In [5], for each continuous t-norm #, the extension of BL, noted BL(x), which is
standard complete with respect to the BL-algebra in [0, 1] defined by the con-
tinuous t-norm * and its residuum, is defined. Moreover an algorithm to obtain
a finite axiomatization of them is also given. This group of logics are suitable to
be extended with rational truth-constants by adding the corresponding book-
keeping axioms. In this way an interesting matter of future research could be
the definition and study the rational extensions of the logics BL(x).
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