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Abstract

Representational issues of preferences in the framework of a possibilistic
(ordinal) decision model under uncertainty are analysed. In this
framework, uncertainty and preference are measured on different (finite)
lattice structures, ranging from lineal scales to general distributive
lattices. These structures are required to be commensurate. In this
context, decisions can be ranked according to their expected utility in
terms of generalised Sugeno integrals where t-norms and t-conorms play
a role. For these generalised utility functions we provide axiomatic
characterisations. Moreover, we propose how to extend the utility
functions to cope with belief states that may be partially inconsistent
and we show their usefulness to provide elements for a qualitative case-
based decision methodology. Finally, we provide characterisations of the
refinement orderings involving the utility functions proposed and we also
propose a new framework with a weaker commensurability hypotheses.






Chapter 1

Decision under Uncertainty

We begin this Chapter giving a short introduction to situate our work.
Next, in Sections 1.2 and 1.3, we give an outline of the goals and main
contributions of the thesis and we link them with already published papers
that summarise our work. Finally, in Section 1.4 we describe the structure
of this Ph.D. dissertation.

1.1 Introduction

Decision making is a daily activity which is involved in most of the acts
we usually do. Usually different areas as Artificial Intelligence, Operation
Research, Game Theory, Social Psychology and others are interested in
models for Decision Making.

Decision Theory (DT) may be understood in a broad sense and
therefore related to different issues like individual decision making or
Game Theory. Bacharach and Hurley (1991) observed that

“It (Decision Theory) is about the ways in which decisions are
related to the Decisions Maker’s aims and to her beliefs about
how her options serve her aims.”

There are two aspects that the different DT interpretations have in
common:

e The subject of Decision Theory is the rational agent.

e The goal of Decision Theory is to have abstract theories of rational
agency. That is, to obtain systematic constructions deduced from
an axiomatic setting that are independent of the decision making
domain.



Taking a decision amounts to choose, according to some criteria, the
“best” of a set of available alternatives taking into account the available
knowledge.

There are many approaches to rational decision making, however,
many of them agree on the fact that the selection of decisions
is determined by two factors: the Decision Maker’s preference on
consequences and the information or belief about the current state of
affairs the Decision Maker (DM for short) has.

Usual assumptions in the different proposals for decision making
theories are:

e rationality hypothesis:  the Decision Maker is interested in
maximising his utilities.

o the feasibility of representing DM’s preference relation < on
consequences by a preference function on them, i.e. the existence
of a function u : X — (U, <y), X being the set of consequences and
(U, <v) the preference valuation set, such that

Ty iff u(z) <v u(y),

is assumed. Usually, it is supposed U = R.

We are interested in those models that assume the existence of a
mapping u representing Decision Maker’s preference on consequences.
Hence, a problem of decision making may be represented by a 4-tuple
< S, X, D, u> with § being the set of states or situations, X the set
of consequences or outcomes, and D is the set of available decisions or
alternatives.

As it was mentioned, decision making depends on the available
knowledge. For example, if a precise description of situations is available
and each decision d on § is represented as a function d : S — X providing
the consequence of the decision in each situation, we may apply this simple
decision making model (see Figure 1.1):

Given a situation sg and a set of available decisions D, a best
decision will be a maximal element of D with respect to the
order <, induced by preferences on the consequences, <j,
being defined as

d=s,d it u(d(so)) <v u(d(sg))- (1.1)
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situations consequences preferences

S (X, E U, <)

A IRCIES)
> | u(d'(s)
u(d”(sy)

Ranking decisions induced by consequences

d < d it d'(sg) < d(%) iff  u(d'(s)) <, u(d(s))

Figure 1.1: Decision without uncertainty: a simple model.

But in the real world, we may be faced with incomplete or ill-specified
decision problems in which we cannot apply on (1.1) to define an order
in D. For example, we may be in one of the following cases:

e the decision is precisely defined, but the real situation is imprecisely
known (i.e. the actual state may be represented by a probability or
a possibility distribution 7y on the situations).

e 5 is precisely known, but d is imprecise (i.e. the actual consequence
of d may be represented by a possibility distribution on the
consequences).

® s is precisely known, but d is only partially known, i.e. d is partially
defined.

In these cases, the simple model has to be extended to take decisions in
an uncertain context.

As it has been mentioned, if there is no uncertainty, we may rank
decisions applying (1.1). However, there are many problems in which the
available information is poor. That is, we are in an uncertain decision
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making context. In these cases, a representation for uncertainty may
be given or not. If no uncertainty representation is given, we may
consider different criteria like those that evaluate a decision in terms of
its worst possible consequence, its best one, or in terms of some weighted
aggregation of them (for more details of some of these criteria you may
see, for example, (Wald, 1950; Hurwicz, 1951; Luce and Raiffa, 1957)).
Other alternatives emerge from considering that fuzzy measures can
be applied to model uncertainty (Grabisch, 97) (see Figure 1.2). In this
case, another component is added to the 4-tuple modelling the problem.
Now, we are considering < S, X, D, u, p >, where 4 : S — V is a fuzzy

uncertainty dist. on Sp: S - V

uncertainty dist. on X p 4 X - V DM'’s preferenceon X u: X- U

%(d): ranking of d’s according to somaggregation of (1 4, u)

d< d iff %(d) < #(d)

Figure 1.2: Decision Model with Uncertainty Representation

measure, V being an uncertainty scale.

Some particular kinds of fuzzy measures are Probability, Possibility
and Necessity measures (Wang and Klir, 1992).

The basic references in classical Decision Theory under Uncertainty
are Von Neumann and Morgenstern’s Ezpected Utility Theory (1944), and
the version of Savage (1972), characterising preference relations under
uncertainty and the rationality hypothesis. Both approaches assume that
uncertainty s represented by probability distributions.
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Von Neumann and Morgenstern assume a probability distribution
encoding uncertainty on situations. Then, each decision induces a
probability distribution on X defined as

Py(z) = Z P(s).

seS|d(s)=x

They consider each decision as identified with its associated probability
distribution on X. So, to rank decisions they consider:

d<d if P;<Py. 1.2
d d

Hence, they focus on utility functions for probability distributions on
consequences.

Distributions are ranked in terms of their expected value with respect
to Decision Maker’s preferences on consequences. That is, if numerical
preferences u : X — R are assigned to consequences, then distributions
are ranked as follows:

Py < Py iff E(Pdau)SE(Pd’au)’ (13)

where
E(Py,u) =Y, Pa(w)u(z)
T€X

is the expected value of u with respect to the probability distribution Pj.

They propose to extend the initial model considering (1.3) instead of
(1.1). Namely, Von Neumann and Morgenstern postulate that the “best”
decisions, according to Ezpected Utility Theory (EUT), are those whose
corresponding probability distributions maximise the expected utility of
U.

Savage (1972) proposes a somewhat different framework for EUT. He
axiomatically characterises the preference relation on acts of Decision
Makers that behave as EUT agents, i.e. that satisfy

d<d if  E(Puod)<E(Puod) (1.4)

with u : X — R (representing DM’s preferences on consequences) and
P : S — [0,1] being a probability distribution derived from the axiomatic
setting. That is, Savage’s version of (1.1) is (1.4) which is the same of
considering (1.2 ) together with (1.3).

The classical axiomatic frameworks of Utility Theory have actually
been questioned rather early, challenging some of the postulates leading to
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the expected utility criterion. Noticeably, Allais (1953) and later Ellsberg
(1961) laid bare the existence of cases where a systematic violation of the
expected utility criterion could be observed. Some of these violations
were due to a cautious attitude of Decision Makers.

Another problem with EUT is that it needs numerical probabilities
for each state and numerical utilities for all possible consequences.
Sometimes, this assumption is too strong if there is only incomplete or
poor available information. In these cases, a more qualitative approach
is needed.

Another model is proposed by Gilboa and Schmeidler (1995). They
claim that Decision Making under uncertainty is, at least, partly case-
based. They suggest that people choose acts based on their performance
in the past and they propose a Case-Based Decision Theory (CBDT).

As Doyle and Thomason (1999) comment in a recent paper, there
are many experiences showing that usually people explain and make
their decisions with partial, generic and “uncertain” information. Hence,
a qualitative approach may give tools for representing this decision
making behaviour. Doyle and Thomason summarise main proposals on
Qualitative Decision Theory. Among them, we find those models that use
Possibility Theory as uncertainty formalism, in which two alternatives
emerge: a la Von Neumann and Morgenstern, initiated by Dubois and
Prade (1995), or a la Savage. Dubois et al. (1997h) propose a Savage’s
approach in a possibilistic framework and Sabbadin (1998a) develops this
approach in his Ph.D. thesis.

In this Ph.D. we will follow the former approach, an axiomatic
framework that is a qualitative counterpart to Von Neumann
and Morgenstern’s Expected Utility Theory. It makes use of
qualitative/ordinal preference and uncertainty valued on finite sets,
equipped with the maximum, minimum and an order reversing
operations, that are commensurate'. This Qualitative Decision Theory
appears as the natural decision theory related to Possibility Theory.

1.2 (Goals

We focus our work on representational issues of preferences in a framework
of a possibilistic (ordinal) decision model under uncertainty, in the Von
Neumann and Morgenstern’s style.

'In fact, we are now working on weakening this requirement, our first steps on this
line are summarised in Section 9.2.



Working Framework
We will assume the following working hypotheses
o We will deal with individuals’ preferences.
e Rationality hypothesis, i.e. DM will try to maximise his benefit.

e The feasibility of representing DM’s preference relation on
consequences by a preference function u on them is assumed. But,
instead of choosing u as a real-function, we consider that it is defined
over a finite set U of qualitative/ordinal values.

e Uncertainty is assumed of being of possibilistic nature, and it is
measured on a finite set of qualitative/ordinal values V.

e One-shot decision problems.

We will be interested in different (finite) lattice structures where to
measure preferences and uncertainty, ranging from lineal scales to general
distributive lattices with involution.

First, following Dubois and Prade’s proposal, we shall assume (finite)
linear uncertainty and preference scales. We shall consider two qualitative
criteria that generalise the well-known maximin and maximax criteria,
making them more realistic. They are suited to one-shot decisions and
they are not based on the notion of mean value, but take the form of
medians.

The first goal will be to improve the axiomatic characterisations of
these pessimistic and optimistic orderings. These functions are utility
functions in the sense that they not only preserve the preference ordering
but the max-min mixture on II(X), the set of normalised possibility
distributions on X, as well.

Besides max-min mixtures of possibility distributions, we consider
other mixtures involving t-conorms and t-norms. For each t-norm
T and conorm | on V, we will be interested in 1-T mixtures that
combine two possibility distributions 71 and 7y into a new one, denoted
M+ | (71,75 A, ), with A\, p € V and ALy = 1, defined as

My (w1, w3 A p) (2) = (AT (2)) L(w Tz (x)).

We shall require these mixtures to satisfy a form of reduction of
lotteries, leading to restrict ourselves to max —T mixtures (Dubois et al.,
1996b). So, for each t-morm T on V, we may consider Possibilistic
Mixture.



Thus, a second goal will be to characterise the behaviour of functions
that preserve these possibilistic mixtures. Moreover, we will look for
preference relations on (II(X),M+) that are representable by these
generalised utility functions.

The direct application of these models for case-based decision problems
may have unsatisfactory results because of the possibly non-normalised
distributions involved. So, a third goal will be to extend the models to
deal with these type of problems.

There are actual problems where the available information may be only
partially ordered, for example, preference on consequences may be given
in terms of a vectorial function over a product of linear scales if preference
is expressed in terms of the marginal preferences. To be able to deal with
these types of problems, a further extension of the model will be analysed.
We will propose utility functions, representing pessimistic and optimistic
criteria, defined in terms of partially ordered preferences on consequences
where uncertainty may also be measured on lattices. Therefore, a last
goal will be to characterise these orderings and the preference relations
representable by them as well.

1.3 Contributions

Our approach, as already mentioned first outlined by Dubois and Prade
(1995), is focused on an axiomatic framework to Possibilistic Decision
Theory that may be regarded a qualitative counterpart to Von Neumann
and Morgenstern’s Expected Utility Theory.

First, we consider (finite) qualitative/ordinal preference and
uncertainty linear scales, equipped with the maximum, minimum
and an order reversing operations, that are commensurate. This
commensurateness hypothesis means that we are assuming the existence
of an onto order-preserving mapping h: V — U.

Under these hypotheses Dubois and Prade proposed a first axiomatic
setting to characterise the preference relation induced by a pessimistic
qualitative utility which is expressed in terms of the preference on
consequences and the “possibilistic” lotteries on S, S being the finite
set of situations.

We provide an improvement of Dubois and Prade’s axiomatic setting
together with the representation theorem of preference relations induced
by a pessimistic utility function defined as

QU™ (mfu) = minmax(n(w(z)), u(z)),
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with n = ny o h, ny being the reversing involution in U.

Sometimes, this criterion may be too conservative and we may be
interested in an optimistic criterion, like requiring 7 to make at least one
of the good consequences highly plausible, at least to some extent. This
behaviour is reflected assessing a degree of intersection between the fuzzy
set of possible consequences and the preferred ones. That is, we shall also
consider the utility function

QU (r|u) = max min(h(7(z)),u(z)).
r€eX

We adequate the axiomatic setting given for pessimistic utilities,
to represent this optimistic behaviour, providing the respective
representation theorem.

We show that both qualitative functions are utility functions, in the
sense that they not only represent the given preference relation, but they
preserve the internal operation as well.

To sum up, two qualitative criteria are ariomatised in this setting: a
pessimistic one and an optimistic one, respectively obeying an uncertainty
aversion azxiom and an uncertainty-attraction axiom. As it is said, these
criteria generalise the well-known mazimin and mazimazx criteria, making
them more realistic.

As also mentioned, we have been also concerned with max—T
mixtures on II(X). Thus, we have been also interested in the behaviour
of functions that preserve these possibilistic mixtures.

We propose the following generalised qualitative utility functions,
which are extensions of the qualitative utility QU and QU :

GQU ™ (w) = minn(n(z;)TXN),
T, €X
GQUT(r) = maxh(n(z:)T ),
T, €X
where n(\;) = u(z;) = h(y;), withn =ngy o h, h: V — U being an onto
order-preserving mapping, verifying a further coherence condition w.r.t.
T to guarantee the correctness of the above definition, namely:

h(A) = h(p) = h(aTA) = h(aTu), VYo, A\ peV.

These generalised utility functions may result in different orderings from
the ones associated with QU.
We characterise the preference relations on II(X) that are

representable by the above generalised qualitative utilities GQU ™~ and
GQU™.
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One of the possible applications of these decision models is for case-
based decision problems, where a memory of cases M, summarising the
behaviour of decisions in previous situations, is assumed to be available
as well as a similarity function on situations Sim : S x S — V.

We propose to estimate to what extent a consequence x can be
considered plausible, in a current situation s after taking a decision d,
in terms of the extent to which the current situation sg is similar to
situations in which x was experienced after taking the decision d.

This amounts to assume, for each case (s,d,z) in a memory M, a
principle stating that

“The more similar sy is to s, the more plausible z is a
consequence of d at sy”.

This kind of guiding meta-rule has been recently considered in
(Dubois et al., 1997a) for case-based reasoning. According to this
principle, given a memory of cases M, if a similarity relation is available in
the set of situations, the following possibility distribution mq 4, : X — V
on the set of consequences can be derived

74,50 (2) = max{Sim(so, s)| (s,d,z) € M},

where, by convention, we take max () = 0.

Then, given a preference function on the set of consequences
u: X — U, the utility Uz (d) of decision d can be estimated, in terms
of its associated distribution.

However, these distributions may result non-normalised, and the direct
application of the utility functions mentioned up to now may result in
unsatisfactory results.

In order to cope with these problems, following the proposal of
(Dubois et al., 1997a), we obtain new criteria modifying the utility
functions previously mentioned with a level of wuncertainty, which
correspond to the degree of inconsistency of the distributions. Hence, we
extend the model to include non-normalised distributions providing the
axiomatic characterisations of these utilities.

In some case-based decision problems, as it is noticed by Gilboa
and Schmeidler (1996), the evaluation of the utility of a decision may
involve not only the behaviour of this act in previous situations but other
decisions as well. In order to deal with this type of problems, we propose
to apply the principle:

“The more similar are (sg,d) and (s,d’), the more plausible
is a consequence of d at sp”.

12



There are certain kind of decision problems where we are not able
to measure uncertainty and/or preferences in such linearly ordered sets,
but only in partially ordered ones. For example , we may have partially
ordered uncertainty in case-based decision problems when the degrees
of similarity on problems are only partially ordered. In this case, if we
are not provided with an aggregation criterion for similarity vectors that
summarises the criteria on an ordinal linear scale, we are not able to apply
the previously mentioned models.

Hence, we are also interested in a qualitative decision model that let
us make decisions in cases where the DM’s preferences on consequences
are only partially ordered or when the uncertainty on the consequences
is measured on a lattice.

In order to cope with some of these situations, we propose an extension
of the model in two steps:

1. preferences and/or uncertainty are measured on finite products of
(finite) linear scales,

2. both preferences and uncertainty are graded on distributive lattices.

Most of the contributions contained in this thesis have been reported
in the following publications:

e Lluis Godo and Adriana Zapico.On the Possibilistic-Based Decision
Model: Characterisation of Preferences Relations under Partial
Inconsistency.? In Applied Intelligence (accepted).

e Didier Dubois, Lluis Godo, Henri Prade and Adriana Zapico.
On the Possibilistic-Based Decision Model: From Decision under
Uncertainty to Case-Based Decision.> In International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 7(6), pages
631-670,1999.

e Lluis Godo and Adriana Zapico. Generalised Qualitative Utility
Functions for Representing Partial Preferences Relations. Joint
Conf. EUSFLAT-ESTYLF99, pages 343-346, Mallorca, 1999.

e Adriana Zapico. Axiomatic Foundations for Qualitative/Ordinal
Decisions with Partial Preferences. In 16th. International Joint
Conf. on Artificial Intelligence (IJCAI'99), pages 132-137,
Stockholm, 1999.

2This is a revised and extended version of the paper (Zapico and Godo, 1998b).

3This is a revised and extended version of the papers (Dubois et al., 1998c) and
(Dubois et al., 1998d).
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e Didier Dubois, Lluis Godo, Henri Prade and Adriana Zapico.
Making Decision in a Qualitative Setting: From Decision under
Uncertainty to Case-Based Decision.In 6th International Conference
on Principles of Knowledge Representation and Reasoning(KR’98),
pages 594 — 605, Trento, 1998.

e Lluis Godo and Adriana Zapico. Case-Based Decision: A
Characterisation of Preferences in a Qualitative Setting. In Congreso
Espanol de Tecnologia y Légica Difusa (ESTYLF’98), pages 405—
412, Pamplona, 1998.

e Didier Dubois, Lluis Godo, Henri Prade and Adriana Zapico.
Possibilistic Representation of Qualitative Utility: An Improved
Characterisation. In 7th Conference on Information Processing

and Management of Uncertainty in Knowledge-Based Systems
(IPMU’98), Paris, pages 180-187, 1998.

e Adriana Zapico and Lluis Godo. Axiomatic Foundations for
Qualitative/Ordinal Decisions with Partially Ordered Preferences.
Tech. Rep. IITA 98/33.

e Adriana Zapico and Lluis Godo.On the Possibilistic-Based Decision
Model: Preferences under Partially Inconsistent Belief States. In
ECAI’98 Workshop on Decision theory meets artificial intelligence:
qualitative and quantitative approaches, Brighton, pages 99-109,
1998.

e Adriana Zapico and Lluis Godo. On the Representation of
Preferences in Possibilistic Qualitative Decision Theory.In Jornades
d’ Intel.ligéncia Artificial: Noves Tendencies. Organised by the
Catalan Society of Artificial Intelligence, Lleida, pages 118-125,
1997.

There are some on going works that, although they are in the first steps,
we understand that may result in further contributions:

e As it has been said, we are mainly interested in the representational
issues of possibilistic decision model under uncertainty, however,
the possible application of our model of course is of our interest.
Two projects in which the Institut d’Investigacid en Intel.ligéncia
Artificial (IITA- CSIC) is now involved give us the context for
beginning the analysis of the support that the models could provide.
Up to now we are in the firsts steps of the analysis.
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o We propose to weaken the commensurability hypothesis, not
requiring h to be onto. We provide the characterisations of these
orderings for finite linear scales.

e In some problems it may be not enough to rank distribution taking
into account one criterion, for example the pessimistic criterion, and
we may be interested in refining it by another one (e.g. the optimistic
criterion). We analyse the characterisation of some refinements
involving the generalised qualitative criteria we have proposed.

1.4 Structure of the Thesis

The Thesis is structured as it is detailed below.

Chapter 1 contains a small introduction, the organisation of the
memory and our goals and contributions.

In Chapter 2, we summarise some approaches to decision making under
uncertainty, mainly the classical approach of Von Neumann and
Morgenstern together with some alternative approaches, among
which we are especially interested in Possibilistic and Case-based
Decision Theory.

Ezpected Utility Theory has two approaches. In Chapter 3, we
summarise the possibilistic view of these versions: Savage’s
possibilistic approach, developed by Sabbadin and Dubois et al. and
Von Neumann and Morgenstern’s approach, initially proposed by
Dubois and Prade and which we extend in this work.

In Chapter 4, following the Von Neumann and Morgenstern’s
possibilistic approach, we propose an improvement of Dubois and
Prade’s axiomatic setting for qualitative decision criteria under
uncertainty where only ordinal commensurate scales are required
for assessing uncertainty and preference. These criteria generalise
the well-known maximin and maximax criteria, making them more
realistic.

Chapter 5: These criteria measure a degree of intersection/inclusion
of 7, the set of possible consequences, and u, the set of preferred
consequences. In this Chapter we consider extended and alternative
definitions of these operations, so that other utility functions are
obtained. In particular, two ordinal utility functions that generalise
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previous ones are studied. We provide the characterisations of the
preference relations induced by these functions.

Chapter 6: Up to this Chapter, we have been applying finite linear
order scales to measure uncertainty and preferences. Now, we deal
with decision problems that do not satisfy this linearity hypothesis.
This point is developed through the memory in three steps. In
this Chapter, we suppose that uncertainty and/or preferences are
measured in a finite product of (finite) linear scales.

Secondly, in Chapter 7, uncertainty and/or preferences are measured

on finite distributive lattices and utility functions are defined
assuming that the only available operations are minimum, mazimum
and an involution.
Finally in a third step, we consider that other (t-norm-like)
operations, different from minimum and mazimum, are available.
In particular, we consider finite, distributive, residuated lattices
with involution as uncertainty and preference valuation sets.
Consequently, the axiomatic decision model is extended to
adequately cover these general algebraic structures as domains for
the utility functions.

Chapter 8: In order to apply the models when the belief states are
partially inconsistent, what may happen in case-based decision
problems or when different sources of inconsistent information
are available, the possibilistic decision framework is extended
to cope with non-normalised distributions. Moreover, elements
for a qualitative case-based decision methodology are proposed,
with pessimistic and optimistic evaluations formally similar to the
expressions which cope with uncertainty, up to modifying factors
which handle the lack of normalisation of similarity evaluations.
Also, we analyse the application of similarity functions involving acts
for Possibilistic Case-Based Decision Theory following the proposal
of Gilboa and Schmeidler.

Chapter 9: We describe some results obtained in the on going
research, one related with the commensurability hypothesis between
the uncertainty and preference values sets and the other with
refinements of orderings are summarised here.

In Chapter 10, we show that our model may be applied for some
decision making problems involved in two projects that are being
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developed in the Institut d’Investigacid en Intel.ligéncia Artificial
(IITA- CSIC).

Chapter 11: In this last Chapter of the memory we summarise the main
contributions, we list the most interesting open problems left in
this Ph.D., and describe research topics to be addressed in the near

future.
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Chapter 2

Decision Theory: Some
Approaches

A problem of decision making may be represented by an 4-tuple
< S, X, D, u> being S the set of states or situations, X the set of
consequences or outcomes. As it was said, we are interested in those
models that assume the existence of a mapping u representing Decision
Maker’s preference on consequences. Finally, D is the set of available
decisions or alternatives, where decisions are functions d:S — X.

As it was mentioned, if there is no uncertainty, we may rank decisions
applying (1.1) (see Figure 1.1), that is,

d=<sod iff u(d(so)) <u u(d'(s0))-

However, there are many problems in which the available information
is poor. That is, we are in an uncertain decision making context. In
these cases, a representation for uncertainty may be given or not. If any
uncertainty representation is given, we may consider different criteria like
those that evaluate a decision in terms of its worst possible consequence,
its best one, or as weighted aggregation of them. Some of these models
are introduced in the first Section.

Other alternatives emerge from considering that fuzzy measures can
be applied to model uncertainty (Grabisch, 97) (see Figure 1.2). In this
case, another component is added to the 4-tuple modelling the problem.
Now, we are considering < S, X, D, u, p > where u:S — V is a fuzzy
measure, V being an uncertainty scale. Let us recall the definition of
fuzzy measures.

Definition 1
A fuzzy measure (Grabisch, 97) on a finite set X is a set function
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wP(X) — [0,1] satisfying
e u(0) = 0 and p(X) = 1,
e A C B C X implies u(A) < u(B).

Some particular fuzzy measures are Probability, Possibility and Necessity
ones. Possibility measures, 11, are fuzzy measures which also satisfy that

II(AU B) = max(II(A), II(B)),
while Necessity measures N satisfy
N(AN B) =min(N(A), N(B)),
and Probability measures P satisfy
P(AUB)=P(A)+P(B) ifAnB=04.

The classical model for decision making under uncertainty is Von
Neumann and Morgenstern’s Expected Utility Theory (EUT) (1944),
and Savage’s version (1972), which uses probability measures to model
uncertainty about the state of the world.

This probabilistic model has some drawbacks, in Section 2.4 we
summarise some alternatives that lead to some of these problems.

Another model is proposed by Gilboa and Schmeidler, from a case-
based view, which also is summarised in Section 2.3.

Possibility theory provides other alternatives (Dubois and Prade, 1995;
Dubois et al., 1997e). As we are mainly interested in them, since our work
is developed in a possibilistic framework, we introduce these models in
the next Chapter with more detail.

Next, we introduce some decision models where uncertainty
representation is not available, while in Section 2.2 FEzpected Utility
Theory is summarised. In Section 2.3, a Case-Based approach suggested
by Gilboa and Schmeidler is introduced, while other approaches are briefly
commented in the last Section.

2.1 Decision Models without Uncertainty
Representation

Luce and Raiffa (1957) gather some criteria to choose decisions when the
states are uncertain and no uncertainty representation is given. These
criteria', as well as the mazimaz criterion are detailed below.

"Notice that in some of them S and D are assumed as being finite.
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Wald’s Criterion: Maxzimin

Wald (1950) suggests a conservative criterion that evaluates each act in
terms of its worst consequences. Next, he chooses the act with greatest
payoff, i.e. the “best decision” is

d' = argmazycp (Isnelél(u(d(s))))

Maximax Criterion

The dual optimistic criterion evaluates each act in terms of its best
consequences choosing the act with great payoff, i.e. the “best decision”
is

d' = argmazycp (I?Ea:gx(u(d(s))))

Hurwicz’s Criterion

Hurwicz (1951) proposes an intermediate criterion that combines the
best and worst consequences. Indeed, for each a € [0,1] (the so called
pessimist-optimist index), each act d is associated with an a-index, i.e.

o (min(u(d(s)))) + (1 - @) - (max(u(d(s))).

The best decision would be the one with the higher a-index. Note, that
if @ = 1, then we recover mazimin criterion, while for @ = 0, it results in
mazimaz criterion.

“Principle of Insufficient Reason” Criterion

This principle, formulated by Bernoulli (1738), asserts that in the case
that one is “completely ignorant” about the real state, one may consider
that all states are equally probable. Following this principle, each act is
evaluated in terms of its expected utility, that is, for each d,

2 ses wld(s))
st

choosing the act with greatest payoff, where |S| denotes the cardinality
of the set S.
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2.2 Classical Approaches: Expected Utility
Theory

The basic references in classical Decision Theory are Von Neumann
and Morgenstern’s Expected Utility Theory (1944), and the version
of Savage (1972), characterising preference relations under uncertainty
and the rationality hypothesis. Both approaches to decision making
under uncertainty assume that uncertainty is represented by probability
distributions. In this Section we recall them, especially Von Neumann
and Morgenstern’s version.

2.2.1 Von Neumann and Morgenstern’s Expected Utility
Theory

Von Neumann and Morgenstern suppose that uncertainty on real
situation is represented by a single probability distribution P on S,
P:S — [0,1], S being the set of situations. A decision or act d on S
is represented by a function d: S — X which provides the consequence
of the decision in each situation.

Then, each decision induces a probability distribution on X defined as

Py(z)= ) P(s).

seS|d(s)=z

Von Neumann and Morgenstern consider each decision d as identified with
its associated probability P,, so for ranking decisions they consider:

d=<d iff P;<Py. (2.1)

Hence, they focus on utility functions on distributions on consequences.
Distributions are ranked in terms of their expected value with respect

to Decision Maker’s preferences on consequences. That is, if numerical

preferences, u: X — R, are assigned to consequences, they define

P, x Py iff E(Pju)<E(Py,u). (2.2)

With
E(Pgu) = ) Pa(z)u(z) (2.3)

reX

the expected value of u with respect to the probability distribution P,.
They propose to extend the initial model considering (2.2) instead of
(1.1).
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Let g denote the set of probability distributions on X. Let us introduce
the notion of binary probabilistic lottery. Let A, B be two events and
a € [0,1], the binary lottery which is the combination of these two events
with «, denoted by

a®A®(l1—a)eB,

is the prospect of considering that the first occurs with a probability «,
and B occurs with the remaining probability 1 — a. In general, if [ and I’

Figure 2.1: The binary probabilistic lottery of A and B with « and 8

are lotteries, then
a®ld(l—a) ol

is a compound lottery. Thus, any (compound) probabilistic lottery
decomposes as a finite sequence of compositions of binary lotteries, in
a tree-like form. The set of probabilistic lotteries on X will be denoted
by L(X).

If we have a probability distribution P on a set {z1,z2,z3}, observe
that we may see it as a compound lottery. Indeed, if p; = P(z;), we have
that

P p1®$1@(p2+p3)®< P2 O©z2 D Ps ®£E3>-
P2 + 3 P2 +p3
Thus, in general, any probability distribution on a finite set, may be seen
as a compound lottery, that is, as a sequence of binary lotteries.
On the other hand, the so-called probabilistic mizture operation is
defined on p as the convex linear combination of probability distributions
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Figure 2.2: The lottery p1 ® z1 & (p2 + p3) ® (p;fps Or2® p;fpg © 373)-

on X. Namely, if P and ) are probability distributions on X and
a € [0,1], the probabilistic mixture of P and @ with respect to « is
the probability distribution (P, @, ) defined as

(P,Q,0)(x) = a- P(z) + (1 - a) - Q(a).

Since each probabilistic distribution on X can be identified with a
probabilistic lottery, the probabilistic mixture operation can be seen as
an operation between lotteries as well. Indeed, if we formally define a
combination operation on lotteries

C:L(X)xL(X)x][0,1] - L(X)

as
Cl,l'a)=aele(l-a)ol,

it turns out that if P and () are probability distributions identifiable
with lotteries [p and Il respectively, then the lottery corresponding to
the probability mixture (P, @, @), i.e. {(p,g,q), is nothing but C(lp,lq, @).
Therefore, from now on, we shall identify the set g of probability
distributions on X equipped with the probabilistic mixture operation
with the set £(X) of lotteries on X equipped with the operation C for
combining lotteries (for more details about mixtures,including hybrid
ones, you may see (Dubois et al., 2000)).

24



Definition 2

Given C a preference relation on g, let f be a function from p to R.
We say that

(f represents C) iff (VP,Q €p)( PEQ <« f(P) < f(Q)).

Given a set A, with an internal operation and a preference relation
on it, a utility function over R, wut:A — R, is a function that
represents the preference relation and also preserves the internal
operation.

Considering the probabilistic mixture as the internal operation on
p, vonNeumann and Morgenstern (1944) characterise the preference
relations on probability distributions on consequences of Decision Makers
that behave as EUT agents. Indeed, they propose the following axiomatic
setting on (gp, X):

AzA: < is a total pre-order (i.e. =< is reflexive, transitive and
complete).

AzB.1: P<Q = P < (P,Q,a), with0 < a < 1.
AzB.2: P> Q = P> (P,Q,a), with0<a< 1.
AzB3: P<T <Q = 3Jae(0,1)s.t. (P,Q,a) <T.
AzB.4: P>T > Q = 3Ja€(0,1)s.t. (P,Q,a)=T.
AzC.1 (commutativity): (P,Q,a) = (Q, P, a).

AzC.2(“lottery” reduction )(see Figure 2.3):

(P,@,8),Q,a) = (P,Q, a.p).

Q ap 1-af
B 1-B

Figure 2.3: Probabilistic mixture reduction

Az A establishes that the Decision Maker is able to order all lotteries
from worst to best. AxzB.1 and AzB.2 is likeness convexity, that is, they
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establish that if () is at least as preferred as P, then even a chance of @)
is least as preferred as P, and ( is least as preferred as each combination
of P and ). An assumption of continuity is expressed by AxB.3 and
AxB.4, while AzC.1 says that it is irrelevant the order in which the
constituents involved are named. Finally, the reduction axiom expresses
how second order lottery may coincide with a first order one. They proved
the following theorem, which provides foundations for the Ezpected Utility
Theory:

Theorem 2.1 (Von Neumann - Morgenstern)
A relation on (p, X ) satisfies the previous axiomatic setting if and only if
there exists a function ut : p — R such that

P < Q& ut(P) <ut(Q)
and
ut(P,Q,a) = a- ut(P) + (1 — ) - ut(Q).

Moreover, ut is unique up to a linear transformation.

2.2.2 Savage’s Version

Savage (1972) proposes a somewhat different framework for EUT, he
axiomatically characterises the preference relation on acts of Decision
Makers that behave as EUT agents, i.e. that satisfy

d<d iff E(P,uod) < E(P,uod) (2.4)

with u:X — R (representing DM’s preferences on consequences) and
P:S — [0,1] being a probability distribution. That is, his version of (1.1)
is (2.4).

For a detailed explanation you may see (Savage, 1972), however, let us
briefly summarise his proposal. Generally speaking, the axiomatic setting
establishes that the preference is a complete pre-order (Savl).

His characteristic axiom, the “sure principle thing” (Sav2), establishes
that the choice between two alternatives must be unaffected by the value
of outcomes corresponding to states for which both alternatives have the
same payoff.

Given the preference relation on acts < and an event B, he defines a
conditioned preference on acts <Xp:

“d xp d iff f X g for all f and g that agree with d and d',
respectively, on B and with each other in the complement of
B and g < f for all such pairs or for none”.
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He defines an event B as null iff d g d' Vd,d'.
From the preference on acts, Savage induces a preference relation <
on consequences, i.e.

Vz,y € X, if d(s) =xz,Vs € S,d'(s) =y,Vs € S, thenz <y <— d<d.

Sav3: If d(s) = z1 and d'(s) = z2 Vs € B, B being not null, then d’' <5 d
iff T2 S ZI1-

He requires the preference relation induced on events? < to be
complete (Sav4). While the preference induced on consequences is
required to be non trivial, i.e. there exists at least one pair z,z’ such
that z is less preferred than z’ (Sav5).

These axioms let Savage prove that the preference relation on S is a
“qualitative probability”, that is

e QP1: dis a total preorder on P(S).
e QP2:VBCS, 0 < B, 0<S8.

e QP3: VB,C,Dst. DN(BUC) =0, B <C < (BUD) <
(CUD).

He also considers the following technical axioms:

e Sav6: if d < d' and z is a consequence, then there exists a partition
of S such that, if d or d' is so modified on any one element of the
partition as to take the value x at every s there, other values being
undisturbed, then the modified d remains less preferred than d’, or d
remains less preferred than the modified d’, as the case may require.

e Sav7: if d<p d'(s) Vs € B, then d Xp d'.

This axiomatic setting lets him characterise the preference relations on
acts that are representable in terms of the expected value of a preference
function on consequences with respect to the probability distribution on
S. That is, Savage’s theorem says: If (D, <) satisfies Savage’s axioms,
there exists one and only one probability measure on S, P:P(S) — [0, 1],

2A 4 B iff when z' < z, vAx’ < Bz, with the compound act of x and &' w.r.t.
A C S defined as
z, if s€A
zAz'(s) = {

z'(s), if s¢A.
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where P(S) denotes the power set of S, and a preference function on
consequences u: X — R such that

d<d < E(P,uod) <E(Puod).

Of course Savage’s axioms are sound, i.e. given a probability distribution
on S and a preference function on consequences u, the order induced in
D by the expected utility (that is, the order defined in (2.4)) satisfies
Savage’s axioms.

2.3 Case-Based Decision Theory

Gilboa and Schmeidler (1995) claim that Decision Making under
uncertainty is, at least, partly case-based. They suggest that people
choose acts based on their performance in the past and they propose
a case-based Decision Theory (CBDT).

People frequently reason establishing analogies between past cases and
the one at hand. Applying Hume’s principle (1748):

“From causes which appear similar we expect similar effects”,

Gilboa and Schmeidler (1995) proposed a Case-Based Decision Theory
(CBDT) .

This theory assumes available partial information about the possible
consequences of decisions by having stored the performance of decisions
taken in different past situations as a set (memory) M of decision problem
instances of triples (cases) (situation, decision, consequence), and a given
similarity Sim on situations as primitive. The Decision Maker, in face of
a new situation sg, is proposed to choose a decision d which maximises a
counterpart of classical expected utility, instead of (2.3) they consider,

Uspe(d) = > Sim(so,s) - u(z). (2.5)
(s,dyc)eEM

Sim is a non-negative function which estimates the similarity of situations
and u provides a numerical preference for each consequence z. Gilboa
and Schmeidler axiomatically characterise the relations induced by this
U-maximisation.

Observe that a difference with EUT is that, while in FUT the decision
is evaluated on all possible states, in CBDT each decision is evaluated

28



on a different set of states. Another one is that, for the utility function
Usq,mr the similarity may not add to one, i.e. it may be that for any s

Z Sim(sg, s) # 1.

(s, d,x)eM

Gilboa and Schmeidler (1996) have also proposed another utility function
Vso,m which is a modification of the previous one, replacing Sim with the
similarity function Sim' defined as

Sim(s, . .
z(s,‘d’mzzf; ;?rzz(s’,so)’ it >y amenm Sim(s';s0) # 0
Sim/ (s, s0) =

0, otherwise,

S0,

Vioa(d) = Y Sim/(s0,).u(x).

(s,d,z)eM

Observe that now, for each d either

Z Sim'(sg,8) =1 or Z Sim!(s9,5) = 0.

(s, d,x)eM (s,d,x)eM

Obviously, this model is still requiring numerical values for preferences
and similarity degrees. Another property that sometimes may be a
drawback is that their utility functions, as in FUT, compensate between
good and bad results.

2.4 Other Approaches

The number of works on Decision under uncertainty is too big to try to
summarise them here, and it is not the goal of this work. Nevertheless, we
briefly mentioned some of them, those that are more related with different
aspects of our work.

One of the problems of EUT is that it needs numerical probabilities
for each state and numerical utilities for all possible consequences.
Sometimes this assumption is too strong if there is only incomplete
or poor available information. In these cases, a more qualitative
approach is needed. Moreover, FEUT is specially tailored for repeated
decisions whose results accumulate additively. This is the underlying
meaning of the averaging nature of expected utility. However, in the
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case of one-shot decisions or decisions whose individual results do not
compensate each other, FUT does not yield a convincing criterion for
rank-ordering decisions. This situation of non-additivity naturally occurs
with qualitative information about the worth of consequences.

The classical axiomatic frameworks of utility theory have actually been
questioned rather early, challenging some of the postulates leading to the
expected utility criterion. Noticeably, Allais (1953) and later Ellsberg
(1961) laid bare the existence of cases where a systematic violation of
the expected utility criterion could be observed. Some of these violations
were due to a cautious attitude of decision-makers.

More recently Gilboa (1987) and Schmeidler (1989) have advocated
and axiomatised lower and upper expectations expressed by Choquet’s
integrals attached to non-additive numerical set-functions (corresponding
to a family of probability measures) as a formal approach to utility that
accounts for Ellsberg’s paradox (see also (Sarin and Wakker, 1992)). One
of these generalised expected utility criteria (the lower expectation) is also
a numerical generalisation of the cautious Wald’s criterion for decision
under ignorance. Choquet integrals, especially the lower expectations,
are mild versions of Wald criterion. The pessimistic (resp. optimistic)
criterion, that we will characterise, can again be viewed as a refinement
of Wald’s criterion (resp. the maximax criterion), but the utility functions
are qualitative, hence they reject the notion of averaging put forward by
the classical theory, and also sanctioned by Choquet’s integrals.

Hendon et al. (1994) assume that uncertainty on consequences is
measured by belief functions. They assume as primitive a set of beliefs
functions on consequences and a preference relation on it. In order to
take decisions, they assume a probability distribution on the set of states
S. Their hypothesis is that each decision assigns to each state not a
consequence but a set of consequences. Hence, each decision is identified
with a belief function on consequences. Then they develop a model a la
Von Neumann and Morgenstern.

Other alternatives have been proposed in the literature and steps to
qualitative decision theory have been investigated in various directions
by Al researchers in the last years. Some approaches are based on an all-
or-nothing notions of utility and/or plausibility, e.g., Bonet and Geffner
(1996), Brafman and M.Tennenholtz (1997). The latter clearly advocates
Wald cautious criterion. Others, like Pearl (1993,1994), use integer-valued
functions.

Bonet and Geffner (1996) propose a qualitative model based on rules,
providing a semantics based on high probabilities and lexicographic
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preferences. They argue that the decision chosen is easy to justify on the
basis of reasons for and against the decision. Input situations are modelled
by a set of propositions and observations, while output situations are
modelled as a set of goals, each one with its priority. A set of actions and
action rules are assumed to be given, as well as a plausibility measure on
situations whose values are: unlikely, plausible and likely. They classify
goals in positive or negative taking into account if they are desired or not.
A relative importance is defined on goals using its priorities and polarities
(+ or -).

Boutilier (1994) proposes a modal conditional logic, whose semantics
enables him to represent and reason with qualitative probabilities and
preferences. He can represent conditional preferences, these being
defeasible. He suggests to focus on the states with maximum plausibility
only, a policy which Dubois et al. (1998a) argue that it leads to debatable
decisions.

Brafman and M.Tennenholtz (1996,1997) propose four decision
criteria: maximin, minimax, minimax regret and competitive ratio. These
criteria use two parameters: a qualitative utility function defined on
states and decisions, and local states. The Decision Maker’s behaviours
modelled by these criteria are characterised by an approach similar to
Savage’s.

For more details on Qualitative Decision Theory, a recent paper by
Doyle and Thomason (1999) summarises main works on it. Among them
we find those models that use Possibility Theory as uncertainty formalism,
and two alternatives emerge: & la Von Neumann and Morgenstern,
initiated by (Dubois and Prade, 1995), or & la Savage Dubois et al.
(1997h) . Sabbadin (Sabbadin, 1998a) develops Savage’s approach in a
possibilistic framework in his Ph.D. thesis. As we are specially interested
in the possibilistic framework, we devote next Chapter to a detailed review
of these possibilistic approaches.

Another aspect of Decision under Uncertainty is Dynamic Decision
Problems. In a qualitative setting, for example, there is an approach
by Sabbadin et al. (1998b) proposing a generalisation of the possibilistic
model of Dubois and Prade.

We may be interested not only in individuals preference as in the
mentioned approaches but in working with the preference of a group.
Models involving this second option are usually called Multiperson
Decision Making models. There are many researchers working with
qualitative information in the different topics that this type of problems
involves. For example, Herrera et al. (1998) assume linguistic preference
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relations for expressing the opinions of individuals and linguistic values
for expressing their respective power or importance degrees. In order to
deal with non-weighted linguistic information, they propose the linguistic
ordered weighted averaging (LOWA) operator, while to deal with
weighted linguistic information, three operators of linguistic weighted
information aggregation are used: the linguistic weighted disjunction
(LWD) operator, the linguistic weighted conjunction (LWC) operator
and the linguistic weighted averaging (LWA) operator. Godo and
Torra (1998a) propose a method for aggregating qualitative information
weighted with natural numbers, that is, they propose qualitative weighted
means involving T-norms on the set of values. As it is mentioned, several
issues are involved in Multiperson Decision Making models, for example,
summaries of some models involving fuzzy aggregation of numerical
preferences is provided by (Grabisch et al., 1998), for fuzzy preference
in multiple criteria by Fodor et al. (1998), and applying fuzzy quantifiers
by Kacprzyk and Nurmi (1998).

There are also some works applying fuzzy sets and possibility theory
gathered in (Kacprzyk and Fedrizzi, 1990).
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Chapter 3

Possibilistic Approaches:
Antecedents

The following approaches are based on the hypothesis that uncertainty
on states of the world is possibilistic in nature. They are possibilistic
views of the Exzpected Utility Theory. The first one assumes a possibility
distribution on situations is known and deals with preference relations
on possibilistic lotteries, while in the second one, preference relations are
defined on decisions. In both cases, the preference relations satisfying
their axiomatic settings are representable by criteria with are expressible
in terms of Sugeno integrals (Sugeno, 1977).

3.1 Possibilistic Qualitative Decision Theory
a la Von Neumann and Morgenstern:
Antecedents

Dubois and Prade (1995) have suggested a qualitative counterpart
to Von Neumann and Morgenstern’s FExpected Utility Theory. As it
was mentioned, they assume that uncertainty is of possibilistic nature,
and they make use of finite qualitative preference and uncertainty
scales equipped with the maximum, minimum and an order reversing
operations.

It is also assumed that the scales of uncertainty and preferences are
commensurate. Dubois and Prade propose a characterisation of the
preference relations that are representable by qualitative utility functions
which are a generalisation of the maximin Wald’s criterion (see Section
2.1 or (Wald, 1950)).
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In order to introduce their proposal, let us first present some useful
notation and definitions. S will denote a finite set of situations and X
will denote a finite set of consequences of acts. A decision or act d on
S is represented by a function d:S — X, which provides the consequence
of the decision in each possible situation.

V' will denote a finite linear scale of uncertainty, with inf(V) =
Oy, sup(V) = ly. The belief state about which is the actual situation is
supposed to be represented by a possibility distribution 7:S — V, with
the following conventions:

m(s) =0y means that state s is rejected as impossible;

m(s) =1y means that s is totally possible (=plausible).

Distinct states may simultaneously have a degree of possibility equal to
ly. Flexibility in this description is modelled by letting 7(s) between
Oy and 1y for some states s. Thus, the value 7(s) represents the degree
of possibility of the state s, some states being more possible than others.
Clearly, if S is the complete range of states, at least one of the elements
of S should be fully possible, so that 3 s, 7(s) = 1y (normalisation). In
this Chapter, we only consider normalised possibility distributions.

A possibility distribution 7 is said to be at least as specific as ' if and
only if for each state of affairs s: m(s) < 7'(s) (Yager, 1983). Then, 7 is
at least as restrictive and informative as 7’'.

In the possibilistic framework extreme forms of partial knowledge can
be captured, namely:

e complete knowledge: for some sg, m(sg) = 1y and 7(s) = Oy Vs # sg
(only state sg is possible).

e complete ignorance: w(s) = 1y,Vs € S (all states in S are possible).

I1(S, V) will denote the set of normalised possibility distributions on
S overV, ie.

IS, V)={n:S—>V|3Ise€ S n(s) =1y}

Notation 3.1

For the sake of simplicity, we shall generally omit the reference to the
uncertainty scale, that is, we shall use the notation II(S). Also for the
same reason, we shall use s for denoting both an element belonging to S
and the possibility distribution on S such that

{ ly, if z=s

m(z) = Oy, otherwise.
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Similarly, we shall also denote by A both a subset A C S and the
possibility distribution on S such that ©(s) = 1y if s € A and ©(s) = Oy
otherwise. With this convention, we can consider S as included in II(S).

Now, analogously with the previous Chapter, let us introduce
the notion of possibilistic lotteries, the qualitative counterpart of the
probabilistic lotteries. Given two events A and B, and two values
A, p € V such that max(A, u) = 1, the (possibilistic) binary lottery

(A4, u/B),

is the prospect of considering that A occurs with plausibility A, and B
occurs with plausibility 4. On the other hand the so-called Possibilistic
mizture, the qualitative counterpart of the probabilistic mixture, is an
operation defined on II(S) that combines two possibility distributions 1,
9 with two values A, p € V s.t. max(A, u) = 1y into a new distribution
M (71, w2, A, 1), defined as

M (w1, 795 A, 1) (s) = max(min(\, 71 (s)), min(u, w2(s))). (3.1)

In particular, the possibilistic mixture M (s,y, A, u) is defined as the
possibility distribution on S such that

A if z=s

M(s,y; A\, p)(z) = p if z=y
Oy otherwise.

Notation 3.2

Analogously to the probabilistic case, any possibility distribution on a
finite set may be seen as a compound possibilistic lottery, that is, as a
sequence of binary possibilistic lotteries. Hence, from now on, we identify
the set II(S) equipped with the possibilistic mixture, with the set of
possibilistic lotteries on S with the lottery combination operation. That
is, we will identify M (w1, mo; A\, ) and (A/m1, /7). Moreover, applying
this identification, from now on, we shall sometimes combine the notation
of possibilistic mixtures and possibilistic lotteries.

Finally, U will denote a finite linearly ordered scale of preference,
with sup(U) = 1y and inf(U) = Oy, while ny:U — U will denote its
order reversing involution.

Notation 3.3

For simplicity reasons we shall omit the reference to the scales in their
bottom and top elements, hence 1 and 0 denote both assuming that they
are identifiable by the context.
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In order to define the qualitative/ordinal utility functions an assumption
of commensurateness between the plausibility scale V' and the preference
scale U has to be made. For the moment, what is basically needed is an
order reversing mapping n:V — U such that n(1) = 0 and n(0) = 1.

Let F be the fuzzy set of preferred situations, with U-valued
membership function pp:S — U.

Notation 3.4
From now on we identify the membership of a fuzzy set with the fuzzy
set.

Dubois and Prade consider the following qualitative utility:

utp(m) = melgl max(n(n(s)), F(s)). (3.2)
This criterion was first proposed by Whalen (1984). Observe that (3.2)
may also be written as

utp(m) = Isrélél max(ny(7*(s)), F(s))

where 7*(s) = ny o n(w(s)) and ny is the order reversing involution on
U. Hence, this utility value utp(7) coincides with the necessity degree
of the fuzzy set of preferred situations F' with respect to the possibility
distribution 7*. It accounts for a degree of inclusionship of 7* into F
(more details will be given in Section 5.1). Taking into account that
Inuiguchi et al. (1989) show that the necessity of a fuzzy event is a Sugeno
integral, we have that utr is a Sugeno integral.

Recalling that the well-known Wald maximin criterion suggests that
a decision is evaluated by the value of its worst possible consequence, we
may observe that maximising uty generalises Wald’s criterion. Indeed,
when 7 is an all or nothing distribution, i.e. when 7(S) = {0,1}, 7 may
be seen as the membership function of a crisp set A, and then we have

utp(m) = minge 4 F(s).

That is, the worst situation compatible with w is used to assess the utility
of the decision underlying w. Hence, we refer to utp as a pessimistic or
conservative criterion.

The following axioms were proposed in (Dubois and Prade, 1995)
for a “rational” preference relation C on II(S) to be represented by a
pessimistic qualitative utility (caution: 7 ~ 7’/ means 7' C 7 and 7 C 7'):
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e DP1: LC is a total pre-order (i.e. L is reflexive, transitive and
complete).

DP2: If A is a crisp subset of S, then there is s € A s.t. s ~ A.

DP3 (uncertainty aversion): if 1 <7’ = =’ C .

DP4 (independence): w1 ~ o = M(mw,m; A\ p) ~ M(mwa,m; A\, ).

DP5 (reduction of lotteries)(see Figure 3.1):

M (s, M(s,y; a, B); A ) ~ M(s,y; maz (A, min(u, ), min(u, B))-

DP6 (continuity): #' E 7 =3I X € V such that #’ ~ M(x,S;1, ).

in(1,B))
Max(A,min(u,a))

Figure 3.1: Possibilistic Reduction

Axiom DP1 allows us to represent utility on a totally ordered scale.
DP2, violated by expected utility, suggests that, contrary to it, the
pessimistic utility is not based on the idea of average and repeated
decisions, but makes sense for one-shot decisions. D P2 expresses that
when the agent believes that the state lies in A and decision is put to
work, then the state will be some s in A, and the benefit from the decision
will indeed be the one in state s. It comes down to rejecting the notion
of mean value.

The uncertainty aversion aziom states that the less informative 7’ is,
i.e. the more uncertain the situation is, the less preferred 7’ is: so, the
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worst state is total ignorance. Because of this axiom, such a preference
relation represents a pessimistic vision for decision making, expressing
aversion to lack of information. With this perspective, DP2 now says
that in fact, lottery A is equivalent to the worst situation in A.

The independence aziom means that if two distributions are indifferent
with respect to decision maker preferences, then we may exchange them
in compound lotteries.

Axiom DP5 allows us to reduce lotteries to standard ones in the style
of possibilistic mixtures.

Finally, the continuity aziom establishes that if 7 is at least as
preferred as 7', 7' is preferentially equivalent to having some uncertainty
about .

The following theorem, to represent such relations by pessimistic
qualitative utility functions, is proposed by Dubois and Prade (1995).

Theorem 3.1

Given a preference relation T on II(S) verifying axioms DP1 - DP6, there
exists a fuzzy set F on S and a utility function utp from II(S) to a totally
ordered set U representing C such that for each © € II(S), we have that

utp(m) = minges max(n(n(s)), F(s))

where n is an order-reversing function from the possibility scale V to the
preference scale U such that n(0) = 1 and n(1) = 0 where 1 denotes the
top elements of U and V' and 0 their bottom elements.

Note that
utp(m) =1 if {se S| n(s) >0} C{seS|F(s)=1}

i.e. m has maximum utility if all the more or less possible situations are
among the most preferred ones. Also,

utp(m) =0 if {seS|n(s)=1}N{seS| F(s)=0}#0
i.e. mw is the worst if there exists a most plausible situation whose payoff

1s minimuim.

3.2 Possibilistic Qualitative Decision Theory a
la Savage

As it was previously mentioned, EUT has two axiomatic frameworks: a
la Von Neumann-Morgenstern, which works with probabilistic lotteries,
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linked with acts, and & la Savage, which is expressed directly in terms of
acts. Dubois et al. (1997h) propose a possibilistic axiomatics & la Savage.
This approach is developed in more detail by Sabbadin (1998a) in his
Ph.D. dissertation.

In this approach, they assume a primitive preference relation < on
acts. As usual, S represents a finite set of states, while X is the
consequences set. The set of decisions will be denoted by D. Before
introducing their axiomatic setting, let us introduce some definitions.

Definition 3
Given two decisions d,d' the compound act of d and d' w.rt. A C S is
defined as
d(s), if se€A
dAd'(s) =
d(s), if s¢ A

Let m:S — V a possibility distribution, the plausibility scale V being
totally ordered. Decision Maker’s preference on consequences are
represented by pu:X — U, U being a finite set linearly ordered. Then,
the following qualitative utilities can be defined:

v.(d) = inf max(n(r(s)), u(d(s)),

vi(d) = Sup min(h(r(s)), u(d(s))),

with h:V — U an order preserving mapping, and n = ny o h. Dubois
(1986) defines a qualitative possibility (necessity resp.) as a set relation
that verifies axioms QP1,QP2 (see Section 2.2.2) and axiom II (N
respectively) which is a relaxation of the axiom QP3,

ell: BJIC= (BUD)J(CUD,),
e N: BJIC= (BND)S(CND).

Moreover, Dubois (1986), proposes a relaxation of @QP3 that includes
both definitions of qualitative probability and possibility.

e M:VB,C,Dst. DN(BUC)=0, BLC= (BUD) < (CUD,),
includes II, while its dual
e M': VB,C,Dst. DU(BNC)=S, BIC= (BnD)<d(CnD).
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includes N.

Savage proves that a relation on acts satisfying Savl — Sav5 induces
a relation on events that is a qualitative probability.

The “utility” functions v, and v* do not satisfy Savage’s “sure thing
principle” (Sav2) axiom. Dubois et al. (1997f) observe that this fact
results in that Sav3 and Sav4 are not verified by v, or v*, but these
functions verify the weaker Savage’s axioms they proposed.

e WS2 (weak sure thing principle): Let A C S, if dyAd < de2Ad then
dlAdl < dQAdI.

e WS3 (weak coherence with constant acts): If x and y are constant
acts, then if y is at least as preferred as x then zAh < yAh.

o WS4 (weak order on events): If x is preferred to =’ and y is preferred
to 3 then zAz' < yAy'.

They also propose the following axioms:
e Pes: Vd,d € D, VAC S d<dAd = d'Ad < d.

e Opt: Vd,d € D, VAC S dAd' <d = d =< dAd.
e RDD (Restricted Disjunctive Dominance):
ifg<fandz < fthengVz<f,

with ¢ V 2 the maximum (point-wise) between g and z.

v, satisfies Pes axiom while v* verifies Opt.
The following representation theorem for characterising preference
relation induced by v, is proposed by Dubois et al. (1997e).

Theorem 3.2

Let X be a preference relation over the set of all acts d from S
to X, satisfying Savl,W 53, Savb, PES, RDD. There exists a finite
qualitative scale L, a utility function v, of the form v.(d) =
infsc g max(n(w(s)), u(d(s))) on X,and a possibility distribution = on S,
taking their values on L, such that f < f' <= wv.(f) < v.(f’), with
w:X — L.

In (Dubois et al., 1998e), they consider that uncertainty is modelled by
a general monotonic set-function o : 25 — L, with L a finite linear scale
which is applied for measuring both uncertainty and preferences. In this
hypothesis, and remaining in & la Savage framework, they characterise
the ordering induced in the decisions set by the utility defined in terms
of the Sugeno integral with respect to o.
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Chapter 4

Representation of Purely
Ordinal Utility Functions

In the previous Chapter we have introduced Dubois and Prade’s axiomatic
setting to characterise the preference relation induced by a pessimistic
qualitative utility which is expressed in terms of the preference on
consequences and the “possibilistic” lotteries on S, S being the finite
set of situations (Section 3.1).

In this Chapter, we first analyse some shortcomings detected in that
proposal. Then, we suggest in Section 4.4 an improvement of the
axiomatic characterisation of preference relation induced by a possibilistic
pessimistic utility function. We also provide the representation theorem
for preference relations satisfying the improved axiomatics. Moreover,
in Section 4.5 we introduce the characterisation for optimistic utility
functions.

But, before analysing our proposal, first we show in Section 4.2 that
some decision problems in which uncertainty is involved may be seen
as a problem of ranking possibility distributions on consequences, and
we provide some preliminary results in Section 4.3 as well. We end the
Chapter showing the behaviour of these criteria in a little toy example.

4.1 Some Remarks on Dubois and Prade’s
Proposal

Let us briefly recall the proposal given in Section 3.1. The axioms
proposed by Dubois and Prade for a preference relation C on II(S) to
be represented by a (pessimistic) qualitative utility were:
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e DP1: C is a total pre-order.

DP2: 1If A is a crisp subset of S then there is s € A s.t. s ~ A.

DP3 (uncertainty aversion): if # < 7' = 7' C 7.

D P4 (independence): m ~ g = M (w1, m; A, ) ~ M (mwa, m; A\, ).

DP5(reduction of lotteries):

M (s, M(s,y; a, B); A, ) ~ M(s,y; maz (A, min(u, ), min(u, B))-

e DP6(continuity): m' €« = 3\ € V such that 7’ ~ M(w,S;1,A).
and their theorem says:

“Given a preference relation C on II(S) verifying axioms
DP1 — DP6, there exists a fuzzy set F' on S and a utility
function utp from II(S) to a totally ordered set U representing
C such that for each 7 € II(S), we have that

utp(m) = mingeg max(n(n(s)), F(s))

where n is an order-reversing function from the possibility scale
V to the preference scale U such that n(0) = 1 and n(1) =0,
where 1 denotes the top elements of U and V and 0 their
bottom elements.”

In this setting we have identified two possible shortcomings:

e The theorem does not really specify the characterisation of the
preference relations induced by

utp(m) = 1}1&1 max(n(n(s)), F(s)).

e The proof has some problems.

Also, the axiomatic setting turns out to be redundant (see Lemmas
4.2 and 4.3 for more details).

With respect to the proof of the theorem, it starts claiming that
the relation induced by utp satisfies the axioms. But, there are some
hypotheses which are implicitly assumed in the proof that must be
explicitly required if we want the preference relation induced by utp to
satisfy the axiomatic setting, as it is shown in the following example.
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Ezample:
Consider the following sets

S={ss35LV={0< ) <X<1}
and
U={0<u <uy <1}

Let the set of preferred situations F' be defined as

F(s) =0,F(s) = 1,F(s) = ui,
that is, we have s C s C 5. However, for each reversing function n such
that u; ¢ n(V), we have that there isno A € V s.t. s ~ (1/5,1/S) w.r.t.
utp, i.e.

P A st utp(s) = utp(1/3,1/9).

Indeed, utp(s) = F(s) = uy, while utp(1/3,\/S) = n()). Hence, DP6 is
not satisfied by the preference relation induced by utp. &

Let us remark that in the proof they claim the existence of a reversing
function n which is also required to be bijective. But, this requirement
may be too strong as this other example shows:

Ezxample:
Suppose that S = {s,s} while V is defined as in the previous example.
Consider the preference relation C defined by
sC (1/3,M/8) ~ (1/3,2/8) C 5,
and

s~ 8~ (1/s,M/3) ~ (1/s,X2/3),

and reflexivity.
This relation C satisfies the axioms. If n:V — U is a bijective reversing
mapping, we have that

utrp(1/3,M\1/8) = n(A1) > n(r2) = utp(1/35, A2/ S)
ie.
(1/3,22/S) Cutp (1/3,A1/5),
while they are indifferent w.r.t. C . Contradiction. That is, there is no

bijective function n such that utr may represent the relation. &

Nevertheless, Dubois and Prade’s intuition with respect to the
representation theorem is still valid provided some technical corrections.
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4.2 The DPossibilistic Decision Framework
Specified

A Decision Maker may be faced with different cases of incompletely or
ill specified decision problems.

Different cases that result in possibility distributions on X are the
following;:

o the situation s uncertain: so is represented by a normalised
possibility distribution on S, m4,:S — V, representing the belief state
about which is the real situation. Then, each decision d:S — X
induces a corresponding possibility distribution g 4,, on the set of
consequences, defined as

Td,s0 (%) = max{ms, (s)|d(s) = x}, (4.1)

with max 0 = 0. mq,(z) represents the plausibility of x being the
consequence of d.

As 7, is normalised, 7q 5, is normalised as well.

e the situation is precisely known but the decision is not precisely
defined: in each situation we do not have a precise consequence
but a possibility distribution on the consequences. So, d is modelled
by a possibility distribution 74 on the set of consequences.

o the decision is partially unknown: we know how the decision resulted
in some other situations but not in the actual situation. Thus,
we have partial information about decisions by having stored the
performance of decisions taken in different past situations. This
leads to a case-based decision problem. This point will be developed
in Chapter 8, however we advance here that each decision may also
be identified with a possibility distribution on consequences.

Therefore, we include these cases in our framework assuming as
working hypothesis that wuncertainty may be modelled by possibility
distributions on consequences, that is,

For an actual situation sg, we may identify each decision with
a normalised possibility distribution on X, therefore, choosing
the “best” decision is equivalent to choosing its associated
possibility distribution.
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Hence, in order to select the best decision we are looking for possibility
distributions on consequences that maximise a utility function ¢ on IT(X),
i.e. we consider

d=<sod ff mgCrg iff Ulrg) <U(Ta).

From now on, we focus on preference relations in the set of possibility
distributions on consequences.

4.3 Some Preliminary Results

Let us recall the context of our work. V will denote a finite linear
plausibility scale, where inf(V) = 0 and sup(V) = 1, and II(X) will
denote the set of consistent possibility distributions on X over V | i.e.

II(X) = {mX — V|maxgex m(z) =1}.

We have already introduced qualitative binary lotteries (A\/z,u/y).!
More generally using the notation (A/z1,...,Ap/zp), with A; € V and
max;(A;) = 1, any consistent possibility distribution 7 on X can be seen
as a multiple consequence qualitative lottery taking A\; = 7(x;).

U will denote a finite linearly ordered scale of preference (or utility),
with sup(U) = 1 and inf(U) = 0 and a preference function u:X — U that
assigns to each consequence of X a preference level of U.

An interesting property of a preference relation C on II(X) satisfying
DP1,DP2 and DP3 is that the extremal elements of (X, C) are maximal
and minimal elements of (II(X), C) as well:

Lemma 4.1
If C verifies axioms DP1, DP2 and DP3, and ¢ and T are a minimal and
a maximal element of X, respectively, then:

oz~ (1/7,1/2) ~ X.
e z and T are also the minimal and maximal elements of (I1(X), C).

Proof:

Let us first prove the equivalences z ~ X ~ (1/7,1/z). DP1 guarantees
that z and T exist. By the uncertainty aversion axiom (DP3), it is clear
that X is a minimal element of II(X), so it is X C z. But, by DP2 there

'Recall, we will identify possibilistic lotteries and mixtures.
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exists ¢ € X such that o ~ X. Since z is minimal, z T xg, thus it must
be z ~ X.

Furthermore, on II(X) we have z < (1/Z,1/z) < X (specificity point-
wise ordering), and again by DP3, X C (1/7,1/z) C z, and thus

z~X~ (l/fal/ﬁ)'

On the other hand, for any n € II(X), since 7 is normalised, there
exists z such that 7(z) = 1. So, we have £ < 7 and therefore 7 C z, but
since 7 is maximal in X, it is  C 7, and thus 7 C 7. So, 7 is maximal on
(II(X),C) as well. O

Remark 1
Observe that as a consequence of the possibilistic mixture definition we
have that

M(z,z; A\, u) =z  for all A,y such that max(A\,u) =1
and
Mz, X5\ p) = M(z, X—{x};1,u)  for all A\, u such that max(A,u) = 1.
Moreover, we have that:

Lemma 4.2

M(ﬂ-la M(ﬂ-la T2; &, :8)a Aa N) ~ M(ﬂ'la 25 maa:()\, mm(u, a))a mm(p, 18))
always holds.
Proof:

By definition of lotteries, we have that
M(my, M (71,795, B); A, u)(z) = max{min(mi(z),\),
min(y, max{min(m(z), @), min(me(z), 5)})}
= max[min(\, 71 (x)), min(y, @, 71(x)),
min(u, 8, ()]
= max[min(m; (z), max (A, min(y, @))),
min(y, B, w3 (x))]
= M(m, mo;maz (N, min(u, ), min(u, 5))(z)

O
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Hence, the axiom on reduction of lotteries (DP5):
M (z, M(z,y; a, B); A, 1) ~ M (z,y; maz(X, min(p, o)), min(p, B)).,

is unnecessary if we take the definition of possibilistic lotteries for granted.
The same remark applies to the Von Neumann and Morgenstern’s
axiomatic setting if the notion of probabilistic mixture is acknowledged
(see Herstein and Milnor (1953)).

On the other hand, Axiom D P2 is also redundant since it follows from
the rest of the axioms. Indeed,

Lemma 4.3
Axioms DP1, DP4 and DP6 imply axiom DP2.

Proof:

Suppose A = {z1, 22} with z; C z9. By DP6 there exists A € V such
that 1 ~ (1/z2,A/X), and applying DP1, reduction of lotteries and
DP4, we obtain

A= 1/z1,1/z2) ~ (1/(1/z2, A/ X),1/29) = (1 /22, \/ X ) ~ Z1.

The case when A has p elements is an easy generalisation. Indeed, suppose
the Lemma is valid if the cardinality of A is p, p being greater than 2. Let
now A be such that |A| = p+1, and let z; be one of its minimal elements
w.r.t. £ . Since A = (1/21,1/A—{z1}), by induction hypothesis we have
that if z5 is one of the minimal elements of A — {z1} w.r.t. C, then

A~ (1/!E1, 1/.1‘2) ~ I1.

O

Another interesting formulation of the continuity of the preference
ordering, which will be useful later, is the following one:

e A4: For all m € II(X) there exists A € V such that = ~ (1/Z, \/z),
where T and z are any maximal and any minimal element of (X, C)
respectively.

Observe that A4 will be considered with DP1, since DP1 guarantees
that the maximal elements of (II(X), C) are equivalent, and the minimal
ones are also equivalent to each other.

It can be proved that,
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Lemma 4.4
In the context of DP1-DP5 axioms, axiom DP6 is equivalent to A4.

Proof:
<) Suppose A4 holds, and let 7, 7' be such that 7' C 7. We have two
cases:

1. ' ~ 7. Hence, 7' ~ (1/7,0/X).
2. «' C 7. By hypothesis, there exist A, \' € V such that
m~ (1/T,\/z) and 7« ~ (1/z,\/z).

Since ' C 7w, by DP1 we have that

(1/z, X /z) € (1/2, A/ z),

and by DP3, it is A’ > X. Now, taking into account that X ~ z, the
independence axiom (DP4) and reducing lotteries, we obtain that

(1/m, N/ X) ~ (1/(1/Z, A[z), N [z) = (1/Z, max (X, \) /z).
Since X' > A, max(\,A) = X, so
(1/z, max(XN, A)/z) = (1/Z, X' [z) ~ o,

ie. (1/m,N'/X) ~ «'. Therefore, DP6 also holds.

—) Suppose now that DP6 holds. For any w, we have that = C T.
Then, by hypothesis, there exists A such that = ~ (1/Z,A/X), and thus
7 ~ (1/Z, A/z). This proves that A4 also holds. O

Taking into account these results, we propose next an improved set of
axioms that characterises pessimistic qualitative utilities providing new
proof for the representation theorem, and the corresponding axiomatic
setting for an optimistic criterion is given in Section 4.5.
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4.4 Representation of Pessimistic
Qualitative/Ordinal Utilities

The above discussion has led us to propose this new set of axioms for
preference relations on II(X) with the max-min mixture as the internal
operation on II(X).

o Al(structure): C is a total pre-order?.
o A2(uncertainty aversion): if r < 7' = 7' C 7.
o A3 (independence): m ~ o = M (w1, m; A\, p) ~ M (mwa, ;A\, ).

e Ad(continuity): Vm € II(X)3 A € V such that 7 ~ M(z,z;1,)),
where T and z are a maximal and a minimal element of (X,C)
respectively.

Let u:X — U be a preference function such that u=1(1) # 0 # u=1(0),
and let h:V' — U be an onto order preserving function relating both scales
V and U.

For any 7 € II(X), consider the qualitative utility

QU™ (7|u) = minmax(ny (7*(z)), u(zx)),
zeX
where 7*(z) = h(w(z)) and ny is the reversing involution in U. Notice
that QU (.|u) restricted to X coincides with the preference function

u, i.e. QU™ (z|u) = u(x), for all z € X. Let us introduce the order-

Tl
\Y

X
u}/\
AN

ny

h
U

Figure 4.1: Diagram of the different mappings

reversing mapping n:V — U defined as n(A\) = ny(h(A)). It verifies

2The reflexivity property involved in this axiom is redundant taking into account
A2, the reason for remaining here is for the clarity of the presentation.
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n(0) = 1,n(1) = 0. Actually, since n? is the identity in U, the mapping
h can also be defined from n, namely h(A) = ny(n(A)) (see Figure.4.1).
Using n instead of h, the qualitative utility may be equivalently expressed
as:

QU™ (m|u) = minmax(n(n(z)), u(z)). (4.2)

zeX

Notation 4.1
For the sake of a simpler notation, we shall write QU (w) instead of
QU ™ (w|u) when the mapping u is not relevant for the context.

We will show that the preference ordering on II(X) induced by the
qualitative pessimistic utility QU ~ satisfies the above set of axioms. First,
it is interesting to notice that:

Lemma 4.5
QU ™ preserves the possibilistic mixture in the sense that

QU (M (my,mp; A, p)) = min{max(n(A), QU™ (1)), max(n(n), QU™ (m2))}(4.3)
Proof:

By definitions of QU™ and of possibilistic mixtures we have that

QU™ (M(my,m2; A, p)) = min(max(n(M (w1, m2; A, p)(2)), u(z)))

= min(max(n((max(min(7r, \),

reX
min(my, 1)) (7)), u(z)))

= min(max(min(max(n(m(z)),n(N)),

max(n(my(z)), n(p))
)su(

= min(min(max(n(m(z)), n(

max (n(ma(z)), n (4
= mln(Hél)I(lmaX( n(m(z)),n(A),u

min max(n(m (z)), n(k), u(z)))
— min(gg)r(lmax(n( ), max(n(mi(x)),u(z))),
srcréi;}max(n(u) max(n(ma(z)),u(z))))

= min(max(n()\),géi)r(lmax( n(mi(z)), u(z))),
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max(n(u), irél)l(l max(n(ma(z)), u(z)))

= min(max(n(}), QU™ (m)), max(n(u), QU™ (72)))
O

Corollary 4.6
QU ™ (max(my, 7)) = min{QU ~ (m1), QU™ (m2)}.

Note that (4.3) is the median of three terms including QU ™ (m1), QU ™ (m2).
Indeed,

e if QU™ (m) <y QU (mq), then
QU (A/m1, p/m2) = median{QU " (m1), QU™ (m2),n(A)}
e while if QU™ (m1) >y QU™ (w2), we have that
QU™ (M1, p/m2) = median{QU™ (m1), QU™ (m2), ()}
It behaves like the classical EUT, changing median by weighted mean.

Lemma 4.7
Let <gu- be the preference ordering on II(X) induced by QU ™, i.e.
T <qu- 7 I QU™(r) <y QU~(x).
Then <qy- verifies axioms Al, A2, A3 and A4.
Proof:
Axiom Al is easily verified, also A2 is a consequence of mazimum and
minimum being non decreasing functions, while A3 results from the fact

that QU™ preserves max-min possibilistic mixtures. Thus, we only check
axiom A4. We have to prove that

Vr € II(X), 3A such that QU™ (7) = QU (1/z, A/ z),
where 7, x are a maximal and a minimal element of X w.r.t. <QUu- -
Since we are assuming u!(1) # 0 # u~1(0), it must be the case that

u(z) = 0 and u(Z) = 1. Thus, by the possibilistic mixture preservation of
QU™ we have that

QU™ (1/z,A\/z) = min{max(n(l), QU (z)),max(n(A),QU " (z))}
= n(\).

Since h is onto, n is onto as well, and it is u(X) C U = n(V); therefore,
for any A € n=1(QU (7)) we have that
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QU™ (m) =n(A) = QU (1/Z,A/z).

Notation 4.2
For a simpler notation, when it is obvious by the context, we may omit
the reference to U in the relation <y .

Now, we can show that the preference orderings on epistemic states
satisfying the axioms proposed can always be represented by a pessimistic
qualitative utility of the type of QU .

Theorem 4.8 (Representation Theorem of Pessimistic Utility)
A preference relation C on II(X) satisfies axioms A1,A2, A3 and A4 if,
and only if, there exist

(i) a finite linearly ordered utility scale U with inf(U) = 0 and
sup(U) = 1,

(i) a preference function u:X — U such that u=1(1) # 0 # u~1(0),
(iii) an onto order preserving function h:V — U,
in such a way that
o Crw iff T Lqu- T,

where <oy~ is the ordering induced on II(X) by the qualitative utility
QU (7) = minge x max(n(mw(z)),u(z)), being as usual n = ny o h.

Proof:
The “if” part corresponds to the preceding Lemma. As for the “only if”
part, we structure the proof in the following three steps.

e In step (1) we define the utility scale U and an order preserving (and
onto) function A from V to U.

e In step (2) we define a function QU —:II(X) — U representing C,
i.e. such that

QU () <QU () if =wC«.
e Finally, in step (3) we prove that
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QU™ () = mingex max(n(m(x)), u(z)),
where u: X — U is the restriction of QU™ to X.

Now, we develop these steps.

1. First of all, notice that C stratifies II(X) in a linearly ordered set of
classes of equivalently preferred distributions (7' € [#] iff 7 ~ 7).
The number of classes is just the number of levels needed to rank
the set of distributions. Therefore, we take as utility scale U the
quotient set II(X)/ ~ together with the natural (linear) order

[7] < [7] iff w Ca.

Denote by 1 and 0 the maximum and minimum elements of
II(X)/ ~, i.e. of U. By Lemma 4.1, if T and z are a maximal
and minimal elements of (X, C) respectively, then clearly [Z] = 1
and [z] = 0.

Let m, be the possibility distribution corresponding to the
qualitative lottery (1/Z, A/z), and define the order reversing function
n:V = U as

n(A) = [my].
Observe that, since (1/z,1/z) ~ z,

n(1) =[(1/z,1/z)] = [z] = 0,

also is

n(0) = [(1/7,0/z)] = [z] = 1.

We verify now that n actually reverses the order. Let A < X,
then 7y, < 7y, so using A2 we have =), C 7,. Then by definition,
(7] < [my )]s de. n(X) < n(X).

Observe that, by construction, n is onto. Indeed, for any = € II(X),
A4 guarantees that there exists A s.t. m, ~ 7, so n(A\) = [7].

Let h = ny on, ny being the reversing involution in U. It is obvious
that h satisfies the conditions required.

2. So far we have determined U and h. Now, we define the qualitative
function QU™ on II(X) in two steps.
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(a) First, let us define QU™ (7, ) = n(A).
It is easy to check that

my Cmy, <= QU (7)) < QU (m),).

m Cmy <<= [m] <[ry] <= n(A) <n(X)
= QU (ry) < QU (my).

So, restricted to lotteries of type 7, , QU™ represents C .

(b) We extend QU™ to any lottery as follows.

Since for any 7, A4 guarantees that I\ s.t. © ~ (1/Z, \/z), we
define

QU (7) = n(A).

Notice that QU is well defined: suppose there exists y # A
such that = ~ (1/Z,u/z). But, since (1/Z,u/z) ~ (1/T,\/z)
then [7y] = [7,], so n(A) = n(u).

Finally, it is easy to check that QU™ represents C . This is due
to the fact that any 7 is equivalent to some 7 , and by (a) QU™
represents C over the ) ’s.

3. Now, we define u: X — U as
u(z) =3 QU ().

Notice that (%) = 1 and u(z) = 0, and thus, w~1(1) # 0 # u~1(0).
It remains to prove that

QU™ (7) = minge x max(n(n(z)), u(z)).

To verify this, we will prove the following equalities:

e QU™ (1/z,A/y) = min(u(z), max(n(}), u(y)))-
Indeed, A4 guarantees that 3 p,y such that z ~ (1/Z, u/z) and
such that y ~ (1/Z,v/z) — remember that QU (z) = u(z) =
n(p) and QU™ (y) = u(y) = n(7y) —, so using A3, we have

(1/z,A/y) ~ 1/ (17, p/2), N (1/7, y/z)),

3Understanding in the righside of the equation z as the singleton distribution.
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and reducing lotteries we obtain
(1/z,My) ~ (max(1, A) /T, max (s, min(}, v))/z).
Therefore,
QU™ (1/z,Ay) = n(max(u, min(},7)))
= min(n(u), max(n(X),n(y)))
= min(u(z), max(n(}), u(y)))-
e QU™ (max(m1,m2)) = min(QU ~ (m1), QU (72)).
By A4, u, such that m; ~ (1/Z,u/z) and 7y ~ (1/Z,v/z).
Then, using A3, we have:
max(m, m3) = (1/m1,1/m) ~ (1/(1/7, u/2), 1/(1/7,7/)),
i.e. max(mwy,me) ~ (1/Z, max(u,v)/z)).
Therefore, as QU ~ represents C,
QU™ (max(my,m2)) = n(max(y,7))
min(n(x), n(7y))
= min(QU (m1), QU (m2)).

More generally, we have
QU™ (max;—1,.. p m) =mini—__p, QU (m).

o QU (m) = minj—y,_p, max(n(n(z;)),u((z;)).
As 7 is normalised there exists z; € X such that n(z;) = 1.
Without loss of generality, we assume j = 1.
Then, let

= (1/z1, m(xi) /7).

Since m = max;—1,. , 7;, we have:

QU (1) = QU (max m)
1=1,ee,p
= min QU (m)
1=1,...,p
= min {min(u(z1), max(n(m(z:)), u(z:)))}
=4 min_max(n(r(z;)), u(z;))-
i=1,...,p
This ends the proof of the theorem. O

*Note that 7(z1) = 1, so u(z1) = max(u(z:1), n(r(z1)).
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4.5 Representation of Optimistic
Qualitative/Ordinal Utilities

An ordinal preference function u:X — U can be regarded as describing
a preference profile: the greater u(xz) is, the more preferred x is,
analogously a possibility distribution 7 on consequences specifies the
degree of plausibility of each consequence, i.e. the greater mw(x) is, the
more plausible = is. So, a pessimistic or conservative criterion is to
look for distributions which make, at least to some extent, all the bad
consequences hardly plausible.

Sometimes this criterion may be too conservative, we may be
interested in an optimistic behaviour, like requiring 7 to make at least
one of the good consequences highly plausible, at least to some extent.
This behaviour is reflected assessing a degree of intersection between the
fuzzy sets of possible consequences and the preferred ones (this point will
be developed in more details in Section 5.1). This leads to consider the
utility function which is “dual” to QU ™~

QU™ (r|u) = max min(h(r(2)), u(z)), (4.4)
h being as usual an onto preserving mapping between V and U.

Note that QU™ (r|u) is the degree of possibility of u with respect to
hom, and when = is an all or nothing distribution, this criterion coincides
with the already known maximax criterion proposed by Yager (1979).

Regarding the axiomatic setting, in this new context, we have
to change the uncertainty aversion aziom A2 by a uncertainty-prone
postulate

o A2T: if 7 < 7’ then 7 C 7/,
and to adequately modify the continuity axiom A4 into

o A4T: for all m € TI(X), there exists A € V such that = ~ (\/Z,1/z),

where T and z are a maximal and a minimal element of (X, C).

As in the pessimistic case, we have the following results, whose proofs
are analogous to the previous given ones, so they are omitted here.

Lemma 4.9
In the context of the axioms Al, A2 and A3, the axiom

e OA4" (continuity): 7' T = I X €V such that 7 ~ (1/7', )/ X)
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is equivalent to A4™T.

Lemma 4.10
If C verifies axioms Al, A2", A3, and A4", then C also verifies DP2
axiom®, that is:

If A is a crisp subset of X then there is x € A such that z ~ A.

Lemma 4.11
If C verifies axioms Al, A2", A3, and A4", and x and T are a minimal
and a maximal element of X, respectively, then:

e the following equivalences holds: T ~ (1/z,1/z) ~ X.

e £ and T are the minimal and maximal elements of (II(X),C)
respectively.

Observe that X is now a maximal element of (II(X),C), this is a
consequence of the optimistic behaviour underlying in A2". It is also
easy to verify that QU™ preserves mixtures, that is

QU (w1, n/m2) = max{min(h(X), QU (m1)), min(h(n), QU™ (m2))}.

Now, we verify that the set of axioms Al, A2T, A3 and A4* faithfully
characterise the preference orderings induced by an optimistic qualitative
utility.

Theorem 4.12 (Representation for Optimistic Utility)
A preference relation (II(X),C) satisfies axioms Al, A2T, A3 and A4t
if and only if there exist

(i) a finite linearly ordered utility scale U, with inf(U) = 0,sup(U) = 1,
(i) a preference function u:X — U such that u= (1) # 0 # v *(0), and
(iii) an onto order preserving function h:V — U,
in such a way that it holds:
o Cn f 7 <Lgu+,

where <X+ is the ordering on II(X) induced by the qualitative utility
QU™ (m) = maxgex min(h(n(z)), u(z)).

5But, now this axiom expresses that A is equivalent to its best consequence.
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Proof:
The proof is analogous to the one for pessimistic utility, so we only sketch
the proof for the “only if” part.

e For the same reasons as before we choose U = II(X)/ ~ . Again,
if £ and T denote a minimal and a maximal element of (X,C)
respectively, [Z] and [z] will be the 1 and 0 of U.

e We define h:V — U as h(\) = [(A/T,1/z)]. Observe that h(l) =
[1/z,1/z)] = [z] = 1, and h(0) = [(0/Z,1/z)] = [z] = 0. Moreover,
due to the uncertainty-prone axiom it is easy to check that A is order
preserving. By A47, h is onto.

From that, we only sketch the main steps of the proof:
e Define QU (A\/Z,1/z) = h()).

o Let 7 = (M\/Z,1/z). Verify that if 77 C ), then QU™ (x)) <
QU*(n3,).

Extend QU™ for any =, due to axiom A4™.

Define u(z) = QU (z).

Verify that QU™ (1/z,\/y) = max(u(z), min(h(\),u(y))).

Verify that QU™ (max(m1,m2)) = max(QU ™ (m1), QU T (m2)).

Verify that QU (7) = maxzex min(h(r(z)),u(z)).

Verify that <op+ agrees with C .

O

In practice, QU™ is a very optimistic index which can be used for
refining the ordering given by QU ~. We will analyse the characterisation
of this refinement in Chapter 9.

Finally, we would like to stress that the qualitative utility functions
QU™ and QU™ are indeed “utility” functions in TI(X) in the sense
that they preserve the preference ordering and the “natural operation”
of possibilistic mixture M used to combine possibilistic lotteries or
distributions. Indeed, let

Pmax = {(a, B) € V x V| max(a, B) = 1}.
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If we consider the possibilistic mixture operation M as the mapping
M:II(X) X II(X) X ¢max — II(X) defined as in (3.1), i.e.

M(m,7"; a0, B)(z) = max(min(\, 71 (z)), min(p, m2(z))),
then by (4.3), we have that
QU (M(m,7";a, ) = UM~ (QU ™ (), QU™ (7"); o, B),

where UM~ is the corresponding mixture in the preference scale U,
UM™:U X U X ¢pmax — U, defined by

UM~ (, 57, 6) = min(max(n(y), u), max(n(4), u')).

That is to say, QU™ is a morphism between the structure of possibilistic
lotteries and the structure of the qualitative preference scale.

For the optimistic qualitative utility we have analogous results: QU™
preserves the order and the mixture operation with respect to the
operation UM T:U X U X ¢max — U, defined as

UM (p, p'57,6) = max(min(h(7y), ), min(h(d), u")),
in the sense that it holds

QU (M(m, 7', B)) = UMT(QU™ (m), QU™ ('); v, B).

4.6 An Example: A Possibilistic View of
Savage’s Omelette

Finally, let us show the behaviour of QU™ and QU™ in a little toy
example. We take the well-known Savage’s omelette example (Savage,
1972) pp. 13-14, already used in (Dubois et al., 1998c) to exemplify the
QU ~ utility criterion. Here, we develop it further, but first we recall the
problem.

The goal of the DM is to make a six-egg omelette, already having five
eggs in a bowl, so DM has to decide what to do with a new egg, that can
be either fresh (F) or rotten (R). The DM can decide on three possible
alternatives:

e to break the egg in the omelette (BIO),
e to break it apart in a cup (BAC),

e to throw it away (TA).
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ACTS /STATES H fresh egg (F) ‘ rotten egg (R)

break egg in the || a 6 egg omelette (6eO for | mnothing to eat (NE) [0]
omelette (BIO) short) [1]

break it apart in a || a 6 egg omelette , a cup to a 5 egg omelette, a cup to
cup (BAC) wash (6e0-C) [d] wash (5e0-C)[b]

throw it away (TA) a 5 egg omelette,one wasted | a 5 egg omelette (5¢0) [c]
egg (5e0-1se) [a]

Table 4.1: States, acts and consequences in Savage’s omelette example.

The consequences of the alternatives, depending on the state of the egg,
are given in Table 4.1. The grades between catch indicate an (reasonable)
encoding of the preferences of consequences, belonging to a totally ordered
scale U ={0<a<b<e<d<1}.

Notice that since only two states are present (Fresh and Rotten), we
deal with binary acts. We also assume that plausibility degrees of each
state will be measured on the same scale, i.e. we take V = U, and thus we
also take the commensurateness mapping as h = identity, hence n = ny.
Assume a possibility distribution on states m:{F, R} — V is given.

Then, every decisiond € {BIO,BAC,TA} induces the corresponding
possibility distribution 74:X — U, on the set of consequences

X = {6e0,6e0 — C,5e0,5e0 — C,5e0 — 1se, NE},

defined as mg(z) = max{m(s)|d(s) = z}, assuming max @ = 0.
In a vectorial notation, the distributions are as follows:

1510 (6€0, 60 — C, 5¢0,5¢0 — C,5¢0 — 1se, NE) = (n(F),0,0,0,0, 7(R)),
wBac(6€0,6e0 — C, 5e0,5¢0 — C,5¢0 — 1se, NE) (0, 7(F),0,7(R),0,0),
w74 (60, 6e0 — C,5e0, 5¢0 — C,5e0 — 1se, NE) = (0,0,7(R),0,w(F),0),

In the following we successively consider the different criteria. It
is easy to check that under the above hypotheses, and assuming that
the distribution is normalised (i.e. max(w(F),n(R)) = 1), we get the
following values for the pessimistic utility QU ~:

QU (mpro) = N(F),
QU (rpac) = min(max(N(R),d), max(N(F),b)),
QU (mr4) = min(max(N(F),c), max(N(R),a)),



where N(F) =1 — n(R),N(R) = 1 — n(F) are the necessity values of
each state, with min(N(F), N(R)) = 0. Table 4.2 exhibits the best acts
according to the pessimistic criterion and depending on the DM’s belief
about the state of the egg.

| N(F) | N(R) || QU (n510) | QU (n54ac) | QU (nr4) || Best Acts |
0 1 d a BIO
d,c,b 0 N(F) N(F) a BIO or BAC
a 0 a b a BAC
0 0,a 0 b a BAC
0 b 0 b b BAC orTA
0 cd,1 0 b c TA

Table 4.2: Pessimistic Qualitative utilities.

One can see that the model recommends decision BAC in case of
relative ignorance on the egg state, that is when max(N(F'), N(R)) is not
high enough (less than b), and it advices to act cautiously, breaking the
egg in a spare cup, in case of serious doubt. Now, let us consider the
optimistic criterion modelled by QU ™. The values are as follows:

QU (rBro) = =(F),
QU (rpac) = max(min(r(F),d), min(7(R),b)),
QU (mra) = max(min(7(R), c), min(7(F),a)),

and the best decisions can be found in Table 4.3. As we could expect,

| N(F) | N(R) || QU*(n510) | QU*(n54ac) | QU* (n74) || Best Acts |
1 0 m(F) d a BIO
d,c,b 0 w(F) 7) w(R) BIO
a,0 0 w(F) d c BIO
0 1,d w(F) b c TA
0 c w(F) w(F) c TA
0 m(F) m(F) c TA, BAC, BIO
0 a w(F) w(F) c BAC or BIO

Table 4.3: Optimistic Qualitative utilities.

this criterion suggests breaking the egg into the omelette as soon as there
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is no positive evidence about the egg being rotten, even this is very small.
Notice that QU™ scores each alternative higher than QU ™.
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Chapter 5

Generalised Ordinal Utility
Functions Based on
T-Norms

As it has been mentioned initially in Section 3.1 and in Section 4.5 as
well, for modelling a pessimistic behaviour we have been looking for
decisions that always gave good results in all possible consequences, while
for an optimistic one our goal was to find decisions that at least in one
possible consequences gave good results. Indeed, for example when the
distribution is crisp, i.e. for all z, mg(x) € {0,1}, we have that

QU™ (mq) = min u(z),

TETY

that is, mg is evaluated in terms of the worst consequence compatible with
74, while
+ _

QU™ (ma) = maxu(z),
i.e. mq is evaluated in terms of the best possible consequence.
With this objective, the estimation of the pessimistic (optimistic) utility
of a decision d was measured in terms of the degree of inclusion (or
intersection resp.) of the fuzzy set of possible consequences for a decision
d, that is, the fuzzy set my, into the fuzzy set of good results u. In
particular, we have that

(i) supp m1g C core ut = QU (mg) =1,

'If A is fuzzy set on X, supp A = {z € X|A(z) > 0},core A = {z € X|A(z) = 1}.
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(ii) core mq () (supp u)® #0? = QU (ma) =0,
(iii) core mg () core u 0 = QU (mq) = 1,
(iv) supp ma C (supp u)® = QU™ (mg) = 0.

(i) says that if all possible consequences of d is a good one, the pessimistic
criterion consider d as a “best” decision. (ii) if there exists a totally
possible consequence of d that is considered bad, the pessimistic criterion
consider d as a bad decision. While (iii) says that if there ezists a totally
possible consequence of d which is a good one, the optimistic criterion
considers d as a good decision. (iv) if all possible consequence of d is
considered a bad consequence, the optimistic criterion consider d as a
bad decision. Observe that if we have that

if A>0then n(A) <1,

e.g. if n is injective, then the reciprocals of the first and fourth
affirmations are valid. Moreover, if we have that

if A <1 then n(\) > 0,

then the reciprocals of the others are true as well.

From alternative definitions of degrees of inclusion and intersection,
other utilities are introduced in Section 5.1. These utility functions are
based on (finite) conjunctive and implication connectives. In particular,
considering a  S-implication-like defined in terms of t-norms on the
uncertainty scale and the reversing mapping linking V' and U, we obtain
generalised pessimistic qualitative utility functions GQU. While regarding
that conjunction is defined in terms of a t-norm on V. generalised
optimistic functions are obtained. In the particular case of considering the
t-norm minimum, QU and QU™ are recovered. But, this is not always
the case. Indeed, if other t-norms are chosen, the rankings induced by
QU and GQU may be different, as it is shown in the example of Section
5.2. The orderings induced by these generalised qualitative utility are
axiomatically characterised in Section 5.3.

5.1 Qualitative Utilities Expressed in Terms of
Inclusion and Intersection Degrees

In this section we analyse some utility functions that may be defined
taking into account that they measure a degree of intersection or inclusion

?Recall A° means the complementary of A.
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of fuzzy sets. First, we consider the intersection case. We recall usual
definitions on [0,1], and then we extend them to the case of involving
two different finite scales V and U. Secondly, we consider two alternative
definitions for inclusion degree: a cardinality-based or a “logical”-based
one. Namely, for evaluating the inclusion degree of “A C B”:

e one can evaluate the proportion between the fuzzy cardinalities of
AN B and of A, or

e one can evaluate the truth of the sentence “all elements of A are
elements of B”, that is, the truth value of

(Vz)(z € A=z € B).

The problem with the first one is that it may not be applied in
problems in which the available information is mainly ordinal. Therefore,
we consider different alternatives for applying the “logical” definition
involving (mainly) ordinal scales, with this goal we shall analyse different
implications operations.

5.1.1 Optimistic Behaviour

Let us first recall two definitions.

Definition 4
e a fuzzy conjunction® A is a binary operation A:[0,1] x [0,1] — [0, 1],
A being commutative, associative, non decreasing in both variables,
also satisfying

(IAz)=z Vze€]|0,1].

A is also said a triangular norm (t-norm for short), and we shall also
denote it by T.

e Given A and B, two fuzzy sets in X, the degree of intersection of A
and B may be defined as

[ANB] = gleag’((A(w) A B(z)) (5.1)

with A a conjunction on [0,1].

3We restrict ourselves to commutative and associative conjunctions.
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From this definition we may see that if V = U is a subset of [0,1], and
choosing A = minimum, we have

U (dlu) = ra 1 ] = max min(ra(o), u(@)) = QU (rafw).

That is, QU™ (my) measures the degree of intersection between the set
of possibles consequences and the set of preferred ones, as it has been
mentioned.

However, the problems in which we are interested in involve two any
commensurate finite scales, thus, we are interested in intersection of fuzzy
sets whose membership functions may be valued over different scales.
Indeed, 74 is V-valuated while u is U-valuated, usually V and U being
different.

As a first step, taking into account that in the conjunction definition
we may consider that we are only applying ordinal aspects of values on
[0,1], we may regard their natural extension to a fuzzy operation from
V x V into V, with V a finite linearly ordered scale. From now on,
assuming that we have fuzzy sets defined over V and U, with V and
U two finite linearly ordered scales that are commensurate, i.e. there
exists an onto order preserving function h:V — U, we may think of both
values of preference and uncertainty as being in the “same” scale (the
uncertainty one), although this is not strictly true. So, we may define the
conjunction on V x U, in terms of a fuzzy conjunction on V, i.e.

(vAu)=hv Ay ) (5.2)

with Ay a conjunction on V and h(A,) = u.
For the sake of a sound definition A is also required to satisfy a coherence
condition w.r.t. Ty, i.e. h verifies

h(A) =h(p) = h(aTy ) =h(aTy u) Vo, A\, p€V.

Notice that, for instance, when h is injective or when Ty = min, this
condition of coherence is satisfied. In particular, when only ordinal
information is available and we take Ay = min, we again have

U (dju) = [mg N u] = QU (ma|u).

In the general case, given a conjunction Ay on V, we consider the
conjunction induced in V X U by Ty, so the optimistic generalised utility
function take this form,
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GU (d|u) = max h(mg(z) Ty Ag) (5.3)

with h(\;) = u(z). Obviously, h is involved in GU™(d), but we omit h
in its notation for simplicity reason. Note that when Ty = min, then
GUT =UT.

The preference orderings induced by these optimistic generalised
utility functions are axiomatised in Section 5.3.

5.1.2 Pessimistic Behaviour

Now, we focus in modelling the degree of inclusion to be applied to
evaluate the pessimistic criterion. As it was mentioned we may consider
two alternatives, if we are speaking about of two fuzzy sets defined on
X over [0, 1], cardinality-based and logical-based definitions. Let us first
recall some definitions.

Definition 5
e Given a fuzzy set A:X — [0, 1], its cardinality is defined as

Al =" A(x).

z€eX

e A fuzzy implication? is a function I:[0,1] x [0,1] — [0,1] such that
1 is non-increasing with respect to the first argument, while it is
non-decreasing with respect to the second one. It also satisfies the
following boundary conditions:

I(1,0) = 0,1(0,z) = 1 and I(z,1) =1V z €0, 1].

e A negation (Trillas, 1979) is a non-
increasing function n:[0,1] — [0,1] satisfying n(0) = 1, n(1) = 0,
and n(n(a)) > aVa € [0,1]. A negation is strong if it satisfies that
n(n(a)) = a.

Hence, the alternatives definitions for an inclusion degree we are led
to are:

“In (Bouchon-Meunier et al., 1999; Chapter 1), a fuzzy implication is also required
to satisfy an exchange condition: I(z,I(y,z2)) = I(y,I(z,z)).
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1. From the “cardinality” point of view:

|A - B|card = |AmB| = ZZ(AOB)(Z) = Ez

A
|A] Y. AR XL AR)

T being a t-norm °.

2. Within the tradition of many valued logic, the evaluation of the
degree of truth of the expression (Vz)(x € A = z € B) is defined as

ACB|=[Vr)wcAsrcB)= inf I(Al)B(@),

with I a fuzzy implication on [0,1].
In our case if we assume V' = U, we have that
U (dlu) = [mg Syl

= [(Vz)(z € g = z € u)]
min I(mg(z),u(x)).

Obviously, the cardinality-based definition require to deal with numerical
values, and sometimes we may require more ordinal expressions for the

5We would like to remark that if we consider T = Product, then Gilboa and
Schmeidler’s utility (defined in (2.5)) may be seen as a degree of inclusion too. Indeed,
for each decision d, and given the similarity function on situations, Sim, let

Sim®:{s| (s,d,z) € M} — [0,1]

be the fuzzy set of situations which are similar to so and where decision d was
experienced, with

Sim®(s) = Sim(s, so).
In a similar way, we consider the fuzzy set of preferred situations, that is,
G*{s| (s,d,z) € M} = [0,1],
with
G?(s) = u(x).
Then, Gilboa and Schmeidler’s utility is

E(s,d,z)eM Sim(SO) S) ) U($)

- =|Sim¢ C G¢ d-
E(s,d,m)EM Szm(so, s) | = |car

Uso,m(d) =
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cases of having (mainly) ordinal information available, hence we will focus
in the second alternative. But, we have to take into account that we
are interested in the degree of inclusion of two fuzzy sets with different
valuated sets. So, the first step is to extend this definition. As before, the
extension to U XU of the definition of fuzzy implication is the obvious one,
while for speaking about implications on V' x U we propose to consider
the “implication” I:V x U — U,

I(v,u) = Iy (h(v),u), (5.5)

Iy being an implication on U x U in the sense of Definition 5.
Hence, when we are considering A, B fuzzy sets on X over V and U
respectively, we have that

[A - B] = Mingex I(A(:L‘),B(.T)) = Mingex IU(h(A(CC)),B(SE))

If we choose I(v,u) = max(ny(h(v)),u), ny being the involution in
U, we again obtain that

U (d[u) = [rg C u] = QU™ (malu).

Below, we propose another model for the fuzzy implication involved
in the “logical” definition of degree inclusion taking into account that we
may consider available in V' and U not only maximum and minimum but
also other operators, obtaining therefore their respective utility functions.

By analogy to the usual fuzzy implication on [0,1], some particular
fuzzy implications on V x U may be introduced using t-norms and t-
conorms, the three more important groups are:

e S-Implication: Given a conorm S on U and the strong negation ng
on U, theS-implication associated to them is defined as

Isny (v,u) = S(ny(h(v)),w).

e the residuated implication with respect to a t-norm Ty on U is
defined as

Ir(ty)(v,u) = sup{z € U| h(v) Ty z < u}.
That is,
IR(TU)(Uau) = Ig(TU)(h(U),u)a
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with Ig(TU) the residuated implication on U defined as
Ig(TU)(w,u) =sup{z e Ul wTy z < u}.

e the reciprocal implication with respect to a negation negy on U,
defined as

Ipr(ry) (v, u) = I,y (negu (u), negy (h(v))).
We may also consider the following alternative definition:
e the S-implication-like defined as
Ig(v,u) =n(vTy z) (5.6)

with n(z) = u, Ty a t-norm on V and n:V — U an onto order
reversing function.

To guarantee the correctness of the above definition of implication
we require n to satisfy the coherence condition with respect to Ty,
ie.

nA\) =n(u) =>nlaTy A)=n(aTy u) VYa,\,pu€eV.

Observe that this implication may be seen as a generalisation of an
S-implication, since when n is injective, then

Ig(v,u) =n(vTy z) =n(v)L, 1, u,
with L, 1, being the conorm in U defined as
(@Ln,7y ) =n(n"(z) Tv n™*(y))-
That is, I¢(v,u) is an S-implication w.r.t. the conorm L, T, .

Next, we analyse the utility functions that emerge from these
implications. As the last implication defined include S-implication, we
restrict the analysis to the residuated, the reciprocal ones and the S-
implication-like.

1. Consider Ig(v,u). As we are interested in a utility function that
selects acts such that all the possible consequences of the decision
are good results, we are looking for

GU™(dlu) = [mq Cu]
= min(rq(z) = u())
= min7g(my(e), u())

= min n(mg(z) Ty Az)
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with n(A;) = u(z).

Comparing these utility functions with the pure ordinal ones, we
have that, for any decision d,

Ut (dlu) > GUT (dJu) > GU™ (du) > U (d|u).

Moreover, if GUT and GU~ are considered in terms of the t-norm
Ty involved, GU ™ is non-increasing with respect to Ty, while GU™T
is non-decreasing. That is, if T < T; are t-norms in V, then
GUT > gu;l and QU}L— < QU}L-I.

Obviously GU™ coincides with U~ if the involved t-norm is the
minimum. However, the G/ and U orderings may be different when
Ty # min, as it may be verified in the example of the following
section (Table 5.3).

. Consider now the residuated implication
Ip(Ty)(v,u) = sup{z € U| h(v) Tyz < u},
and its respective utility

Ulpryy(dlu) = MingexIpr,)(ma(z), u(z))
= Mingexsup{z € U| h(mq(z))Tr 2z < u(z)}

e If Ty does not have non-trivial zero divisors® and (supp (h o
ma) N (supp u)® # 0, then Uy, (r,y(d) = 0.

e U~ and Up,(T,) may induce different rankings. Indeed, for
instance:

— Let Z,z € X s.t. w(ZT) =1land u(z) =0,let A\, p €V, A #
0 # p and h(X) # h(u), and consider d and d’ s.t.
74 = (1/7,\/z) and 74 = (1/7, /z).
Consider that Ty does not have non-trivial zero divisors,
then Upp; \(d) = 0 = Uy, (d). So, Upyy,, may not
distinguish between them, while &/~, may distinguish both
because of U~ (d) = n(A), U (d) = n(p).

— Moreover, although it may be that for all decisions d
satisfying

A t-norm T in [0,1] has non trivial zero divisors iff 3z,y € (0,1] s.t. Ty = 0.
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INEV st. mg=(1/7, M\ z),
both utilities coincide on their evaluations of these
decisions, i.e. UIR(TU)(d) = U (d) (for example, it happens
when Ty is Lukasiewicz t-norm) however, U~ is not a
refinement of UIR(TU)'
Indeed, given y such that z C y C Z, and g4 € V s.t.
0 < h(u) < u(y), let d be s.t. 7g = (1/T,u/y). So, we have
that U~ (d) = max(n(u),u(y)) < 1, that is,

Ta LQu- T.
However, UIR(TU)(d) = Ip(ty)(h(p),u(y)) = 1, that is, mq
and T are equivalents for the ordering induced by UIR(TU)'

3. Given a t-norm Ty and a negation on U negy we consider

Irgr(Ty)(v,u) = It (negu (u), negy (h(v))).
Then, the respective utility function is

UlrRR(TY) (dlu) = MinweXIRR(TU) (ma(z), u(z))

= MingexIyt,)(negy(u(z)), negy (ra(z))).

We notice that U'BR(v) may give results that are considered
unsatisfactory in many contexts. For instance, here, the utility value
of a decision which is identified with a consequence may be different
from the preference value that DM assigns to this consequence.
Indeed, let d be s.t. mg = {z¢}, then

URETO) (dlu) = nr, (nego (u(zo))).

where nT,, is the negation associated to the residuated implication
I%(TU)’ ie. nT,(w) = Ig(TU)(w,O). Therefore, if Ty does not have
non-trivial zero divisors, then

1,  ifnegy(u(zo)) =0
URETD) (d|u) = URETD) (o) =
0, otherwise.

That is, UT#*(T0) (du) will be different from wu(zg) for almost all
possible u(zg).

72



e If negy is bijective (i.e. negy = nyy), then Y'RR(TL) = Y'R(TL),
Indeed, if T is Lukasiewicz t-morm, megy is bijective, as
IRR(TU) = IR(TU), then YIrRR(Ty) = yIrR(TY) .

e If negy is not bijective, it may be possible that UlrRR(TL) #
URCTL), Indeed, we consider U = {0 < w1 < up < 1},
negy(u1) = 1, negy(uz) = up. Let us assume V = U, so h
is the identity. Let y be such that u(y) = w1, let d be s.t.
7a = (1/Z,u2/y). Then,

uIR(TL) (d) = IR(TL)(UQ’IU‘I) = u2’

while
URRC(d) = Min{Ipc,)(0,0), Tgr,)(negy (u1), negy (uz))}
= Uuz.
Remark 2

As it is mentioned, if negy is bijective then IgpT,) = Igr(T,)- Moreover,
if we consider now (v = u) = Ig"%" (v, u) = St (negu (h(v)),u) andUs, its
respective utility, as we have that Igng (v,u) = Ipct,)(v,u), that is, the
S-implication based on Lukasiewicz is equal to the respective residuated
and reciprocal one, hence the utilities functions defined from them are
the same.

Moreover, if we assume that V = U, therefore n is bijective, n satisfies
coherence and we may consider the generalised utility function GU|,
associated to the Lukasiewicz’s t-norm. In this case, we have that GUT,
coincides with the utility functions induced by the S — implication,

IR(TL) or the IRR(TL)'

5.2 An Example: A Safety Decision Problem in
a Chemical Plant

To exemplify some of the notions introduced in this Chapter, and that
will be continued in other Chapters, we consider the following example.
Chemical plants are potentially dangerous industrial complexes, so they
have to foresee emergency plans in case of problems. Assume the chemical
plant has three emergency plans:

EP1 : emergency plan 1,
EP2 : emergency plan 2,
EV  : total evacuation,
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that only may be activated by the head of the Safety Department,
depending on his subjective evaluation of the seriousness of possible
problems occurring in the plant. Naturally, total evacuation means that
people would be safe, but the activity in the plant will be interrupted
and this means that the plant has loss. The emergency plan 2 consists of
a group of safety measures (like to evacuate a zone of the plant without
stopping totally the production) that tries to guarantee the safety of
the employees. It has a high cost, but does not stop the production.
While emergency plan I means that only local safety measures are taken.
Depending on the type of problems occurring in the plant, the situations
of the plant may be classified in four modes:

so : mormal functioning,
s$1 : minor problem,

so : major problem,

83 @ wvery serious problem.

To survey the functioning of the plant smoke detectors and pressure
indicators are distributed throughout different sectors of the plant and
connected to alarms to warn about either the existence of fire or broken
pipelines. When the alarm system turns on in some sector, plant engineers
evaluate the readings of the alarm systems and they forward a report to
the head of the Dept. He has to undertake one of the following actions:

do : do nothing (DN),

dy : activate emergency plan 1 (AEP1),
dy : activate emergency plan 2 (AEP2),
d3 : activate evacuation (AEV A).

Undertaking any of these actions has different consequences depending on
which is the actual state of the plant. We describe the consequences from
two points of view: how risky the situation for employees will be after
having taken the action (we will call this situation post-situation) and
which is the (economical) cost of the action. Both issues are measured in
a qualitative scale 0 < 1 < 2 < 3. Their meanings are:

0 None,
1 : Small,
2 : Medium,
3 High.
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For instance, if decision dy is chosen, and it turns out that the actual
state was not sy but s1, then there will be no risk after (Risk = 0) but
to a higher cost than the required one (Cost = 2). On the other hand,
if the actual state were s3 (a very serious problem) decision ds is not
enough to completely avoid any risk (Risk = 1) a posteriori. In general,
consequences of these actions (the situation after the action has been
taken) are given in Table 5.1 where Risk = i stands for risk level ¢ (i =

AEP1 ‘ AEP2 ‘ AEV A

DN ‘

S0

Risk = 0,Cost =0

Risk = 0,Cost =1

Risk = 0,Cost = 2

Risk = 0,Cost =3

S1

Risk =1,Cost =0

Risk = 0,Cost =1

Risk = 0,Cost = 2

Risk = 0,Cost =3

§2

Risk = 2,Cost =10

Risk = 1,Cost =1

Risk = 0,Cost =2

Risk = 0,Cost =3

Risk = 2,Cost =1

Risk = 1,Cost = 2

Risk = 0,Cost =3

83 Risk = 3,Cost =0

Table 5.1: States, decision and consequences after taking decisions.

0,1,2,3) and Cost = i for cost level i(i = 0,1,2,3). The post-situation
is evaluated in terms of two criteria: personal safety and economical
expenses. The final preference evaluation is made assuming that personal
safety reasons are considered more important than economical reasons.
That is, we rank order the post-situation considering first the level of
risk it has and then its cost. Obviously, the smaller the risk is, the most
preferred the situation is. For situations with the same level of risk, the
smaller the cost, the most preferred the situation is. That is, we consider
the following ordering on consequences detailed on Table 5.2, where we
take as preference scale U = {0 = wyp < w1 < ... < wg < wg = 1}.

H Cost =0 ‘ Cost=1 ‘ Cost =2 ‘ C’ost:?j‘

| u
Risk =0 Wy wg wr W ‘
Risk =1 Wy wy w3
Risk =2 w, wy
Risk =3 wo

Table 5.2: Assignment of preference values for each possible consequence.

Qualitative Utility Evaluations: QU and QU™

At a given moment, alarms lights turn on and immediately after the
following report arrive to the head of the Department:
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“A problem has been identified in Sector G, most plausibly it is
a major problem, but there is still some chance it can actually
be a minor problem, or even it might become a very serious
problem”.

We model the information about the actual state of the chemical plant
provided by the report with a possibility distributions 7g:S — V, where
V is a finite uncertainty (plausibility) scale, defined as follows:

ms(s0) =0, mg(s1) = 22, ms(s2) =1, ms(s3) = 21,

with {0 < 21 < z5 < 1} C V. Thus, 7g is representing that so is a totally
plausible state, s; and s3 are somehow plausible and sg is not considered
plausible at all.

For simplicity reasons we consider that the preference and uncertainty
scales are the same, so that {z1,22} C U. Then, given the previously
mentioned possibility distribution 7 on the possible states, every decision
d; (1 = 0,3) induces a corresponding possibility lottery (distribution)
;X — U on the set of consequences. Here, they are:

a0 = (0/(Risk =0,Cost=0),z/(Risk =1,Cost =0),
1/(Risk = 2,Cost = 0),z1/(Risk = 3,Cost = 0));

a1 = (z2/(Risk =0,Cost =1),1/(Risk =1,Cost = 1),
z1/(Risk = 2,Cost = 1));

a2 = (1/(Risk =0,Cost=2),z1/(Risk =1,Cost = 2));

a3 = (1/(Risk =0,Cost = 3)).

Now, we evaluate the pessimistic and optimistic criteria under the above
hypotheses.

QU (mg) = min[max(ny(0),1), max(ny(z2),ws),
max(ny (1), ws), max(ny(z1),0)]
= min[max(ny(z2),ws), ws, ny (21)]

= min[wg, ny(z1)];

QU™ (7g1) = minfwy, max(ny(z1),w:)];
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QU™ (mg2) = min[wy, max(ny(z1),ws)];

QU_ (7Td3) = We.
Independently of the value of z;, we may see that
mg3 Jou- Ta1  and g3 Jou— Tdo-

That is, dy and d; are discarded. However, to choose between dy and ds
we have to take into account the value of z;. Indeed, if z; < wo, then 7go
Jqu- ™43, while for z; = w3 we have that mgo ~gp- 743, and for 21 >
w3, the ordering is mg3 Joy- Ta2-

Analogously, the evaluations for the optimistic criterion are:

QU (rg0) = max[min(zy,ws),ws];

QU (rg1) = max[min(zo,ws),ws, min(z1,wr)]

= max[min(zq,ws),wy)];
QU (mg2) = max[wr, min(z;,ws)] = wr;

QU (mg3) = we.
That is, we immediately have that
Td2 Qu+ Td3 —lQu+ Tdo-
Thus, do (activate plan 2) is preferred to d3 and dy. But, to compare ds to
di we have to take into account the value of z9. For instance, for zo > wsg,
we have that 741 Jgp+ 742 and thus di would be preferred to dy in that
case, while if zo = wy, d2 and d; become equally preferable or if zo < wg,
ds is preferred to d;.

Generalised Pessimistic Qualitative Evaluations: GQU

Now, let us see how GQU ~ evaluates decisions. If we consider an arbitrary
t-norm Ton V, the values we get are:

GQU (mg0) = minfwg,ny(21)],
(ma1) = minfws, ny (z1)Lwr)],

GQU_(TrdQ) = min[w7,nv(zl)J_w3)],
(a3)

= Ws,
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where | is the dual conorm of T with respect to the involution ny .
When we choose T = minimum, GQU~ obviously recovers QU ~. Let us
consider the case of T being the so-called Lukasiewicz t-norm defined as
w; Twj = wy, with & = max(0,% 4+ j —9). The corresponding t-conorm L
turns out to be defined as

wir; if 9> i+
s = 1+) =
Wiy { wg otherwise.

The choice of Lukasiewicz t-norm somehow carries out the implicit
assumption that the values in V are equally distributed in the scale,
which allows some form of additivity. Hence, it could be argued that this
assumption is beyond the pure qualitative approach in which the ordering
is what exclusively matters. But this hypothesis on the scale is rather
usual and we think it is worth to give room in the model for these, let us
say, non pure ordinal or qualitative assumptions.

‘ 21 H Dist. ‘ QU™ ‘ GQU~ ‘ Pref. w.r.t. QU™ ‘ Pref. w.r.t. GQU~ ‘

Tdy w2 w2
Tdq w4 w4

w3 Tdoy ~ Tdg 1 Tdy 1 Mdy | Tdy J Tdg 1 Tdy 1 Mg,
Tdgy We wr
Tds We We
Tdy w2 w2
Tdy w4 W4

ws Tdg 1 Tdy ~ Tdy 1 Tdy | Tdy _1 Tdgy _1 Tgy _1 Ty
Tdy w4 wr
Tds We We

Table 5.3: Differences in the rankings by GQU ™ and QU ™.

In Table 5.3 we provide the preference orderings according to both
QU™ and GQU~ we get for two particular values of z;. One can see that
for z; = ws, the ranking provided by GQU ™ seems a refinement of the
one by QU ™. However, when z; = ws, GQU ™ reverses the ordering of
QU ™~ for the decisions dy and ds. In this case, QU ~ turns out to be more
conservative than GQU ™ since it prefers d3 (evacuation) to ds (activate
plan 2), while the preference for GQU ™ is the opposite.

5.3 Representation of Preference Orderings:
Extension to Generalised Ordinal Utilities

Now, given a t-norm operation in V, T : V x V — V, we are interested
in characterising the preference relations on II(X) that are representable
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by the generalised qualitative utility functions introduced in Section 5.1,
which are extensions of the qualitative utilities QU™ and QU T, that is,
GQU () = minn(w(x;)TN),

r;€X
GQUT (r) = maxh(n(z:)T i),
T;€EX
where n(\;) = wu(z;) = h(u;), u representing the DM’s preferences
on consequences, n = ny o h, with the onto order preserving mapping
h:V — U being as usual, but further verifying a coherence condition
w.r.t. T to guarantee the correctness of the above definition, that is:

h(A) = h(p) = h(aTA) = h(aTp), Va,\,u€eV.

We are especially interested in characterising these utility functions since
they may result in different orderings from the associated with QU
orderings as it has been shown in the previous example.

The possibilistic mixture operation considered so far to combine
possibilistic lotteries has been a max-min combination:

(05/7'('1 ) B/’]TQ) = max(min(a, 7T1)’ min(ﬁa 7T2))'

Possibilistic mixtures, definable as | -decomposable’ consensus functions
on, | being a t-conorm operation have been studied in (Dubois et al.,
1996b). It is shown there that for possibility measures, i.e. max-
decomposable measures, an admissible class of mixture operations is
obtained by defining

M+(m,7';a, ) = max(aTm, BT7) a,BeV

where T is any t-norm operation on V and max(w,3) = 1. Thus, a
particular case is to take T = minimum, which results in the max-min
mixture considered up to now.

Lemma 5.1
GQU~ and GQU™ preserve the possibilistic mixture in the sense that it
holds

GQU™ (M~ (my,mo; A\, i) = min(n(ATd1),n(pTde)),
GQU T (M (my,mo; N, ) = max(h(ATy), h(uTy2)),

with n(3;) = GQU~(m;), h(y;) = GQU* ().
"A measure g:2X — V is L-decomposable if g(AUB) = g(A) Lg(B) when ANB = §.
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Proof:
As both proofs are analogous, we only include the proof for GQU ~. By

definition
GQU™ (M (m1, m2; A, p)) = ming;ex n(Mr (w1, m2; A, 1) () T%),
where n(v;) = u(z;). Since

M (1,7 A p)(@i) Tye = [max(ATmy(z:), pTma(w))] Ty
=8 max(A\Tmy(z;) Ty, u Tma(z:) Tyi),

then
n((M(my, 725 A ) (7)) Tye) = n(max(AT o (z) Ty, wTme(w:) Tvi))
=9 min(n(ATw(z) Tye), n(puT e (z:) Ty),
SO
min n(Mv (w1, mo; A, 1) (2;) Ty) = min min(n(ATw(z;) Ty),
T, €X T, €X
n(pTmo(wi) Ti))
= min{min n(ATm(z:) T
min{min n(\ T, (2:) T7),
:glelgl( n(pTma(x;) Ty}
Since
glégl(n(ATﬂl(wi)Tvi) = n(glg;g(/\Tm(wi)T%))
= n(/\T(;?g(?ﬁ(xi)T%))),
then
GQU_(MT(’/TD”TQ;)H/I‘)) = mln{n(AT(flg‘)X(Wl(xl)T’ﬁ))a
n(uT(ggggm(wi)T%)))-
Since

n(maxg, e x 7 (z;) Tyi) = ming,e x n(mj(z:) Tyi) = GQU ™ () = n(6)),

8Because of max(a, 8) Ty = max(aTy, 8T7).
9Because we have n(max(a,b)) = min(n(a), n(b)),since being a reversing ordering
mapping between linear scales implies to be a reversing morphism.
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under the coherence hypothesis, we obtain that
n(AT (maxgex m1(2:) Tv)) = n(ATé),
and analogously, we have that
n(pT (maxqex m2(7:) TY)) = n(uT o).
Hence,
GQU (M~ (my,mo; A\, 1)) = min(n(ATd1),n(puTde)),
with n(d;) = GQU (7).

Now, we have that

Lemma 5.2
The reduction of Ilotteries follows the next rule:

M (M (1, 725 A1, A2), M (1, o5 pi1, pr2), @, B) =
= My (m,mo;max(aTA, BT u1), max(aT Ag, BT ue)).

Proof:
My (M (1,795 A1, A), My (w1, o3 1, p2), o, B) =
= max[a T M+ (my, To; A1, A2), BT M (1, 725 p1, pa2)]
= max[aT max(A; Ty, Ao Tme), BT max(uy Ty, po T )],
and since
aT max(\,y) = max(aTA, aTy) Va,A,7;
we obtain that

max[aT max(A Ty, A2 Tm), BT max(u Ty, ue Twe)] =
= max[max(aTA Try,aT A Tme), max(B8T uy Try, BT ue Tre)]
= ma.X[OéT)\lTﬂ'l,OAT/\QTT('Q,BT,u,lTﬂ'l,,BT/LQTﬂ'Q]

=  maxmax(aTA\ Twy, STur Trr), max(aT A Twe, BT e Tme)]
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=  max[max(aTAy, BTu1) Try, max(aT A, BT ) T

= My (m,m;max(aT Ay, BT 1), max(aT A, BT p2))-
[l

In order to encompass this extended kind of possibilistic mixture
operations in the qualitative decision model we have considered the
modified axiom set AX+ = {Al, A2, A3+, A41}, where

e A3 (independence): m ~ wo = M+ (m, ™, B) ~ Mt (ma, m; a, ).

o A4+ (continuity) : Vo € II(X) IX € V such that 7 ~ M1 (T, z; 1, A),
where T and z are a maximal and a minimal element of (X,C)
respectively.

Now, we introduce some results for this axiomatic setting that are
analogous to the results obtained in the previous Chapter.

Lemma 5.3
If C verifies axioms Al, A2, A3+ and A4+, C also verifies axiom D P2,
i.e. if A is a crisp subset of X then there is x € A such that x ~ A.

Proof:
Suppose that A = {z1,z2}, with 1 T z5. Let us first suppose that
I1 ~ T2, S0

A= Mt(z1,22;1,1) ~ Mv(z1,2151,1) = 1.
If 1 C z9, by A4t there exist A1 and Ay such that
1 ~ M7 (T,2;1,)\1) and 29 ~ M1 (T, z;1, \9),

as 1 C zo, then by A2, A\; > Ao.
Hence, applying A31 we obtain:

A = Mr(z1,29,1,1) ~ Mr(M7(Z,2;1, \1), M7(T,2; 1, A2), 1, 1)
= Mv(Z,z;1,max(A1, ) = M7(Z,2;1, A1) ~ 21.
Suppose the Lemma is valid if |[A|] = p. Let now A be such that
|A] =p+1, and let z1 be one of its minimal w.r.t. C.

Since A = Mt (z1,A — {z1}; 1, 1), by induction hypothesis we have
that if 25 is one of the minimal elements of A — {z1} w.r.t. C, then
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A~ My(z1,29;1,1) ~ 1.

Lemma 5.4
If C verifies axioms Al, A2, A3+, A4t then, the maximal and minimal
elements of X w.r.t. to C are indeed maximal and minimal elements of
II(X) as well.

Moreover, if T is a maximal and z is a minimal on (X, C), the following
equivalencies holds:

z~ X~ Mr(T,z;1, 1).

Proof:
We may observe that the proof is “independent” of the definition of the
mixture, since we only use that z < M+(7,z;1,1) < X.

Indeed, let us prove first the equivalencies

z~ X~ M(Z,z;1,1).

Al guarantees that z and T exist. By the uncertainty aversion axiom A2,
it is clear that X is a minimal element of II(X), so it is X C z.

But by DP2 there exists £og € X such that zp ~ X, but since z is
minimal, z C z, thus it must be z ~ X.

Furthermore, on I1(X) we have z < M+1(Z,z;1,1) < X, and by A2,
X C M+(z,z;1,1) C z, and thus z ~ X ~ M1 (Z,z; 1, 1).

On the other hand, for any n € II(X), since 7 is normalised, there
exists z such that 7(z) = 1. So, we have £ < 7 and therefore 7 C z, but
since T is maximal of X, it is z C T, and thus 7 C T. O

For the preference orderings induced by these generalised qualitative
utilities we have a representation theorem like in the previous Chapter.

Theorem 5.5
A preference relation T on II(X), equipped with the mixture operation
M-, satisfies the axiom set AX~ if and only if there exist

(i) a finite linearly ordered preference scale U with inf(U) = 0 and
sup(U) = 1,

(i) a preference function u:X — U such that v~ (1) # 0 # u~1(0),
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(iii) an onto order preserving function h:V — U, satisfying also
h(A) = h(p) = h(aTA) = h(aTp), VYo, \u€eV,

in such a way that it holds:
© Cx  iff 7 <gou- T,

where Xgou- is the ordering on II(X) induced by the qualitative utility
GQU ™ (7) = ming,ex n(w(z;) TA;), with n(X\;) = u(z;) and n = ngy o h,
as usual ny being the reversing involution in U.

Proof:
+ ) Axiom Al is easily verified.

o A2(uncertainty aversion): if 7 < 7' = 7’ Lgou- 7.
By definition,
<7 =n(z) <7'(x) V.

Since T is non-decreasing,
(m(zi)TN) < (7' (z) TN)  Vay.
Hence,

GQU™ ()

. AT
;flé?(n(w(m,) i)

i ") T
gglel?(n(ﬂ' (i) TA)

GQRU (r').

Y

Therefore,
’/T, < GQU- .

e A3+ (independence):

GQU™ (m) =GQU ™ (m2) = GQU™ (Mr(m,n";a,p)) =
= GQU™ (Mr(m, 7", B))

Indeed,

0 Observe that A also satisfies that such that h(0) = 0, (1) = 1, as was observed by
a reviewer of one of our papers.

84



GQU™ (Mt (m, 75, 8)) = min(n(aTA1),n(BTA)),
GQU ™~ (M~ (ma, 7';, 8)) = min(n(aTA2),n(BTN)),

with GQU ™ (7;) = n(};), and GQU ~(n') = n(X).
By hypothesis, we have that

n(A1) = GRU (m) = GQU (mz) = n(As).
As n satisfies the coherence condition w.r.t. T, we obtain that
n(aTAr) = n(aTAs),
therefore
GRQU ™ (Mt (1,75, 8)) = GQU ~ (M (72, 7'; v, B))-
e A4r: We have to prove that Vo € II(X), there exists A such that

GQU (r) = GQU~ (M~ (T,z;1,))), where T, z are a maximal and
a minimal elements of (X, <gqu-)-

Since we are assuming u='(1) # @ # w~1(0), it must be the case
that u(z) = 0 and u(Z) = 1, hence

GQU~ (M~ (T,2;1,1) =n(ATA)  with GQU ™ (z) = n(}) = 0.
As n(1) = 0, by the coherence condition we have that
n(ATA) = n(AT1),
hence,
GQU™ (M+(Z,z;1,))) = n(ATA) = n(}).

Therefore, since u(X) C n(V), for any A € n71(GQU (7)) we have
that

GQU™ () = n(X) = GRU™ (M~ (z,z; 1, X)).

—) We structure the proof in the following steps:

1. We define the preference scale U and an order preserving (and onto)
function A from V to U.
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2.

Now

We define the function GQU:II(X) — U, for the =, ’s, and then
we extend it due to axiom A4+. GQU ™ represents C .

Then, we prove that
GQU_(TI') = minizl,___,p ’rL(ﬂ'(IIIZ)TAZ))

with n(\;) = u(x;) where u:X — U is the restriction of GQU~ on
X,and n=ngoh.

we develop these steps.

. As usual, C stratifies II(X) in a linearly ordered set of classes of

equivalently preferred distributions (7’ € [r] iff 7 ~ 7). The number
of classes is just the number of levels needed to rank order the set
of distributions.

Therefore, we take as preference scale U the quotient set II(X)/ ~
together with the natural (linear) order

[r]<[~'] if =wCa.

By Lemma 5.4, again if T and z denote a maximal and a minimal
element of X respectively, [Z] and [z] will be the maximum and
minimum elements of II(X)/ ~, i.e. of U, and will be denoted by 1
and 0 respectively.

Now, we denote by m, the possibility distribution defined as the
qualitative lottery M—+(Z, z;1, A).

We define the order reversing function n:V' — U as n(X) = [7)].

Observe that n(l) = [M+(Z,z;1,1)]) = [z] = 0 and n(0) =
[M+t(Z,2;1,0)] = [z] = 1.

By A2, n results reversing and it is onto by construction. n results
coherent w.r.t. T because of the reduction property of M+ and A3~.
As previously, we define now, h = ny o n. From the properties of n,
it is easy to verify that h satisfies the required conditions.

. So far we have determined U and h. Now, let us define the qualitative

function GQU ™~ on TI(X).
(a) First, define GQU (M~ (T, z;1, X)) = n(A).
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(b) It is easy to check that =, C =, iff GQU(m,) <
GQU™(my,). So, restricted to lotteries of type m,, GQU™
represents C .

(c) We extend GQU ™~ to any lottery as follows. For any w, A4+
guarantees that 3\ such that 7 ~ M+ (Z,z;1, ), so we define
GQU~ (m) = n(A).

As a consequence of (c) and (b), GQU ™ represents C, i.e.
nCn iff GQU (m) < GQU («).

. Now, we define u: X — U as u(z) = GQU ™ (z), Notice that u(z) = 1
and u(z) = 0, and thus, u (1) # 0 # u*(0).

It remains to prove that
GQU ™ (7) = minj—1,.._p n(m(z;)Tv;)
with n(y;) = u(z;).
To verify this, we will prove the following equalities:
o Vmy, o,
GQU (M~ (m,m2,a, ) = n(max((aTA1),(BTA2))), (5.7)

with X; such that GQU ™ (7)) = n(\;).
Indeed, A4t guarantees that

dA; s.t. o ~ MT(E,Q; 1,)\1) and J)g s.t. mo ~ MT(T,Q; l,Ag),

remember that GQU (m1) = n(A1) and GQU  (m2) = n(A2).
So, using the independence axiom Adr,

MT(Wlaﬂ-Z; aaﬂ) ~ MT(MT(E,Q, ]-7 Al)’MT(Ea Z, ]-7 >‘2)7 aaﬂ)a

and by reduction of “lotteries” it reduces to

M+ (z,z;max((aT1), (8T1)),max((aT A1), (BTA2))) ~
~ M+ (T, z; max(a, 8), max((aTA1), (BT A2)))

~ M+(Z,z; 1,max((aTA1), (BT A2)))-
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Therefore,
GQU™ (M (m1, mg; a, 8)) = n(max((aTAy), (BT Az)))
with A; such that GQU (7)) = n(};), ie.
GQU™ (M (1, w23, 8)) = min(n(aT A1), n(BTA2)).

Finally, we verify that (5.7) does not depend on the A chosen,
i.e. if p is such that GQU ™ (w1) = n(u), then

n(max((aTA1),(BTA2))) = n(max((aTp), (BTA2)))-
Indeed, as 7y ~ m, then

MT(Ea Z; 1, max((aTz\l), (IBTA2))) ~ MT(W)T177T;2; aaﬁ)
~ Mr(m,, w5, 8) ~ M1 (Z,z; 1, max((Tu), (BT A2))),

therefore
n(max((aTA), (BT X)) = n(max((aTpu), (BTA2))).
In particular, we have that
GQU ™ (Mt (z,y;1,8)) = min(n(1TA1),n(BT A2))
with u(z) = n(A1), u(y) = n(A2). So,
GQU ™ (M (z,y;1,8)) = min(u(z),n(BT X)),
with u(y) = n(A2), and

GQU ™ (max(my,m2)) = min(GQU ™ (71), GQU ~ (m3)).

Indeed, as max(m, m2) = M (w1, m2;1,1), therefore,
GQU™ (max(m,m2)) = min(n(p1),n(u2))
with n(u1) = GQU ™ (m1),n(pz) = GQU (m2), so
GQU (max(my, 7)) = min(GQU (m1), GQU ~ (m2)).

Moreover, we have

GQU ( max m)= min GQU (m) Vm.

t=1,...,p t=1,...,p

GQU ™ (7) = minj—1 .., n(m(z;)Ty;).
As 7 is normalised, there exists z; € X such that n(z;) = 1.
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Without loss of generality, let us assume that j = 1. As for each
7, Mt satisfies that

1, if T = T1,
Mr(z1, 21, 7(z;)) (zg) = w(=), if z1 #£x =24
0, otherwise.

Then, choosing
™ = M (21, 7351, w(23)),
we obtain m = max;_y,. , 7;, therefore

GQU™(r) = GQU (max Mr(w1,i;1,m(zi)))
= min GQU™(Mr(ar,m,1,7(z)))
= min - [min(u(z1),n(m(z:) TAi))]

with u(z;) = GQU-(z;) = n(\y), 50
GQU™ (m) = minj=1 _p n(m(z;) TA).

O

As in the case of purely ordinal information, sometimes these GQU ~
functions may result too conservative and we may be interested in more
optimistic behaviours. We may model them by
GQU ™ (n) = max h(m(z;)TX;) (5.8)
r;€X
with A(X;) = u(z;), T a t-norm in V, and as usual h being an onto
preserving mapping that also satisfy coherence w.r.t. T.

For characterising these behaviours, we consider the axiomatic setting
AXT where we replace A2 by A2% and A4t by:

° A4$ 1V € II(X) 3X € V such that # ~ M+ (T,z; A\, 1), where T and
z are a maximal and a minimal element of (X, C) respectively.

For this axiomatic setting we have the analogous results of Lemmas 5.3
and 5.4, and of course, the representation theorem:

Theorem 5.6
A preference relation C on II(X), equipped with the mixture operation
M-+, satisfies the axiom set AX{'-' if and only if there exist
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(i) a finite linearly ordered preference scale U with inf(U) = 0 and
sup(U) = 1,

(i) a preference function u:X — U such that u='(1) # 0 # v~ (0),

(iii) an onto order preserving function h:V — U, satisfying also
h(A) = h(p) = h(aTA) = h(aTu), Va,\p€eV,

in such a way that it holds:
# Cn iff 7 <Lgou+ T,

where X gqu+ is the ordering on TI(X) induced by the qualitative utility
GQU+(7I') = MaXg,c X h(ﬂ'(wz)TAz), with h(AZ) = ’U,(iL'Z)

The proofs are omitted because they are analogues with the “pessimistic”
case.

Now, let us show that the axiomatic setting proposed also guarantees
the “unicity” of the preference set of values, of the linking mapping h and
of the preference function u on consequences. Indeed, we have

Theorem 5.7
Given

(i) two finite linearly ordered preference scales Uy, Us with inf(U) = 04,
inf(Usy) = 02 and sup(Uy) = 17 sup(Us) = 1o,

(ii) two preference functions on them, ie. wu;:X — U, such that
u; (1) # 0 £ u™H05), §=1,2,
(iii) two onto order preserving functions h;:V — Uy, satisfying also
By = hi() = hi(@TA) = hy(aTu), Ve dpeV,j=1,2
in such a way that it holds:
T LGQU-(|ULhu) ™ M T KeQU- (U ko) T
or
T [SGQU+(UL ) T I T KGQU(|Us has) T
then

1. Uy and Uy are isomorphic.
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2. If Uy = Uy, then hy = hy and u1 = us.
Proof:
We assume
s SGQU-(-|UL,h1,ur) T i SGQU—(-|Uz,h2,uz) T
the other case being analogous.

1. Suppose |[Ui| = m, L; denotes the relation <gQu(|u;h;u;)-
Hence, JA1,..., A € V s.t.

T L1 ... E1 7y, — Ty Co...02m),-
So, |Uz| > m. However, if |Us| > m, we have that
A, A1 EVStamy Co oo Co My = Ty C1--- O3 Ty,
Hence, |U;1| > m + 1. Contradiction, so |U| = |Us|.

2. Now, assuming both scales are the same, say U, we first verify that
the linking mapping is unique.

e Suppose h; # hg, then there exists Ao = inf{A|h1(A) # ha(N)}.
Without loss of generality we may assume hi(Xg) > ha(Ng), i.e.
n1(Ao) < n2(Ao), with n; = ny o h;. As ny is onto, there exists
p €V s.t. na(Ao) = ni(p), so

nl(u) = ng()\o) > nl(A()).
Hence 7y JgQu-(|Uhiuy) Thro» therefore as by hypothesis

both induced orderings are the same, we have that
Ty JAGQU~(-|U,h2,uz) TAes SO

na(p) > n2(Xo) = n1(p)-

That is, ho(p) # h1(p), with g < Ag. Contradiction with the
definition of A\g. Hence, h; = ho.

e Now, denoting by h the linking mapping, we verify that both
preference functions are the same. Indeed, given z € X, u1(z) €
U, as n = nyoh is onto, IX € V s.t. n(A) = ui(z), so z ~;
Ty, with &; denoting the relation <gqu-(|vnu,)- Hence by
hypothesis, we have that z ~9 7y, i.e. u2(z) = n(A\) = ui(x),
therefore u; = us.

O
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Chapter 6

Preference and Uncertainty
Measured on Cartesian
Product of Linear Scales

So far we have considered that both uncertainty and preferences
on consequences are measured on finite linear scales, however, these
hypotheses may not be valid in many decision problems. There are certain
kinds of decision problems where we are not able to measure uncertainty
and/or preferences in such linearly ordered sets, but only in partially
ordered ones. For instance, let us comment about some of such possible
scenarios:

e When there are several sources of uncertainty, each one being
measured in a linear scale, the set of values for uncertainty, (V/, <),
is a product of scales, that is, V = =1,k Vj, each V; being a finite
linearly ordered set.

e In a similar way, we may have that DM’s preferences on
consequences are only partially ordered. Indeed, a preference
relation among consequences is usually modelled by a preference
function u:X — U, where U is a finite preference scale, frequently
a (numerical or a qualitative) linear scale. However, in many cases,
this preference function may be vectorial. Indeed, suppose that
consequences are evaluated with respect to &k different criteria or
attributes, each one represented by a preference function u;: X — U.
Then, the global preference on consequences can be evaluated in
terms of the vectorial function w:X — U x*) ... x U, with a(z) =
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(u1(z),...,ur(z)). Considering in U x¥) ... x U = U the usual
product ordering (Pareto ordering), we are outside of the linear
models.

e As it has been mentioned in Section 1.3, once we link the similarity
between situations with a possibility distribution on consequences
(you may see Section 8.1 for more details), Case-Based Decision
may be approached with the qualitative utility functions we have
been working. In this case, the distribution is defined over the same
set that the similarity function is applied in. Hence, we may have
partially ordered uncertainty in case-based decision problems when
the degrees of similarity on problems are only partially ordered.
For example, consider that each situation is described as a k-tuple
s = (s',...,s¥). Suppose we are provided with k feature similarity
functions, Sim?:87 x §7 — E, that measures the degree of similarity
between two j-features, where FE is a finite linear scale. The global
similarity function on situations Sim:S x S — V, can be defined in
terms of the k-feature similarity functions as

Sim(s,s') = (Sim!(s', s, ..., Sim*(s*, s'*)),

withV = E x ... x E, <y being the ordering on V. Again, if for
instance <y; is the Pareto ordering, (V, <y) is not a linear lattice.

Hence, we are interested in extending the qualitative decision model
to let us make decisions in cases where the DM’s preferences on
consequences may be only partially ordered or when the uncertainty on
the consequences is valued on a non linear lattice. In order to cope with
some of these situations, we propose to extend the model in three steps:

e First, we will consider preferences and/or uncertainty are measured
on finite Cartesian product of (finite) linear scales.

e Second, we shall consider both preferences and uncertainty are
graded on distributive lattices, in particular when both are non-
linear distributive lattices.

e Finally, we consider a particular case of allowing different type of
measurement lattices, indeed we measure preferences on a linear one,
while uncertainty is measured on a residuated distributive lattice.
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In this Chapter we develop the first extension, the other ones being
developed in the next Chapter.

In next Section we introduce some possible orderings in a finite
Cartesian product of linearly ordered sets taking into account the
orderings in each scale. Next, we will propose vectorial pessimistic
and optimistic qualitative utilities with respect to a vectorial preference
function defined over U, a Cartesian product of preference scales. For
these utility functions, we will consider the relations induced by them
and by a general “boolean” function g, providing their characterisations.
These theorems include the cases of considering the ordering induced
by the vectorial functions when we are considering lezicographic or
Pareto orderings in the preference set. Afterwards, assuming that all
linear preference scales are the same, we observe some properties of the
weighted-min and weighted-maz orderings on the product of scales. In
Section 6.3, we analyse the behaviour of these vectorial functions in
the example introduced in Section 5.2, but now, we consider a vectorial
preference function %, in terms of the marginal preferences: safety and
cost. In Section 6.5, we consider the same example but assuming that two
evaluations of the possibility of being in the actual state are provided.
Finally in Section 6.4, we analyse the case in which uncertainty is
measured on a product of scales taking into account linear or cartesian
representation for preferences.

6.1 Some Orderings in Cartesian Products
Induced by the Marginal Orderings

Let us recall some possible orderings on a Cartesian product of finite
linear scales.

Given {(Ej,<g;)}j=1,..k a set of finite linear scales, we consider E =
IT;—1,..x E; the Cartesian product of the E;’s. In E, different interesting
orderings may be considered in terms of the marginal orderings <g; . In
the following we introduce some of them.

e Possibly the most natural ordering in E is the product ordering,
known as the Pareto ordering as well:



<m is only a partial order. Indeed, if there exists 7,7 such that
ej <m; e;- and e; >, €, then € and e’ are incomparable with respect
to SH .

Another alternative option is to use an aggregation operator. That
is, if AGG is an aggregation operator from E to E (E being a finite
linear scale), we define

e <aga e «— AGG(el,..., ek) <g AGG(elle;C)

<4gq is a total preorder. Indeed, as <g is complete, this fact allows
us to compare all vectors in E.
In the case of all the scales being the same, say F, some particular
cases of aggregation orderings are:

— min-ordering:

€ <min € <= min{ey,...,ex} < minfe},.. €.}
— maz-ordering:
€ <max € <= max{ey,...,ex} < max{e],... € }-

— Moreover, we may consider weighted versions of them, i.e. given
a vector of weights W = (wy,...,wy) € EF, the weighted-
minimum is defined as

e <w_me <

min{max(w1, e1), ..., max(wg, ex)} < min{max(w1, e}), ..., max(ws, e};)},
while the weighted-mazimum is defined as

e<g-m e =

max{min(w1,e1),..., min(wk, ex)} < max{min(ws,e}), ..., min(ws, e;)}.

Note that <pin is a weighted minimum with a null vector of
weights, while <p.x is a weighted maximum for the vector
whose components are 1’s.
Besides, we may rank the vectors in terms of the ordering of
one of the components, that is, if 1 < r < k and we consider
the vector of weights w, = 0, and w; = 1 otherwise, then

€ <z-m e — er <E, elra
or in terms of <z 7, if w, = 1, and w; = 0 otherwise,

e<g_m€ < e <pg, €.
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e Also, we may consider the lezicographic ordering, which acts like
a “prioritised” one, in the sense that the smaller the index of the
attribute/criterion, the greater is its relevance to determinate the
ordering, because a criterion j is only applied if the previous criteria
consider the elements equivalent. Indeed, the lexicographic ordering
is defined as

éSLEXg <— dj<kst.Vi<y, 6,‘:62 andej SE]- 6;-.

<rex 1s a total order.

We may consider a generalisation of these orderings. Given a set
R = {Ci}i=1,.,x of binary relations, for each “boolean” mapping
g:{0,1}* x {0,1}* — {0, 1}, let us introduce the following relations:

o if C; C E; x E;, then the induced relation by R and g is defined
as
E#%g < g((lu’gl(elaell)""’H’Ek(e/ﬂae%))a
(MEI (ell’ 61), s ’/‘Ek(e;ca ek))) =1,
pr; being the membership of the preference ordering C; .
e Analogously, if C; C FE x E, then the induced relation by R and
g is defined as

eskze = g((uc
1

Remark 3

Note that Pareto and lexicographic orderings are of the type 4% . Indeed,
if g(Z,7) = min;—1,. x z; and R = {<g, }i=1,...x as usual <g, being the
linear order in the scale F;, then

e<ne <= e<}e.

Analogously, if g(T,y) = max;—1,. x 2, with

min(z1,1 — y1), ifi=1
zi = { min(minj—,_;—1{min(z;,y;)}, min(z;, 1 — 1)), ifl<i<k
min(min;_; _x—1{min(z;,y;)}, zx), if i =k,

then

e<ppx e — éfgzg
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6.2 Preferences on Product Scales

The first case we want to analyse is the following one. Assume that
DM is provided with k criteria of preference on consequences, each one
evaluated on a finite linearly ordered set of preference values. That
is, the DM has a set {(Uj, <;)}j=1,. of finite linear scales such that
inf(U;) = 04, sup(U;) = 1; and each U; is commensurate with V, as usual
V being a finite linear scale. A set of preference functions u;j:X — U;
such that u;l(lj) # 0 # u;l(()j) is also assumed as given.

We consider the global vectorial preference function on consequences
w:X — U, where U = IT;—1,.. . U; is the Cartesian product of the Uj’s.

Now, in these conditions, we define the following vectorial qualitative
utility functions.

Definition 6
Let T be a t-norm on V and let the pessimistic generalised qualitative
utility functions be defined as usual as

GQU™ (n|u;) = ming_x nj(n(z)TA,), j=1,...,k

with nj(X;) = u;(z), nj = ny; oh;, and ny; being the reversing involution
on U;. The linking mapping h; : V. — U, is also required to satisfy
coherence with respect to T for having a good definition of GQU ™ (:|u;).
The vectorial pessimistic generalised qualitative utility function w.r.t.
u = (u,...,u) is defined as

GQU (-[u) = (GQU™(-|lu1), .., GQU ™ (-|ug))-
Analogously, let the optimistic ones be defined as
GQU* (n|uj) = maxzex hij(m(z)TA,), j=1,....k

with hj()\%) = wu;(z). The vectorial optimistic generalised qualitative
utility function w.r.t. w is defined as

GQU " (Ja) = (GQU™ (ur), ... GQUT (-|uy)).

As usual, from these functions we may induce on II(X) the orderings
associated with them, that is,

! ATT T araYii !
T Seor(m T GQU (n|u) <g GQU (n'|u),
where <y is the ordering considered on U, e.g. Pareto, minimum,
lexicographic, or one induced by a boolean function.

The dual ordering induced by GQU+ is
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AT (| Yarayrad i
™ Scout(m) 7 = GQU (n|u) <iz GQU " («'|u).

In particular, we may consider the relation induced by GQU and a
boolean function g. Indeed, for each “boolean” mapping g, we consider
the induced relation by GQU™ (or by GQU™) and g defined as

g ' 007 (wl77) <9 O (|77
T #W,Hm T <<= GQU (r|u) %{SUi}i:I _____ . GQU (r'|u),
that is,
T 4%7(_@ T = g((HGQU—(-\uI)(Wa ), ... a#GQU—(-|uk)(WaW')) )

(,L‘GQU*(-|u1)(7r,a )y a,uGQU*(-|uk)(7T,a W))) =1

BGQU-(-u;) being the membership of the preference ordering induced by
GQU ™ (-|u;). Analogously, we may consider the relations induced by the
optimistic criterion, i.e.

TaTia eTeTis
™ <2W+(-\ﬂ) ' < GQU (r[u) <S{’SUi}i:1,m,k GQU " (n'|u).

Now, we propose a characterisation for these relations.

Axiomatic Setting

Given a boolean function g, let GAXY be the following set of axioms for
a preference relation C on (II(X), MT):

e AQ: There exist a family R = {C;};=1,..  of orderings such that C
= ﬁ? ie.

o AzR : Each C; satisfies AXTi1=1,...,k

Now, we may also consider the problem from an optimistic view, that
is, we consider the axiomatic setting GAX#-' 9. with A0 as previous, but

now:

o AzR" : C; satisfying AXT i=1,...,k.

Then, the following theorem is an easy consequence of the
representation theorems in the framework of a unique linear preference

scale.
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Theorem 6.1 (Representation Theorem)
Given a boolean mapping g, a preference relation C on (II(X), M)
satisfies the axiom set GAXY (GAXY 9) if and only if there exist:

(i) a set of finite linearly ordered preference scales {U;};-1,..k, With
inf(Uj) = Oj and sup(Uj) = 1j>

(i) a set {u;:X — Uj| uj'(1;) # 0 # uj'(0j)}j=1,.k of preference
functions,

(iii) a set of onto order-preserving functions h;:V — U;, j = 1,...,k,
each h; also satisfying coherence w.r.t T,

in such a way that it holds:

rCa if w<x? 7.
GQU (-[w)

(r Cn' iff v 42@+(_|m ' resp.) with nj = ny, o h; and considering the
vectorial preference function uw = (uy, ..., ux).

Proof:
Here, we only verify the pessimistic behaviour, the optimistic case being
analogous.
—) As each relation C; satisfies AX+, then the existence of
{Uj}i=1,.. k> {uj}j=1,..k and {h;};=1 . is guaranteed by the theorem for
the linear case (Theorem 5.5). It only remains to verify that the relation
induced by GQU and g coincides with C .

By definition, we have that

nCa  f  pc(ma’) =1
Moreover, as C; is represented by GQU ~ (-|u;), we have that
T <= GQU (r|u;) <y, GRU™ (7'|u;).
That is,
pc;(m, ') = pey (GQU ™ (1), GRU ™ (') = kaqu-(-fuy) (s 7')-

Hence, applying A0, we have that
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= g((reou-(lu)(m ™), heou-(luy) (T, ) ,
/'I'GQU*(-|U1)(7TIa 7['), s auGQU*(-|uk)(7TIa 7"-))) =1

= 7= __ 7.
GQU (|u)

<) Now, we verify A0. Given {U;}, {u;} and {h;}, we consider C; as
the preference relation induced by GQU ™ (-|u;). By Theorem 5.5 we have
that each C; satisfies AXT. Hence,
™ %éﬁ_(-lﬁ) T = g((NGQU—(-|u1)(7TIa W'),---aHGQU—(-mk)(W; ™)),
(BGQU-(u) (T T)s - s QU (juy) (7, 7)) =1

— 9((/@1(% W,)a"'aﬂ‘gk(ﬂ-aﬂ'l)) )
(MQ (ﬂJa 7T)a sy M, (ﬂ-,a 7T))) =1

Remark 4
As it has been mentioned, this theorem includes, as particular cases, the
characterisations of the Pareto and the lexicographic orderings.

Preference Functions on the Same Scale

We consider now the particular case in which all the preference functions
on consequences are evaluated in the same scale of preference.

Proposition 6.2
Let U; = ... = Uy = U, all of them with the same ordering on it, so
U = UF. Then

1. (a) if umin(z) = min{u;(z), ..., ux(z)}, then
QU™ (i) <min GQU («'[0) = GQU™ (x|tmin) < GQU™ (' |ttmin)-

(b) Given a vector of weights W = (w1, ..., wy) € U*, if ug_m(z) =
min{max (w1, u1(z)), ..., max(wg, ug(z))}, then

GQU ™ (n[@) <w—m GQU (7'[7) <= GQU~ (n|um—m) < GQU™ (' |tm—m).
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2. GQU ™ (x[w) <n GQU (x'[7) = GQU " (n[) <min GQU (x'[).

3. (a) If umax(z) = max{ui(z),...,ux(z)}, then
GQU " (7[) <max GQU ' (n'[7) = GQU* (|tmax) < GQUT (' [tumax).
(b) If ug—p(z) = max{min(w1, u1(z)), ..., min(wg, ug(z))}, then

GQU ' (nw) <w_m GQU ' (v'[0) <> GQU (n|uw_n) < GQU™ (' |um—n1)-

4. GQU " (r[a) <u GQU " («'|7) = GQU  (n[1) <max GQU («'|7)

Proof:
We only sketch the proofs of 1) and 2), the others being analogue.

1. Tt is a direct consequence of having

GQU ™ (' |umin) = GQU_(7r|.n11inku]-)
]: "ty

= min (GQU™ (m|u;),

j=1,...k

and by the definition of <, .
For the case of the weighted-minimum, we also know that

Vi, wj € Uj, GQU™ (w| max(wj,u;)) = max(w;, GQU™ (w|u;)).
2. By definition of Pareto ordering,
GQU™ (n[@) <n GQU (n'[7) <= Vi, GQU™ (n|u:) <v; GQU ™ (n'|u;)
and thus we have that

GQU (n[u) <n GQU («'[u) implies GQU (7|8) <min GQU (' |W).

Remark 5
Let us remark some points with respect to the preceding proposition:
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e In item 1 (a), the proposition guarantees that the order induced

in TI(X) by the pessimistic vectorial utility function GQU (-|u)
together with the <., ordering in U, is the same than the order
induced by the utility function defined with respect to the function
minimum of preferences, i.e. by GQU ™ (-|umin) With upin(z) =
min{u(z), ..., ux(z)}, taking in U its linear ordering. That is, it
is the same to “aggregate” first the preferences with the minimum,
and then evaluating with a unidimensional utility function, than
evaluating the vectorial utility before aggregating.
Moreover, this property makes clear that the <n;, ordering satisfies
the axiom set AX if the set of preference functions u;:X — U not
only verifies Vj = 1,...,k, uj_l(O) # 0 but ;—; uj_l(l) # 0 as
well.

e Obviously, the reciprocal of the item 2 is not true, because both
orderings may be different since <y is a linear order while <p; may
be an only partial one. Also, both orderings distinguish different in
the sense that there are distributions which <, consider them
equivalent while <1 distinguish them. An easy example of this is
the following one.

Ezample:
Suppose k = 2, let z,z' € X, s.t. ui(z) = ui(z’) < ua(z) < u(z).
Since

GQU (z@) = (ui(z),u2(z))
GQU (z'1) = (ui(a),ua(z")),
then

while

&

e With respect to item 3, analogously with the case of minimum,
it results the same ordering if we max-aggregate first or at the
end. Also, <max-ordering satisfies the axiom set AX}L if the
set of preference functions uj:X — U not only verifies V j =

L.k, uy ' (1) # 0, but (;_  uy ' (0) # 0 as well.
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6.3 An Example: A Safety Decision Problem in
a Chemical Plant (Continuation)

To exemplify some of the notions introduced in this chapter, we consider
again the example introduced in Section 5.2. Let us recall the framework.
The chemical plant has three emergency plans:

EP1 : emergency plan 1,
EP2 : emergency plan 2,
EV  : total evacuation,

that may be only activated by the head of the Safety Department.
Depending on the type of problems, the situations of the plant may be
classified in four modes:

so : mormal functioning,
s1 : minor problem,

So :  major problem,

s : wery serious problem.

The head of the Dept. has to undertake one of the following actions:

do : do nothing (DN),

di : activate emergency plan 1 (AEP1),
dy : activate emergency plan 2 (AEP2),
d3 : activate evacuation (AEV A),

whose behaviours are given in Table 5.1.
As it was said, the post-situation of the plant is evaluated in terms of
two criteria:

e personal safety (u1),
e economical costs (ug).

We take as preference scale for each criterion a linear scale of four
values
W:{w0:0<w1<w2<w3:1},

the criteria being defined as:
uy (Risk =1i,Cost = j) =ws—; and  wug(Risk =i,Cost = j) = ws_;.

We take as scale of uncertainty the same linear scale, i.e. V =U.
Assume that the received report says:
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“A problem has been identified in Building G, likely it is a
minor problem, but it is not discarded that either it can finally
turn out to be a false alarm or even, in the worst case, it might
become a major problem.”

This information can be modelled by the possibility distribution on
states mg:S — V defined as

7!'5(80) = W1, 7'('5(31) = 1, 7T5(32) = wy, 7'('5(83) = 0.

Now, for choosing the “best” decision, we have to rank the associated
distributions. These distributions are defined as in (4.1), for instance, for
declarating that the situation is controlled, that is, to choose do nothing
(dp), its distribution is

Tdo(z) = sup{ms(s)| do(s) = z}.

So, in order to rank decisions we apply the generalised qualitative
utility functions to these distributions. We consider the global preference
on consequences is given by @ = (ug, uz).

If T = minimum, then we have that:

GQU (mgolu) = (wi,1),
GQU (rg[w) = (wa,ws),
GQU (rgolw) = (1,wn),
GQU (mgs[w) = (1,0).

Hence, only ds is discarded if Pareto ordering is chosen in U = W x W,
while d; is the most preferred if the minimum ordering is considered.
However, taking into account that the safety of the persons is involved and
it must be prioritised to economical reasons, it is interesting to consider
the lezicographic ordering considering u; first. For this ordering, we have
that do, activate emergency plan 2, is chosen, which responds to giving
priority to safety.

6.4 Uncertainty Measured on Product Scales

In this case, we assume the set of values for uncertainty (V,<s) is
a product of scales, that is V = IIj=1,. % Vj, each V; being a finite
linearly ordered set. For instance, this may occurs when there are
several sources of uncertainty each one being measured in a linear scale.
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Although sometimes we might aggregate this information into a linear
scale, sometimes it may be interesting not to loose any information and
go as far as possible without aggregating.

Hence, we are interested in the special class of possibility vectorial
distributions, II:X — V, such that all their projections are normalised
possibility distributions. That is, if

T X =V 7=1...,k
are normalised distributions, then

I(z) = (m(z),...,7k(x))

is the product of the normalised distributions. Observe that although II
is consistent, in the sense that sup{Il(z)|z € X} = (1,...,1), IT may result
non normalised.

Let us denote by

Vecdl(X,V) = {(m1,...,m)| mj € (X, V), 5 =1,....k},

the set of vectorial distributions on V whose projections are normalised.

As usual, we consider in this set a mixture operation defined in terms
of a t-norm T in V.

In order to obtain a mixture operation that satisfies reduction of
lotteries we are interested in t-norms T in V whose projections are join
morphisms. By (Baets and Mesiar, 1999; theorem 7.1), T satisfies this
condition if and only there exists a finite family of t-norms T; on Vj s.t.
T =1II;—1,..x T j. From now on, we restrict ourselves to work with t-norms
in V' which are Cartesian products of t-norms in Vj’s.

Given a set of t-norms {T;};—1, ., consider the t-norm product of
the T,’s, i.e.

T =1Ij—, . kTj
Then, we define the mixture M+ on Vecll(X,V) as:
M+(ILII; @, B) = (max(c Tim, 1 Tamh), .. ., max(ag Tgmk, B Trmy)),

with @ = (a4, ...,ax), 8= (B1,---,B) €V s.t. max(a;,3;) =1 Vj.
Also, for each t-norm on Vj, we consider M, the mixture induced on
II(X,V;). Observe that Mt satisfies that:

M—T(H7 Hl;aa B) = (MTl (71-17 77-117 aq, /81)7 LRET) MTk (7Tk7 W;ca Ak, /Bk))
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In (Vecll(X,V), MT) we may consider different orderings taking into
account that preference on consequences are represented by a linear
preference function u or by a vectorial one W. For each case, we may
define a generalised pessimistic or optimistic criterion. Indeed, we may
have the following cases:

U linear. Given a preference function u: X — U and a set of onto order-
preserving functions h;:V; — U, each h; being coherent w.r.t T;, we
propose to use the following expression' for a pessimistic evaluation

VGQU~(TTu) = (GQU~(m[u), ..., GQU (mi|u),

where as usual GQU ™ (7j|lu) = mingex nj(w(z)T; X)), with
n;j(A;) = u(z). For an optimistic behaviour we propose

VGQU T (u) = (GQU T (miu),. .., GQU ™ (mk|u)),
with GQU* (7j|u) = maxgzex h;(m(z)T; M), where hj(,\%) = u(x).

U cartesian product. Let U = II;_, ; Uj, each U; being a finite linear
scale and let @ = (uy,...,ux) be a (vectorial) preference function on
U with components u;: X — U; such that u]_l(lgj) #0# u]_l(Oy)
Further we assume each U; is commensurate with V; through onto
order-preserving functions h;:V; — U; which are coherent w.r.t T ;.
Then, we define the following utility functions

VGQU ™ ([a) = (GQU™ (m|u),. .., GQU™ (my|ux))
VGQU (I[a) = (GQU* (m|u1), ..., GQU ™ (mlux)),

where GQU ™ (mr|u;) = mingex nj(m(z) T, )\Z;) and GQU T (|u;) =
maXgex hj(ﬂ'(x)—rj 5%), with nj(/\?g) = hj(éﬁv) = UJ(CC)

In the following sections we analyse them in some detail.

6.4.1 Linear Preference

Let us consider a particular situation for the first case. We assume that
Vi=...=V, =W, W being a linear scale, and also T; = ... = Ty.
For this case, for each fixed boolean function g, we have the following
representation result.

! Actually we should write GQU ~ (; |hj, u), however, for the sake of simplicity we
omit the h;’s.
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Theorem 6.3 L
Let C a preference relation on (Vecll(X,W*), M+). Then, it satisfies

e there exists a preference relation Ty on II(X, W) such that

peLIT) = g((ugy (T, 71, - - iy (Th, 7)) (Beyw (71, 1), ey (T, 7))

with 1 = (m1,...,m), ' = (71,..., 7).
o Ly satisfies AX1(AXT resp.)
if and only if there exist:

(i) a finite linearly ordered preference scale U with inf(U) = 0 and
sup(U) = 1,

(ii) a preference function u:X — U such that u='(1) # 0 # u~1(0),

(iii) an onto order preserving function h:W — U, h being coherent w.r.t
T,

in such a way that it holds:
NCI < VGQU (Iu) 4‘{’<U} VGQU (I'|u)?.
ICI' < VGQRU(I|u) 4“{7<U} VGQU T (II'|u) resp. )

Still assuming that all the linear scales in the cartesian product of
uncertainty are the same, i.e. V.= W¥, with W linear, we may consider
the preference orderings related with min-ordering in U*.

Lemma 6.4
VLI € Vecl(X, WF),
VGQU ™ (T|u) <min VGQU (I'|u) <= GQU (max{mi,...,m}u) <v
GQU™ (max{wy,..., 7 Hu)
with the distribution max{m1,..., 7 }(x) = max{mi(z),...,mx(x)}.

Proof:
It is a direct consequence of the definition of the <pi, ordering
and of being

GQU™ (max{mi,...,m}/u) = min{GQU (w1 |u),..., GRQU ™ (mg|u)}.
O

2Here, <g§U} means that R = {<v}i=1,... k.
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Notice that we have only considered the special case of having a linear
scale of preference and the same scale in the cartesian product where we
measure uncertainty. The case of having different scales remains as an
open question.

6.4.2 Preferences Measured on Cartesian Products
Now we consider the case of having a vectorial preference function on
consequences over U.

Axiomatic Setting

Given a boolean function g, let VGAXY be the following set of axioms
for preference relations C on (Vecll(X,V), Mt), with T st. T =
IIj—, .k Tj, each T; being a t-norm on Vj:

e VAO0: There exist a family {(II(X, V;), C;) }i=1,...x of orderings such
that

/"E(Hznl) = g((.u’gl (71'1,7!"1), EEREY JJues (ﬂ-kiﬂ-;c)) ) (Hgl (7["1,71'1), EERRY Jurs (7‘(‘;0,71']9)))

e AzR1: C; satisfies AXT, foreach i =1,...,k

For representing the preference relations on Vecll(X,V) we propose
the following theorem.

Theorem 6.5 o
A preference relation C on (Vecll(X,V), M), satisfies the axiom set
VGAX~ if and only if there exist:

(i) a set of finite linearly ordered preference scales {U;}j—1,. r with
inf(U;) = Og-] and sup(U;) = 15-],

(ii) a set of preference functions u;:X — U; such that uj_l(lgj) #0 #
(U

(iii) a set of onto order-preserving functions h;:V; — Uj, each h; being
coherent w.r.t T,

in such a way that it holds:
NCII' < VGQU (II|n) 4‘{75Uj}j:1,___,k VGQU (Il'Mm),
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with

VGQU (ITfw) = (GQU™ (m|u1), ..., GRU™ (mk|ug)),
and GQU ™ (w|u;) = mingex nj(ﬁ(ac)—l—jkgc), where nj(kg) = u;j(z).
The proof of the theorem is straightforward.

As usual for an optimistic behaviour, we consider VGAX{'-', which is
obtained from VGAX+ replacing AxzR1 by

e AzR1T : LC; satisfies AX{, foreach i =1,...,k

for characterising the preference ordering induced by VGQU+(H|H) =
(GQU* (m1|u1), ..., GQU * (g |ug)), GQU™(-|u;) being defined as usual.

6.5 Another Framework for the Chemical Plant
Example

Assume now that instead of receiving the report of the plant engineer the
head receives the evaluations of the responsible of control of each system.
For each state, two evaluations of the possibility of being in this state are
provided. Assume he has the following evaluations:

HS(SO) = (wlawl)a HS(Sl) = (15 1)5 HS(SQ) = (’IUQ,’U)1), HS(33) = (050)

Now, both U and V are supposed to be equal to W x W, with
W = {0 =wy < w1 < wy < wz = 1}. We choose the Pareto ordering both
in U and V. We are interested in comparing the results of the ranking of
distributions with VGQU (-|u) for different t-norms.

For each decision we have their associated distributions:

Mg = ((w1,ws)/(Risk =0,Cost=0),(1,1)/(Risk = 1,Cost = 0),
(w2, (w1)/(Risk = 2,Cost = 0)),
= ((1,1)/(Risk =0,Cost = 1), ((we, (w1)/(Risk = 1,Cost = 1)),
Mg = ((1,1)/(Risk =0,Cost = 2)),
Mg = ((1,1)/(Risk = 0,Cost = 3)),

and their evaluations are:

VGQU (Lg|u) (min{we, wy Lw; }, 1),
VGQU (g |u) = (min{ws,w;Lws}, min{ws,ws lwsy}),
VGQU (Lgfz) (1, w1),

VGQU (Mwslw) = (1,0),
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1 being the dual conorm of T with respect to the involution in W.
Note that do is preferred to d3 for any t-norm. In order to obtain the
utility values for dy and d; we take two particular t-norms. If we choose
T = minimum, we have

VGQU (Ugpla) = (wi,1),

VGQU_(Hdﬂﬂ) = (’11)2,'11)2).

So, we have that choosing minimum dy,d; and ds are incomparable, only
ds may be discharged. While if we choose Lukasiewicks t-norm, we have

VGQUi(Hd0|U) = (’LUQ,l),
VGQUi(HdﬂU) = (l,wg).

That is, d; is preferred to dy (d2 being preferred to ds), while dy and dy
remains incomparable.
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Chapter 7

Utility Functions for
Representing Partial
Preference Relations

In this Chapter we consider the remaining extensions mentioned in the
introduction of Chapter 6. That is, we consider now the cases in which
uncertainty and preferences values belong, in principle, to distributive
lattices. Of course, the products of linear scales considered in Chapter 6
are particular types of distributive lattices.

As usual, we are interested in having commensurate valuation sets for
uncertainty and preference, this means we require the existence of an onto
order preserving mapping h:V — U. But now, we may have incomparable
values of uncertainty, and ~ may be required to treat them in different
ways (see Figure 7.1). Indeed, given two incomparable values A and X’
on V, their respective images may be required to be:

1. incomparable: it means that the associated distributions m)’s are
considered incomparable as well. In this case the requirement will
be,

ifA<>X  then A(X) <> h(XN).

2. equal: it means that their associated distributions are considered
equivalent with respect to the preference relation. In this case, we
have two further alternatives depending on the value that h assigns
to AV ). Indeed, we have:

(a) The distribution associated with the supremum of the values is
indistinguishable from the associated with A and X, i.e.
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Figure 7.1: Different possible properties for the linking mapping h w.r.t.
incomparable values.

ifA<>XN  then AMAVXN)=~h(N)=h(N).
In this case, h results a join-morphism.

(b) The associated distributions 7)’s are again indistinguishable,
but they are not indistinguishable with the distribution
associated with A v X.

That is,
ifA<>X  then A(AVX)>h(XN)="h().
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Now, h is not a join-morphism. Observe that in this case the
distribution associated with A V A’ will be less (more) preferred
than the associated with X and )’ if the behaviour is pessimistic
(optimistic resp.).

In case 1) incomparability is “preserved”, hence if V' is a non-linear lattice,
so is U. We will analyse this case in detail, taking into account the
different operators available in V. In case 2a) incomparability is lost,
moreover it forces U to be linear. We shall deal with the option that
considers the three associated distributions as equivalent, the remaining
case being left as a future work!.

In the next Section, we introduce some necessary background on
lattices and some preliminary results that are required through the
Chapter. Next, we consider the case of h preserving incomparability.
In the first part, we shall only assume available in the lattices
the meet and join operations. As usual, we are interested in
considering “possibilistic mixtures” (like “max-min” mixtures) on the
set of “possibilistic” distributions on V, requiring this operation to
satisfy reduction. Because of this, we require the lattices to be
distributive. In the second part, we assume available other operations
on the lattices, which allows us to consider other alternative mixtures.
Again, the requirement of satisfying reduction of lotteries leads us to
work with residuated distributive measurement lattices. For both cases,
we introduce pessimistic and optimistic criteria for these frameworks and
their axiomatic characterisations as well. Finally, in the last Section
we consider the case of considering the distribution associated to the
supremum of incomparable values, \, ', indistinguishable of ) ~ my.

7.1 Some Background on Lattices

Let us recall some definitions and results related with lattices (see, for
example, (Davey and Priestley, 1990; Gritzer, 1978) for more details)
that we will use in the following.

e A set L with a binary relation on it <, is an ordered set, also called
a partially ordered set, if for all z,y,z € L, < satisfies:

a) reflexivity: z < z,

b) antisymmetry: z <y, y < z imply z =y,

'Notice that since h is not join morphism the generalised “utility” functions
GQU(-|h) will not preserve mixtures.
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c) transitivity: z <y, y < z imply z < z.
e Let (L, <) be a partially ordered set, let be S C L,

—x €8, xis an upper bound of S if s <x Vs € S.

— The set of all upper bounds of S, is denoted by S“. If S* has a
least element, it is called least upper bound of S or supremum,
also denoted by sup S.

— Analogously, z € S, z is an lower bound of S if s > z Vs € §,
and the set of all lower bounds of S, is denoted by S*. If S! has a
great element, it is called greatest lower bound of S or infimum
also denoted by inf S.

e A non-empty ordered set S is a join-semilattice if sup{z,y} € S
Vz,y € S. Analogously, S is a meet-semilattice if inf{z,y} € S
Ve,y € S.

e An ordered set (L,<) is a lattice iff it is a join-semilattice and a
meet-semilattice.

e A lattice (L, <) is bounded if it has supremum (1) and infimum (0),
in this case we denote it by (L, <,0,1).

e Given a lattice (L,<), two binary operations may be defined:
meet(A) and join(V).

z Ay =inf{z,y} and zVy=sup{z, y}.
e Let (L1,A1,V1) and (Lg,A2,Va) be two lattices. A mapping

f:L1 — Lo is a lattice homorphism, a homorphism for short, if f
is join-preserving and meet-preserving, i.e.

flavib) =f(a) V2 f(b) and f(aA1b) = f(a) Az f(b).
If f is also onto, it is called epimorphism.

e If (L1,A1,V1,01,11) and (Lg, A2, Va,09,15) are bounded lattices,
f is a {0,1}-homomorphism if it is a homorphism also satisfying

f(01) = 09, f(11) = 1a.

Observe the well known connection between V, A and <: Let L be a lattice
and let a,b € L. Then the following are equivalent:

1. a <D,
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2. aVb=b,
3. anNb=a,

(L,A,V,nr,0,1) will denote a bounded lattice with a reversing
involution, i.e. L satisfies that 0,1 € L and 0 < x < 1 Vz € L, and
nr:L — L is a strict decreasing function? s.t. ny(ny(z)) = =.

Proposition 7.1
e Let (L, A, V) be alattice, then A and V are associative, commutative,
satisfy idempotency and the absorption laws®.

o If (L,A,V) is a finite lattice, then L is a bounded lattice.

e If(L,A,V,nr,0,1) is a lattice with involution, then ny, satisfies that:
- nr(0) =1 and ni(1) =0,
— np(z Ay) =np(z) Vno(y),
—nr(zVy) =nr(z) Anp(y).

Definition 7

Given a partially pre-ordered set (L, <), i.e. < is reflexive and transitive,
the associated indifference relation ~ and the incomparability relation
<> are defined as:

ea~b <= (a<bandb<a).
ea<>b <= (atbandb¥a).

Now, we introduce a new definition and related results that will be
applied in our proposal.

Definition 8
Let (L,<) be a partially pre-ordered set, denote by L/ ~ the quotient
set w.r.t. ~ and let [a] = {y € L|a ~ y}.

(L, <) is a pre-lattice iff (L/ ~,C) is a lattice, defining C as:

[l T[] iff a<b.
As a consequence of the ~ definition, we have that

Proposition 7.2
Let (L, <) be a partially pre-ordered set, then:

2ny is bijective.
Idempotency means: aVa = a,aAa = a, absorption is: aV(aAb) = a,aA(aVd) =a
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e ~ is an equivalence relation.
e if (L, <) is totally pre-ordered, (L/ ~,C) is a linearly ordered set.

Theorem 7.3
(A, <) is a pre-lattice iff it is a partially pre-ordered set, such that satisfies:

1. For alla,b € A there exists an unique not empty subset SUP(a,b) C
A s.t.

e SUP(a,b) is an equivalence class of the quotient set A/ ~, i.e.
SUP(a,b) € A/ ~ .

e YVc e SUP(a,b),a <candb<ec.

e ifa < e and b < e, then either (e € SUP(a,b)) or (e >*
¢, c € SUP(a,b)).

2. For alla,b € A there exists an unique not empty subset INF(a,b) C
A s.t.

e INF'(a,b) is an equivalence class of the quotient set A/ ~, i.e.
INF(a,b) € A/ ~.

e ife < a and e < b, then either (e € INF(a,b)) or (¢ > e
c € INF(a,b)).

e Vce INF(a,b),c < a andc<b.

Proof:
+ ) We will verify that (A/ ~,V) is a joint-semilattice and (A/ ~, A) is
a meet-semilattice.

1. First, we verify that (A/ ~, V) is a joint-semilattice, with V defined
as

[a] V [b] = SUP(a,b). (7.1)
Observe that V is well defined, i.e.
if a ~ a' then [a] V [b] = [a'] V [b].
Indeed, if S, and Sy denote an element of SUP(a,b) and
SUP(d',b) respectively, we verify now that S,p ~ Sgp, le.
SUP(a,b) = SUP(d,b).
4e>ciﬂc§eande$c.
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As
Sap>a~a  and S,y >0,

by definition of SUP(a',b), we have that Sqp > Sorp-
Conversely, since
Sarp > a' ~a and Sarp > b,
by definition of SUP(a,b) we have that Sg p > S, 5, therefore
Sap ~ Sat -

In order to see that (A/ ~,V) is a joint-semilattice, we will verify
that

e V is associative.
Indeed, by definition of SUP(c, S, ) we have that

Sc,Sa,;J > c, Sc,S > Sa,ba Sa,b >a and Sy > 0.

a,b — 3

So, Se,5,, = Sp,e and S¢ 5, , > a, hence,

a,b —
S5, = 50,5
Conversely,
Sa,5.0 2 @, Sa,8. = Sbey Sbe=b and  Sp. >,

then
Sa,Sb,c Z Sa,b a‘nd Sa,,Sb,c 2 Ca

SO Sa,Sb,c > Sc,Sa,bv therefore Sa,Sb,c ~ SC;Sa,b’ i.e.
SUP(CI,, S(),C) = SUP(C, Sa,b)-

Hence,
(la] v [o]) V [c] = SUP(Sap,¢) = SUP(a, Sp,c) = [a] V ([0] V [c])-

e V is commutative. It is obvious by definition of SUP.

e V satisfies idempotency.

Indeed, as @ > a, then a > S;,, but by definition of
SUP(a,a), Saa > a, so a~ S,,. Therefore,

la] = [S4,0] = SUP(a,a) = [a] V [a].
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So, (A/ ~, V) is a joint-semilattice.
. We verify that (A/ ~,A) is a meet-semilattice, with A defined as
[a] A [b] = INF(a,b).
A is well defined, i.e.
if a ~ a' then [a] A [b] = [a'] A [b].

Indeed, if I,; and I,; denotes an element of INF(a,b) and
INF(d',b) respectively, we verify now that I, ~ Iy, ie.
INF(a,b) = INF(d,b).
As

Inpy<a~ a’ and I,p <b,
by definition of INF(a’,b), we have that I, < Ipp.

Conversely, since

Ia,’,b S a' ~ a and Ia’,b S b,

by definition of INF(a,b), we have that Io 5 < I, .

Therefore,
Ia,b ~ Ia’,b-

In order to see that (A/ ~,A) is a meet-semilattice, we will verify
that

e A is associative.

Indeed, by definition of INF(c,I,) we have that I.;,, < c
and I, , < Inp, and as [pp < aand Ipp < b, then Iy, , <
Iycand I 1, , < a, so

IcaIa,b S IaaIb,c'

Conversely, I, < a and I, < Iy and Iy, < b, Iy, < c,
then Ia;Ib,c < Ia,b and IaaIb,c <c,so Ia’[b’C < IC,Ia,b'
Therefore,

I,

aIb,c ~ Icala,b'

So,

([a] A[B]) Afe] = INF(Iop,c) = INF(a, Ip,c) = [a] A ([b] A[c])-
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e A is commutative. It is obvious by definition of INF.

e A satisfies idempotency.
As a < a, then a < I,,, but by definition of INF(a,a),
I,, < a,soa~ I ,. Therefore,

(0] = [Ta] = INF(a,0) = [o] A [a].
Hence, (A/ ~, A) is a meet-semilattice.

Therefore, (A/ ~, A, V) is a lattice.
Note that the order induced from (4/ ~, A), i.e.

[a] <" [o] iff  [a] A[b] = [al],
and the one defined as
[a] E[b] iff a<b,
are the same. Indeed,
[a] C[b] iffa<b iff INF(a,b) = [a] iff [a] A [b] = [a] iff [a] <" [b].
—) We verify the existence of SUP(a,b) and INF(a,b). Let A and V
be induced in A/ ~ by the partial order C, and define
SUP(a,b) =[a]V[b] and INF(a,b)=[a] A [b].
Both sets satisfy the required conditions as it is shown following.

o As [a] V [b] ([a] A [b] resp.) is an equivalence class, the elements
of SUP(a,b) (INF(a,b) resp.) are indifferent, and obviously if
f € SUP(a,b), thenV g~ f, g € SUP(a,b).

e Let c € SUP(a,b) = [d], we verify that ¢ > a and ¢ > b.

Indeed, as ¢ ~ d, and by definition of V, [a] C [d] and [b] C [d], we
have that a < d and b < d, so

c>a and c>b.

e It remains to verify that: If e > a and e > b, then

(e ~¢c, ce SUP(a,b)) or (e>c, c € SUP(a,b)).
Indeed, as e > a and e > b, we have that [a] C [e] and [b] C [e], so
[d] = [a] V [b] E [e],

i.e. d < e, therefore if c € SUP(a,b), then ¢ ~ d < e.
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These sets are unique. Indeed, let p,p’ € A. Suppose that
SUP(p,p') satisfying the conditions exists, denoting by gp,p: an element
of SUP(p,p'), we will verify that Sp y ~ Sp .

As S,y > pand S,y > p', by definition of SUP(p,p’), we have that

Sp,p’ > Sp,p’-

Conversely, as
Spy 2p and Spy >,

then, by definition of SUP(p,p'), Sy > Sp, therefore

P

Sp,p’ ~ Sp,p’a

hence,
SUP(p,p') = SUP(p,p').

Analogously, we may verify that INF(p,p’) is unique. O

7.2 Ordinal/Qualitative Utility Functions on
Lattices

Now, let us introduce the lattice-based context of an extension of the
possibilistic model.

7.2.1 A Possibilistic Context on Lattices

Let X = {z1,...,z,} be a finite set of consequences. We will denote by
(V,Vy,Av,0v, 1y, ny) a finite distributive lattice of uncertainty values
with minimum Oy, mazimum ly and a reversing involution ny, <y
being the lattice order induced in V.

(U,Vu, Au,0u, 1y, ny) will be a finite distributive lattice of preference
values with involution ng.

Remark 6

In order to simplify notation, we use A,V for denoting both operations
on V and U, as well as 1 and 0 are used for denoting their minimum
and maximum, although they may be different, hoping they may be
understood by the context.
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We consider the set of consistent possibility distributions on X over
v,
(X, V)={r: X > V| \/ n(z) =1}.
zeX

As usual, we define the point-wise order in (TI(X), V)® induced by <y
<7 <= VreX n(z)<y ' (z).

For our purposes, we will consider a subset of II(X), the set of
normalised possibility distributions®, i.e.

I*(X,V) ={r e II(X) | 3z s.t. n(z) = 1}. (7.2)

As usual, we identify possibilistic lotteries and distributions. Given
z,y € X,x # y, and \,u € V sit. AV u = 1, the qualitative lottery
(A/z, u/y) is the consistent possibility distribution on X defined, as usual,

as
A if z==x

Mz p/y)(z) = w, i z=y
0, otherwise.

The Possibilistic Mixture is now an operation defined on II(X) that
combines two consistent possibility distributions 71 and 7y into a new
one, denoted (A/m1,pu/m2), with \,p € V and AV p = 1, defined as

(A7, pfmo)(2) = (A A TL(2) V (1 A T2 ().

In order to have a closed operation on IT*(X), the mixture operation
is restricted to IT*(X) requiring the scalars to satisfy an additional
condition, i.e. if m, 7’ € II*(X), we consider (\/m,pu/7") with \,up € V
being A=1or = 1.

Now, as V is distributive, we may verify that reduction of lotteries
always holds.

Proposition 7.4
VAL, Ao, i, 00 €V st A1V e =1, Vi€ H(X),

M/ (/7 p1/X), A/ (1), p2/ X)) = (L7, (A1 A p1) V (Ag A pa) [ X).

S5For the sake of simplicity, we shall generally omit the reference to the uncertainty
set.
SWhen V is a finite linear scale, both TI(X) and IT*(X) are the same set.
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Proof:
By definition of lotteries, we have that

M/ /X)X /(AT p2/X))(2) = (M A(7(2) V)V
(A2 A (m(2) V p2))
=7 (M A7)V (A AT(2)V
(A A p1) V(A2 A p2))
=% 7(2) V(M Ap1) V(A2 A pa))-

Therefore, we have that

A/ (U7, 1) X), Ao /(1) 70, p2/ X)) = (1/70, [(Ar A ) V (A2 A pag) ]/ X).
O

Consider w:X — U a preference function that assigns to each
consequence of X a preference level of U, requiring V' and U to be
commensurate, i.e. there exists h:V — U a {0,1}-homomorphism
relating both lattices V' and U. Let n be the reversing homomorphism
n:V — U defined as n(\) = ny(h(N)). It also verifies n(0) = 1, and
n(1l) = 0. For any 7 € IT*(X), consider the qualitative utility functions:

QU (m) = N\ (n(x(x)) Vu(x)),

zeX

QU*(m) = \/ (a(n(2)) Au(z)).?

reX

Now, we will introduce the axioms that characterise the preference
relations induced by these functions and some results that we need for
the representation theorems.

Proposition 7.5
If U is a distributive lattice with involution, QU™ and QU™ preserve the
possibilistic mixture in the sense that the following expressions hold:

QU™ (M my,pu/m2) = (n(A)V QU™ (m)) A (n(p) vV QU™ (m2)),
QU (M mi,u/m) = (R(A)AQUT(m))V (A(n) A QU (m2)).
"By distributivity and associativity in V.
8Since A1 V A2 = LMATV (A AT) =T
®Obviously when V an U are linear scales these functions recover the ones introduced
in Chapter 4.
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Proof:
QU-(Mmi,ufm) = N\ (n((N 1, p/m)()) V ulz))

zeX

= A @(((m ANV (w2 A ) () V u(z))

zeX

= A ((n(mi(2) V(X)) A

zeX

reX

(V (n(m2(2)), n(p), (@)™
= (A (Vn(mi(2),n(0),u(x))) A

reX
(A (V(n(m2(x)), n(1), u(x))))"®
T€X
= (A )V (n(mi(2)) V u(x)))) A
TeX
(/\ () v (n(ma(2)) V u(2))))*
reX
= (e v (/\ (n(mi(2)) v u(2))) A
reX
(n(e) v () (n(ma(2)) v u(z)))
T€X

= (n(N) VU™ (m)) A (n(p) V QU™ (m2)).

Therefore, QU ~ preserves the “possibilistic” mixture.
The proof for QU is omitted because of it is analogous to the pessimistic
one. O

Now, we have utility functions for making decisions on lattices, in
the usual hypotheses that ranking decisions is a problem of ranking
normalised possibility distributions.

9Since n = ny o h, and h is homomorphism, we have that n(AV X') = n(A) An(XN)
and n(AAX) =n(A) Va()).

"Since U is a distributive lattice, a V (b Ac) = (a Vb) A (a V ¢).

12 Associativity of A.

13 Associativity of V.

Y Distributivity: a V (bAc) = (a V) A (aV c).
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7.2.2 Characterisations for Ordinal/Qualitative Utility
Functions

In this Section we characterise the orderings induced by these functions as
well as the preference relations that are representable by these functions.

Proposition 7.6
Let (IT*(X), C), satisfying

o AP1(structure) : (II*(X), C) is a pre-lattice.
e A2 (uncertainty aversion): if 1 <7’ = «' C .

Then

115

1. The maximal™ elements of (IT*(X),C) are equivalent.

2. The maximal elements of (X,C) are equivalent, and they are
equivalent to the maximal elements of (II*(X), C).

Proof:

1. By AP1, (II*(X), C) is a finite partial pre-order, then exists at least
one maximal element w.r.t. C . Let m; and 79 be maximal elements.

By AP1, exists SUP(ny1,m3). Let m € SUP(m1,7m3), then
7 dm and 7w 3 7o,
but as m; and 7 are maximal elements, it must be

Ty ~ T~ To.

2. Let Tps be a maximal element of (X, C). Suppose it is not a maximal
element of (IT*(X), C). Hence, exist 7 € (II*(X), C) s.t. Tpy C 7. As
7 is normalised, exists ¢ € X s.t. w(z) = 1, so by A2, we have that
as x < m, then z J w 1 7,,. Contradiction since Z; is maximal in
(X,5).
So, Tps is also a maximal element of (IT*(X),C), and by 1) all
maximal elements of (II*(X),C) are equivalent, so all maximal
elements of (X, C) are also equivalent.

O

51 is a mazimal element iff Vo' € ITI*(X), 7 C 7' = 7' ~ .
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Axiomatic setting

Let AXP be the following set of axioms on (IT*(X),C) (as usual,
n~7 <= 7Cr and 7 J7'):

e AP1: (IT*(X),C) is a pre-lattice.
o A2 (uncertainty aversion): if 1 <« = =’ C .
o A3 (independence): m ~ g = (A, p/m) ~ (A7, pu/).

Let 7 be a maximal element of (II*(X), C) so, for each A\ € V, we
consider 7, = (1/7, A/ X)'6.

o AP4:Vme II"(X), INeVst. m~m,.
o AP5: ifnry, Cm,, = W;V()\) | W;V()\,).
e AP6(incomparabilitypreservation: if A <> N = 7 COwy,.

AP1 says that the quotient set (II*(X)/ ~, C) results a lattice. A2, A3
and AP4 have the analogous meanings to the linear case, while AP6
establishes that two incomparable values of uncertainty, A and X, lead to
two incomparable lotteries. Finally, AP5 says that the preference between
lotteries with degrees of uncertainty A and )\ with respect to a maximal
7 results reversed when the lotteries are considered with the respective
“opposite” values of uncertainty.

Remark 7
If AP5 holds then,

T\~ TN = Ty (A) ~ Ty (X)-

Lemma 7.7
Let (U,<y,0,1,ny) and (V,<y,0,1,ny) be two distributive lattices with
involution, h:V — U a epimorphism'” and u:X — U.

If(QU™)~(1) # 0 and (QU™)~'(0) # 0, then
e there exists € X s.t. u(z) =1 and A,y u(z) = 0.

e QU™ is onto.

1%In fact, to be 75 well defined we are assuming that AP1 and A3 are required
In fact, in the proof we only require h to be onto and to satisfy A(0) = 0 and
h(1) =1.
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Proof:
e Since (QU~)71(1) # 0, there exists 7 s.t.
QU-(M) = \ (n(®(2)) v u(x)) =1,
reX

then n(m(z)) Vu(z) = 1 Vo € X. As 7 is normalised there exists
z1 € X s.t. T(x1) =1, hence 1 = n(1) Vu(x1), so u(z1) = 1. On the
other hand,

QU (X) = N\ (X)) Vu(z)) = \ OVu(z) = ) ul).

reX reX zeX

Since (QU~)71(0) # 0, there exists 7 s.t. QU (w) = 0, and as
QU™ () 2 Nyex u(z), we have that

/\ u(z) = 0.

z€X

e Given w € U, since n is onto there exists A € V s.t. n(A\) = w.
As we have seen, there exists 1 € X s.t. wu(x;) = 1, thus
Nzex iz} u(@) = 0. Let my, be the distribution defined as

Tw(x) = { (7.3)

A, otherwise.

Then,

QU (my) =\ (n(mu(2)) Vu(z))

z€X

= n()\)v( A\ u(a:)))
zeX—{z1}

= n(A)

= w.
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Lemma 7.8
Let h:V — U be an onto non-decreasing function satisfying that

if A <> X then h()) <> h(\).
Then, h is a lattice epimorphism.
Proof:
First, we verify that h also satisfies that
h(X) > h(X) then A > X' (7.4)

Indeed, suppose that X' < A, i.e. X' > X or A <> X. But,

e if A <> ), then, by hypothesis, h(\) <>y h()\'). Contradiction.

e if X' > )\, as h is non decreasing, then h(\') > h()). Contradiction.

So, it must be A > \.
Now, we verify that h is distributive w.r.t. A and V.

o () VA(N) = B(AV ).
Indeed, as h is order-preserving we have that h(A)Vh(N) < h(AVN).

As h is onto, we have that there exists u € V s.t. h(A) V h(X) =
h(u),and thus h(p) > h(X) and h(p) > h(X).

— If h(X) <> h(X') then h(u) > h(X) and h(p) > h(XN).
As h satisfies (7.4), we have that g > Aand u > X, sop > AV
Therefore, h(u) > h(AV X), i.e. h(A) V A(N) > h(AV X).

— Otherwise, h(X') > h(\) or h(X) > h(X).
Suppose that h(A\) > h()\'), then h(X\) V h(X\) = h(N).
Observe that since h(\) > h()\'), by hypothesis we have that
A <> ) is impossible, so it must be

AN or A> M. (7.5)
Therefore, since
n_ | h(A) i A>N
h(AV ) = { RON) i A< A (7.6)

we have that

h(A) VAh(X) > h(AVX).

)
Analogously, if h(X') > h(\) we obtain that h(A\) V h(N) >
h(AV X). Therefore, h(A) V h(X) = h(AV X).
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e In a similar way, we may verify that
R(AAX) = h(\) A R()).

Therefore, h is a lattice epimorphism. O

Finally, let gy~ be the preference ordering on IT*(X) induced by
QU ie.
T <qu-m iff QU (m) <y QU ().

In the following, we state that the set of axioms AXP characterise
these preference orderings.

Theorem 7.9 (Representation Theorem for Pessimistic Utility)
A preference relation (II*(X), C) satisfies axioms AX P iff there exist

(i) a finite distributive utility lattice (U, A,V,ny,0,1),
(ii) a preference function u:X — U, s.t. u™'(1) # 0 and A\ ¢y u(z) =0,
(iii) an onto order-preserving function h:V — U also satisfying

if A\ <> X then h()\) <> h()), (7.7)

and
ny ohony = h, (7.8)

in such a way that it holds:
' Erwiff 7’ Sgp- 7
with n = ny o h.

Proof:

<+ ) We have to verify that the preference ordering on IT*(X) induced by
QU™ satisfies the above set of axioms. As <y is a partial order, <y
is reflexive and transitive. By Lemma 7.7, QU ™ is onto, so we may define

SUP(m,7") = (QU ) "N QU () V QU («)),

and
INF(m,x") = (QU") QU™ (m) AQU ™ (x)).

Then, by theorem 7.3, (II*(X), gy ) is a pre-lattice.
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A2 results from the fact that V and A are non-decreasing in U and n
is a reversing function. While, A3 is a consequence of the fact that QU™
preserves mixtures.

Let us prove now AP5: if my <qu- 7y = Wr:v(A) FQu- W;V()\,).

Let T be a maximal element of IT*(X), so QU (7) = 1. As QU™
preserves mixtures and QU™ (X) = 0, we have that QU (w, ) = n(}).

As nyonony =n and ny and ny are involutive, then

n(A) <n(XN) = n(ny (V) =ny(n(d)) = no(n(X)) = n(ny (X))

That is, AP5 is verified.

AP6 is a consequence of the <y- definition and that h satisfies (7.7).
Now, we check AP4. Let T be maximal element of IT*(X) w.r.t. <gp- -

As QU (1/7,A/X) = n(A), then

QU (m) =n(\) = QU (1/7,\/X) VYXen QU (n).

—) The proof is very analogous with the one given for the linear case.
We again structure the proof in the following three steps.

1. We define the distributive utility lattice U with involution ny, and
a reversing mapping n from V to U, satisfying if A <> ) then
n(A) <>y n(\'), and nyonony = n. So, we consider the preserving
mapping h = ny o n. Hence, h will satisfy (7.8) and (7.7).

By Lemma 7.8, h is actually a lattice epimorphism.

2. A function QU:II*(X) — U representing C, ie. such that
QU (r) < QU (r) iff # C «', is defined.

3. Finally, we prove that QU™ (7) = A cx(n(w(z)) V u(z)), where
u:X — U is the restriction of QU™ on X. u also satisfies that

u™t(1) # 0 and A,y u(z) = 0.
Now, let us develop these steps.
1. We consider on IT*(X) the equivalence relation ~ defined as
m~7 &= 7C7x and 7' C 7.

By AP1,I1*(X)/ ~ is a lattice. As in the linear case, we take as
utility lattice U = II*(X)/ ~ . As Theorem 7.3 guarantees the
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existence of SUP and INF, we define in U the operations A and V
induced by them, i.e.

[7] V [7'] = SUP(x,7'),
and
[7] A [7'] = INF(m, 7).

The <y induced from V coincides with C . It is not difficult to verify
that [X] is minimum of (U, <y), and if 7 is a maximal element of
I1*(X), [7] is the maximum on U.

Let T a maximal element of IT*(X), and for each A € V, let

™ = (/7 A/ X),

and let n:V — U be defined as

n(A) = [7y].

It is not difficult to see, analogously to the linear case, that n is
onto, and that A2 guarantees n actually reverses the order. Now,
we define ny from n and ny. For each w € U, we define

ny (w) = n(ny(A)),

with A € V s.t. n()\) = w. By AP5, see Remark 7, ny is well defined.
By AP6,n satisfies

if A <> X then n(\) <> n(\),

and by definition of ny, we have ny ocnony = n and ny ony =
identity. Let h = ny o n. Then, h satisfies the conditions required.

Hence, as n is a reversing epimorphism, and V is a distributive
lattice, so is U.

. As usual, QU™ can be defined on IT*(X) in two steps. First, we
define it on lotteries of type 7", as QU™ (7, ) = n(A).

AP4 lets us to extend this definition. Since Vr IAst. 7 ~
(1/7,A/X), we define QU (w) = n(A). It is not difficult to verify
that QU represents C .
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3. Consider u:X — U defined as u(z) = QU (z).
It remains to prove that QU™ () = A ¢ x(n(7(z)) Vu(z)). To verify
this, we will prove the following equalities:

® QU™ (A1/m1, A2/m2) = (n(A1) V QU™ (m1)) A (n(A2) V QU™ (m2))
with either Ay =1 or Ay = 1.
By APA4,3u,7 s.t.
m o~ (1/7,u/X) and mo ~ (1/7,v/X).
By A3,
(Ar/m1, Ag/ma) ~ (M /(1/T, n/ X), Ao/ (1/7, 7/ X)),
and reducing lotteries we obtain
(Ar/m1, Ao /m2) ~ (1/7, (A1 A p) V (A2 A y))/X).
Therefore, as n is a reversing morphism, we have
QU (A/mi, he/me) = n((AAp)V (A2A9))
= (n(M) Vn(u) A (n(A2) Vn(y))
(n(A1) V QU™ (m1)) A (n(X2) V QU™ (m2)).
Therefore, we have that
QU (m Vme) = QU (m) ANQU  (m3).
More generally, QU™ (V1. ™) = Niz1...p, QU™ (mi)-

* QUT(m) = Niz1.p (n(m(@i)) V ulzi)).
As m € II*(X), then 3 z; € X s.t. w(z;) = 1. Without loss of
generality assume j = 1. Let

m = (121, m(3;)/2i)-

1=1...,p

Since

we have that

QU™ (r) = QU( V m)

i=1...,p

- /\ (w(z1) A (n(m(z;)) V ulz;)))

i=1...,p

—18 N\ (n(r (@) Vulz)).

i=1...,p
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Finally, as 7 is normalised, there exists zy € X s.t. T(zp) = 1, so
zo < 7. Then by A2, o I 7. As QU™ represents C,

QU (z0) > QU (%) =1,
hence u(zg) =1, s0 u=(1) #0. As QU (X) =0, and QU (X) =
Nzex w(z), then Ayex u(z) = 0.

This ends the proof. O

As usual, in many situations we may be interested in an optimistic
behaviour. With this goal, we consider <gy+ the preference ordering on
IT*(X) induced by QU ™, i.e.

T=<ou+ ® = QU (n) < QU (x').

In order to represent this optimistic preference relation, we have to
change the uncertainty aversion axiom A2 by the usual uncertainty-prone
postulate:

o A2T: if 7 < 7' then 7 C 7/,

and to modify the axioms involving ) . Indeed, consider now 7'(';\_ =

(A/X,1/x), where 7 is a minimal on (IT*(X), C), we have that
o AP4T :Vr € II*(X), 3X € V such that 7 ~ 7.
e AP5T: if 7'(':\}_ cC 7'(')—"—, = W;L"V(/\) | W;L"V(/\,).
e AP6T: if A<> )N = #f Can.
Now, the representation theorem says:

Theorem 7.10 (Representation Theorem for Optimistic Utility)
A preference relation T on II*(X) satisfies axioms set AXPt =
{AP1, A2% A3, AP4t, AP5" AP6™} iff there exist

(i) a finite distributive utility lattice with involution (U,V,A,0,1,ny),
(ii) a preference function u:X — U, s.t. u='(0) # 0 and \/,¢x u(z) = 1,

1ii) an onto order—preservin function h:V — 1), s.t. ny o ho ny — h,
8
and also satisfying

"8As w(21) = 1, then u(z1) = u(z1) V n(r(z1)).
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A <> X then h(\) <> h(N),

in such a way that it holds:
T Cnrn < 7 <qu+m.

The proof is very analogous to the one for pessimistic utility, and it will
be omitted.

7.2.3 Generalised Qualitative Utility Functions

Now, we assume available other operators (t-norms) in V. This
assumption, let us to consider also other operations on IT*(X). Before
analysing this point, let us introduce some notation and some previous
facts about residuated lattices that we will use in the following.

Definition 9

Given (L,A,V,0,1) a finite lattice, a t-norm (t-conorm) operation T (L)
on L is a non-decreasing, associative and commutative binary operation
on L verifying A\TO =0 and A\T1 =X (ALO = X and AL1 =1, resp.) for
all A € L. The residuum of T, I:L x L — L, is defined as

I(a,c) = V{b|T(a,b) < c}.
(T,I) is an adjoin pair if the following conditions hold:
1) (L, T,1) is a commutative semigroup with unit element 1.
2)Va,b,c € L,(aTb) <c¢ if a<I(bc).

(L,A,V,T,1,0,1) is a residuated lattice if (L, A,V,0,1) is a lattice and
(T,I) is an adjoin pair.

We will denote by (V,Ay,Vy,0,1,ny,T) a finite distributive lattice
of uncertainty values with involution ny and T a t-norm on V.
(U, A\v,Vu,0,1,ny) will be a finite distributive lattice of preference values
with involution. As before, in the meet and join operators notations we
will usually omit the reference to the lattice, assuming that they may be
identified by the context.

Theorem 7.11

Let (L,A,V,0,1) be a finite lattice, and T a t-norm on L. Then, T
distributes over the lattice joint operation (that is, (a Vb)Tec = (aTc) V
(bTc¢), Va,b,c € L) iff (L,A,V,T,1,0,1) is a residuated lattice.
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Proof:
—) Suppose (aVb)Tc=(aTc)V (bTc), Va,b,c € L. Hence,

e (aTh) <c¢ = a < I(bc) by the definition of I

e Let D = {d € L|(bTd) < c}, D is closed under supremum. Indeed
by distributivity of T w.r.t. V, we have that

(\/ d) To=\/(dTh) <\ c=¢,

deD deD deD

s0 (V4epd) € D. Therefore, if

a<I(be)=\/d

deD

then

(aTh) < (\/ d) To=\/{(dTh)lde D} <c

deD

+) Cf. Lemma 2.3.4 of (H4jek, 1998).

Generalised V-Mixtures and Utilities

We have seen in previous chapters that QU and QU™ are “utility”
functions on IT*(X), in the sense that they preserve the preference
ordering and the max-min combination of possibilistic mixtures. Now,
we analyse the conditions required to guarantee that the generalised
utility functions functions preserve a generalised possibilistic mixture.
Instead of applying max-min combination of possibility distributions, we
consider other mixtures involving t-conorms and t-norms. For each t-
norm T and conorm L on V, we will be interested in 1. — T mixtures that
combine two possibility distributions 71 and 7y into a new one, denoted
M (1,75 Ap), with A, up € V and ALy = 1, defined as:

M, 1 (1, 725 A p) () = (AT () L(pTre(2)).

Remark 8
We require these mixtures to satisfy reduction of lotteries, that is:
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M o (M 1 (71, 793 A1, Ag), M 1 (1, o5 a1, pi2)s o, B) =
M 1 (1, 723 (@TA) L(BT 1), (@TA2) L(BT p2)).

Hence, we need that (aTc)L(bTc) = cT(alb) be satisfied. Therefore, we
have to restrict ourselves to V — T mixtures. Indeed, De Cooman and
Kerre prove that if (L, <) is a bounded partially ordered set, then if a
t-norm T on (L, <) is distributive w.r.t. a conorm L in L it implies that

(aTb)Lla=a, Va,be L. (7.9)

Moreover, (7.9) implies that | satisfies idempotency, and they prove that
the only conorm idempotent is join (see (De-Cooman and Kerre, 1993;
Propositions 3.5, 3.6 and 3.7) for more details). Besides, by Theorem
7.11 we have to require (V,A,V,T,1,0,1) to be a residuated lattice.
Henceforth, V' will be assumed to be a finite, residuated, and distributive
lattice with involution. From now on, Mt denotes Mt y.

So, for each t-norm T on V, we may consider a generalised V-T-
Possibilistic Mixture. In order to have a closed operation on IT*(X),
the scalars A, p involved in the mixture operation are also required to
satisfy A=1or pu = 1.

Since now we have in V other operators besides infimum, we can
consider here another alternative for modelling implication instead of
(v = u) = n(v) Vu, namely the S-implication-like defined in (5.6),
but now with lattices,

(v = u)=n(vTz)

with n(z) = u, T a t-norm on V, n = ny o h, and h:V — U an onto order
preserving function. u:X — U that assigns to each consequence of X a
preference level of U, for a pessimistic behaviour we propose

GQU (nfu) =[x Cul = \ n(r(z)TXe),
T€X
with Ay s.t. n(A;) = u(z). As usual, to guarantee the correctness of
the above definition of implication we require h to satisfy the coherence
condition w.r.t. T,

h(A) = h(n) = h(aTA) =h(aTu) Yo, \,p € V.

Like in Chapter 5, notice that either when T = A or when h is injective
this condition is satisfied. If A is coherent w.r.t. T, so is n.

Instead, for an optimistic behaviour we consider the t-norm as the
conjunction, that is we consider
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GQU T (n|u) = [r Nu] = Vyex h(m(2) T pia)

with pg s.t. u(z) = h(pz). Observe that as V' is a residuated distributive
lattice with involution, if h is join-preserving, then GQU~ and GQU™
preserves the possibilistic mixture in the sense that:

Lemma 7.12
GQU~ and GQU™ preserve the possibilistic mixture in the sense that it
holds

GQU™ (M (my,ma; A, 1)) = (n(ATd1) An(uTdz))

GQUT (M+(my, w5\ 1)) = (A(ATy1) V h(uT2))

with n(5;) = GQU~(my), hlz;) = GQU*(ry).

Proof:
As both proofs are analogous, we only include the proof for GQU ~. By
definition

GQUi (MT(ﬂ-la 23 )‘1 M)) = /\zieX n(MT(”Tla 23 /\a M)(wz)T’Y’L)ﬂ
where n(7y;) = u(z;). Since

My (m,mos A p)(za) Ty = [(ATmi(zi) V (pTma(zi)] Ty
=1 NTy(z) Tys] V [T (i) Tl

then

n((Mr(mi, mo; A, p) (7)) Tvi) = n((ATm(z:) Tyl V [pTre(z:) Tyl)
=20 (AT () Tys) An(uTre(z:) Ty),

SO

GQU™ (Mt (m,mo A1) = N\ n(Mr(m,mo; A, p) (i) Tw)
T, €X

= /\ (n(ATm(z) Ty) A
T, €EX
n(pTma(zi) Tvi))
= { /\ AT7(zi) Ty) A
r;€X

{ N\ npTmo(z:) Ty}
T, €X

Y¥Because of (aV )Ty = (aTyV BTY).
*0Since n(a V b) = n(a) A n(b).
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Since

/\ n()\Tm(mi)Tfyi) = n \/ (/\Tﬂ'l(xi)—r’)’i)
T, €X T, €X

= n(AT |V (mz)Tw) |),

iEX
then
GQU™ (Mt (my, w2\, 1)) = {n(AT( \/Xﬁl(%‘)T%))}/\
zi€
{nwT | \/ m(z)Tv) )}
X
Since

1 (Vaiex ™) T%) = Agiex n(mj(:) Tvi) = GQU™ (m)) = n(3;),

under the coherence hypothesis, we obtain that

nAT(Vyex m1(2i) Tyi) = n(ATd),
and analogously, we have that

n(uT(Vy,ex (i) Tyi)) = n(uTd2).
Hence,

GQU (M~ (1, m2; A, 1)) = n(ATé1) An(uTde),

with n(d;) = GQU  (m;).

Representation of Generalised Qualitative Utilities

In this section, we propose a set of axioms to characterise the generalised
pessimistic and optimistic qualitative utilities for normalised possibility

distributions in the present framework of lattice measurements.

Given (V,Ay,Vy,0,1,ny, T,1) a finite distributive residuated lattice
of uncertainty values with involution ny and T a t-norm, we consider the

following axiomatic setting.
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Axiomatic Setting
Let AX Pt be the following set of axioms on (II*(X, V), C, M),

e AP1:(II*(X),C) is a pre-lattice.

o A2(uncertainty aversion): if r <7’ = x 7.

e A3 (independence): m ~ mo = My (my,m A 1) ~ Mt (me, 5\, p1).
Let 7 be a maximal element of (IT*(X, V'), C, M7). So, for each A € V, we
consider m, = M+ (7, X;1,\)?!.

o AP4t :VreIl*(X),INEV st.m~m,.

o APsy:ifmy Ty = 7, ) I, -

e AP67: if A\ <> )N = 7, COmw,,.

In order to represent an optimistic preference criterion, we consider
now the distribution 7rj\L defined as 7'(';\_ = M+(X,m,\ 1), where 7 is
minimal of (IT*(X),C), and we have to change the uncertainty aversion
axiom A2 by the uncertainty-prone postulate:

o A2T: if 7 < 7' then 7 C 7/,

and to modify the axioms involving the lottery 7, by the axioms related
with W;\“, that is, we have:

e APAT :Vr e I*(X),3N € V s.t. m~ 7,

t.ifrt oot + A
o APSTiif my T, = ) I mL .

e AP6T: if A <> )N = #f Can).

Lemma 7.13

Let (U,Av,Vu,0,1,ny) a distributive lattice with involution and
(V,A,V, T,1,0,1,ny) a residuated distributive lattice with involution,
h:V — U an onto join-preserving mapping satisfying coherence w.r.t.
T, and u:X - U. If (GQU ) (1) # 0 and (GQU ) 1(0) # 0 (if
(GQUT) (1) # 0 and (GQU)1(0) resp.), then

a) there exists ¢ € X s.t. u(z) = 1 and A cx u(z) = 0 (there exists
z € X s.t. u(z) =0 and \ ¢ x u(z) = 1, resp.).

2! As usual, to be m, well defined we are assuming that AP1 and A3 are required.
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b) GQU ™ is onto (GQU™ is onto, resp).

Proof:
We only provide the proof related with the pessimistic criterion, being
the other very analogous.

e Since (GQU~)~1(1) # 0, there exists T s.t.

GQU~(m) = N\ n(@(2)TA) =1,

zeX
with n(A\;) = u(z). Then, n(7(z)TA;) = 1 Vo € X. As 7
is normalised there exists z; € X s.t. 7(z1) = 1, hence 1 =

n(1T Ay, ) =n(Agy) = u(z1).

e On the other hand, since (GQU~)~1(0) # @, there exists 7 s.t.
GQU(7) =0, and as m < 1, then n(n(z)TAz) > n(1TA;) = u(z).
So,

0=GQU~(m) > N u(a),

zeX

therefore we have that

/\ u(z) = 0.

zeX

e Given w € U, since n is onto there exists A € V s.t. n(A\) = w.

As we have seen, there exists 1 € X s.t. wu(xz;) = 1, thus
Nzex iz} u(@) = 0. Let my, be the distribution defined as
1 if z=ux
T (T) = (7.10)
A otherwise.

Then,

GQU (my) = /\(n(ﬁw(w)—l—)\m)

z€X

= n(lT/\xl)/\( A n(Am)>

zeX—{x1}

= A n(ATA)

zeX—{z1}
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= n V  OTa)

reX—{zr1}
= n(AT| V X
zeX—{z1}

Recalling that n(1) = 0 = A cx_ (53 8(®) = Apex—fz3 M(Aa) =
1(V zex—{z,} A=), and by coherence condition we have that

GQU ™ (my) =n(AT1) =n(A) = w.

The representation theorem is comes next.

Theorem 7.14 (Representation for Pessimistic/Optimistic Utility)
A preference relation (II*(X),C, M) satisfies axioms AXPr ( AXP;}

resp.) iff there exist
(i) a utility finite distributive lattice with involution (U, A,V,ny,0,1),

(ii) a preference function u:X — U, s.t. w='(1) # 0 and A\, u(z) =0,
(s.t. u=(0) # 0 and \/,c x u(z) = 1, resp.)

(iii) an onto join-preserving mapping h:V — U, satisfying coherence
w.r.t. T, and also satisfying
if A <> X then h()\) <> h(X),
and ny o hony = h,
in such a way that it holds:
T Cn < GQU (r'lu) <y GQU (r|u).
(' T < GQU(7'|u) <y GQU ™ (rn|u) resp.)

Proof:

<+ ) We have to verify that the preference ordering on IT*(X) induced
by GQU ™ satisfies the above set of axioms. As <y is a partial order,
<gqu- is reflexive and transitive. By Lemma 7.7, GQU™ is onto, so we
may define

SUP(m,«') = (GQU™ )" (GQU (x) v GQU~(x)),
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and

INF(m,7') = (GQU ) YGQU (x) A GQU ().

Then, by proposition 7.3,(IT* (X), Sgou-) is a pre-lattice.

A2 results from the fact that T and A are non-decreasing in U and
n is a reversing function. While, A3 is a consequence of the fact that
GQU ™ preserves mixtures.

Let us prove now AP57: if 7y, Sgqou- ™y = ﬂ;v()\) FGQuU- 7'(';‘/()\,).

Let 7 be a maximal element of IT*(X), so GQU(7) = 1. As GQU~
preserves mixtures and GQU ™ (X) = A,cxn(X(z)TAz) = 0, we have
that GQU (7)) = n(1Td1) A n(ATég), with n(d;) = GQU™(7) =
1, n(d2) = GRU~(X) = 0. So, by coherence condition,

GQU (my) = n(ATd2) = n(AT1) = n(A).
As nyonony =n, and ny and ny are involutive, then
n(A) <n(\) = n(nv (V) =ny(n(d) > ny(n(N)) = n(ny(X)).

That is, AP5 is verified.

AP67 is a consequence of the gy definition and that h satisfies (7.7).
Now, we check AP4+. Let 7 be maximal element of IT*(X) w.r.t.

<eou- - As GQU~(m, ) = n()), then

GQU (1) =n(\) =GQU (r,) VIen Y(GQU ().
—) We structure the proof in the following three steps.

1. We define a finite distributive utility lattice U with involution ng,
and a reversing mapping n from V to U, satisfying if A <> )\’ then
n(A) <>y n(N\), and nyonony = n. So, we consider the preserving
mapping h = ny o n. Hence, h will satisfy (7.8) and (7.7).

By Lemma 7.8, h is actually a lattice epimorphism.

2. A function GQU:II*(X) — U representing C, i.e. such that
GQU () < GRU  («') iff # C ', is defined.

3. Finally, we prove that GQU ™ (1) = A cx(n(m(z)TAz), where
u:X — U is the restriction of GQU ™ on X. u also satisfies that

uw (1) #0 and A,y u(z) =0.
Now, let us develop these steps.
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1. We consider on IT*(X) the equivalence relation ~ defined as
7~ = wC7a and 7 C .

By AP1,11*(X)/ ~ is a lattice. We take as utility lattice U =
IT*(X)/ ~ . As Theorem 7.3guarantees the existence of SUP and
INF, we define in U the operations A and V induced by them, i.e.

[7] V [7'] = SUP(7,7'),
and
[7] A [7'] = INF (=, 7).

The <y induced from V (or A) coincides with C . It is not difficult
to verify that [X] is minimum on (U, <y), and if 7 is a maximal
element of IT*(X), [7] is the maximum on U.

Let 7 a maximal element of IT*(X), and for each A € V, let

™ = (/7 A/ X),

and let n:V — U be defined as

n(A) = [7y].

It is not difficult to see that n is onto, and that A2 guarantees n
actually reverses the order. Now, we define ny from n and ny . For
each w € U, we define

ny (w) = n(ny(A)),

with A € V s.t. n(\) = w. By AP57, m, ~ m,, implies Tov ) ™

Ty )’ hence ny is well defined. By AP6+,n satisfies

if A <> X then n(\) <> n(\),

and by definition of ny, we have ny ocnony = n and ny ony =
identity. Let h = ny o n. Then, h satisfies the conditions required.

Hence, as n is a reversing epimorphism, and V is a distributive
lattice, so is U.
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2. GQU ™~ can be defined on IT*(X) in two steps. First, we define it on
lotteries of type 7}, as GQU (7} ) = n(A).

AP47 lets us to extend this definition. Since Vr A s.t. m ~ my
we define GQU ~(w) = n(\). It is not difficult to verify that GQU ~
represents C .

3. Consider u:X — U defined as u(z) = GQU ™ (z).

It remains to prove that GQU ~(7) = A cx n(m(z) T Az). To verify
this, we will prove the following equalities:

° GQU_(MT(Trl,ﬂ'Q, A1, /\2)) = (n()\lT(Sl)) VAN (n()\QT62))
with n(d;) = GQU ™ (7;), j=1,2, and either Ay =1 or Ay = 1.
By AP4+,3u, s.t.

Ty~ T, and Ty ~ T,
By A3,
M (1, T3 A1, Ad2) ~ Mr(m, , )5 A1, Ag)
and reducing lotteries we obtain
M (1, w25 A1, A2) ~ My (7, X531, (M Tp) V (A2 T7)))-

Therefore, as n is a reversing morphism, we have

GQU ™ (Mt (my,m2;A1,22)) = n((MTp)V (ATy))
= n(ATu) A (n(ATy)).

Hence, by coherence, we have that
GQU_(MT(TQ, T9; A1, /\2)) = n(/\lTél) N ’I’L(/\QT(SQ).

As a consequence, we have that

GQU (m Vmy) = GQU (m) NGQU ™ (m3).
More generally, GRQU(V,_,. , m) = A=y, GRU (m).

* GRU () = Nizi1..p (n(m(2i) TAsy))-
As m € IT*(X), then 3 z; € X s.t. w(z;) = 1. Without loss of
generality assume j = 1. Let

T, = MT(xla L, ]-7 7T(ml))
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Since

=1...,p

we have that

4 yeeesP

GQU () = GQU | \/ m
=1,...

- N\ (@) A (n(r(z:) TAg,)))
1=1,...,p

=2 A (@) Ths)

=1,...,p

Finally, as 7 is normalised, there exists zy € X s.t. T(zp) = 1, so
2o < 7. Then by A2, zo O 7. As GQU ™ represents C,

GQU™ (z0) = GQU™ (7) = 1,

hence u(rg) = 1, so u (1) # 0. As GQU (X) = 0, and
GQU™(X) = Nyex u(z), then Ay u(z) = 0.

This ends the proof for the pessimistic criterion, the optimistic one is
very similar. O

Remark 9

As h is onto and non-decreasing, if V' is linear, so is U (ie. If U is
non-linear, then V is non linear as well). Moreover, as a consequence of
the condition “if A <> X then h()\) <> h(X')”, if V is non-linear so is
U. Hence, for the case that the linking mapping h is a non-decreasing
function also satisfying (7.7), V and U are either both linear lattices
or both non-linear lattices. That is, the cases analysed in the previous
Chapter of having a linear scale of uncertainty and a partial order on the
cartesian product of preferences, or having a linear scale of preferences

and a partial order on the cartesian product of uncertainty are not covered
by Theorem 7.14.

22 As w(z1) = 1, then u(z1) = n(m(21) T sy ).
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7.3 The Particular Case of Allowing Different
Types of Measurement Lattices

In the introduction of this Chapter we announced that there exist decision
making problems in which incomparability may not be preserved by the
mapping linking V' and U. In this Section, we analyse these cases. Let
U be a finite linear scale, and let (V,A,V,T,I,0,1,ny) be a residuated
distributive lattice with involution?3, h:V — U is an onto join-preserving
mapping satisfying coherence w.r.t. T, and u:X — U. Under these
hypotheses, let us consider:

GQUy (rfu) = mipn(r(z)TA,),

with A, s.t. n(A\;) = u(z), and

GQU; (rlu) = max h(r(2) Tps,)

zeX

pz being s.t. u(z) = h(uy). As usual GQU; and GQU; preserve the
possibilistic mixture in the sense that the following expressions hold,

GQUp (M (my, m; A, p)|u)(z) = min{n(ATd1),n(uTda)},
GQU (M (my, mo; X, p)|u)(z) = max{h(ATm), h(uTy2)},

with n(6;) = GQU; (m;|u), and h(v;) = GQU} (mj|u), for j =1,2.

We consider as usual the set of distributions IT* (X, V') with the mixture
operation Mt. We want to characterise the orderings induced by the
GQU, and GQU; functions. With this goal, we consider the following
axiomatic setting BX Pt = {Al, A2, A3+, AP4+, AP6eqT}, with

e APbegr: if A <> X = 7w, ~ TN

where 7, = M+ (7, X;1,)), with T being a maximal®* element of
(I (X, V), ).

Observe that since <> is symmetric we have that A <> X' = 7, ~
Ty

23In Section 6.4.1 it has been mentioned that we have only considered there the
special case of having a linear scale of preference and the same scale in the cartesian
product where we measure uncertainty. The case of having different scales remains an
open question. Here, we provide a first answer.

24In fact, to be m, well defined we are assuming that Al and A3t are required.
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APGeqT establishes that two incomparable values of uncertainty, A
and X, lead to two indistinguishable lotteries, the lottery associated with
their supremum being indistinguishable with them as well.

For an optimistic behaviour we consider the axiom set BX P#-' =
{A1, A2T, A31, AP4%, AP6eqt}, with

o AP6eql: if A <> X = mf ~ 7l .

where mf = Mt(X,m; A, 1), with  a minimal element of (II*(X,V),C
7MT)-

Theorem 7.15 (Representation Theorem )
A preference relation (II*(X,V),C) satisfies axioms BXPr (BXP;
resp.) iff there exist

(i) a finite linear utility scale U,
(i) a preference function u:X — U, s.t. u 1(1) # 0 # u 1(0),

(iii) an onto join-preserving mapping h:V — U, satisfying coherence
w.r.t. T, and also satisfying

if A <> ) then h(AV ) = h(X), (7.11)
in such a way that it holds:

! !
Tl <=« #GQUL_(-Iu) T,

T Cn <= 7 =<0+, T resp.) withn = ny o h.
GQU (-|u)

Proof:
We consider the pessimistic case, the optimistic one being analogous.
<) We verify that the preference ordering on IT*(X) induced by GQU
satisfies the above set of axioms. As <y is a linear order, so is
'\<GQU; . As usual, A2 results from the fact that supremum and
infimum are non-decreasing in U and n is a reversing function. While,
A3 is a consequence of the fact that GQU; preserves mixtures.
APbeqgt is a consequence of the definition of 4GQUL— and that h
satisfies (7.11).
We check AP4t. Let ™ be maximum element of IT*(X) w.r.t. Sgou, -
As GQU (7 ) = n(A), then

GQUy (m) =n(X) = GQU; (1y) YA €n™ (GQU (m)).
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—) The proof is again very analogous with the one given for the linear
case. As usual, we structure the proof in the following three steps.

1. We define the finite linear utility scale U = II*(X)/ ~ with the
ordering induced by C. n:V — U is defined as

n(A) = [y,

with 7y = M+ (7, X;1,)), T being the maximum element of
(IT*(X,V),C, M1). By A2, n is a reversing ordering mapping, while
APA4t guarantees it is onto. By AP6eqt and n being reversing
ordering, we have that

n(AVX)=n(A) A n(X).

As usual, n results coherent w.r.t. T because of the reduction
property of M+ and A31. So, we consider the onto join-preserving
mapping h = ny on. Hence, h will satisfy (7.11) and coherence
w.r.t. T.

2. Again, GQU; may be defined on II*(X) in two steps. First, we
define it on lotteries of type 7y , as GQU (7)) = n(A).

APA47 lets us to extend this definition. Since Vr IAs.t. m ~ 7y,
we define GQU () = n(A). It is not difficult to verify that GQU
represents L.

Consider u:X — U defined as u(z) = GQU; ().
3. We will prove that
GQUL, (m) = minj=,_.p n(m(z:)T)
with n(y;) = u(z;).
To verify this, we will prove the following equalities:
o Vmy, o,
GQUL (Mt (m,m50,8)) = n((aTA) V (BTA), (7.12)

with X; such that GQU[ (7j) = n()\;).
Indeed, A4+ guarantees that I\; s.t. 3 ~ M+ (7, X;1, A1) and
e s.t. mp ~ M7(7,X;1,A2), remember that GQU; (m) =
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n(A1) and GQU, (m) = n(A2). So, using the independence
axiom A3,

MT(7T177r2; Ot,,@) ~ MT(MT(ﬁa Xa ]-a Al)aMT(ﬁaX; ]-a )‘2)5 aﬂ@)a

and by reduction of “lotteries” it reduces to

M (7, X; ((T1) V(BT1)), ((aTA1) V (BT A2))) ~
~ M7(7, X; (a Vv B8),(aTA1) V (BT A2)))

~ M7 (7, X; 1, ((@TA1) V (BT A2))).

Therefore,
GQU[ (M (7, m2;0,8)) = n((aTA1) V(BTA2))
with A; such that GQU[ (7;) = n(};)
GQU, (M (w1, mo; a0, f)) = min(n(aT A1), n(BT A2)).
t

Finally, we verify that (7.12) does not depend on the A chosen,
i.e. if p is such that GQU, (m1) = n(u), then

n((@TA) V(BT A2)) = n((aTu) V (BTXs)).

Indeed, as 7y, ~ m, then

, Le.

S

MT(f,X; 1, (OéT/\l) V (ﬁT/\Q)) ~ MT(ﬂ';l,ﬂ');; Oé,ﬁ)
~ MT(’/T;:aﬂ-)TQ;awB)
~ Mr(T, X1, (aTp) vV (BTA)),

therefore

n((aTA) V(BT A2)) = n((aTp) V (BTXz)).
In particular, we have that
GQUL (M (z,y;1,8)) = min(n(1T A1), n(BTXz))
with u(z) = n(A1),u(y) = n(A2). So,

GQUL (M~ (z,y;1,8)) = min(u(z), n(BT A2)),
with u(y) = n(\2), and

GQU (m V m2) = min(GQU; (m1), GQU; (m2)).
Indeed, as 71 V mo = M~ (my, 72,1, 1), therefore,
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GQU; (my v m2) = min(n(sn), n(12))
with n(p1) = GQU[ (m1),n(u2) = GQU (m2), so
GQU (m V m2) = min(GQU; (m1), GQU; (m2)).

Moreover, we have

GQUL< V W,)) = min GQU[(m) Vm.

i=1,...
=1, P

o GQU, (m) = minj—y 5 n(mw(z;) Ty;).
As 7 is normalised, there exists z; € X such that «(z;) = 1.
Without loss of generality, let us assume that j = 1. As for
each w, M~ satisfies that

1, if T = T1,
M+ (z1,zi 1, () () = w(my), if =z # z = 24,
0, otherwise.

Then, choosing
Ty = MT(wla Zi; 13 7T($i))a

we obtain 7 = \/,_; m;, therefore
=1,

P

GQU, (m) = GQUL( V MT(a:l,:(;i;l,w(xi))>

1=1,...,p
= min GQU, (Mt(z1,2;,1,7(x;)))

i=1,...,p
~ min[min(u(a1), n(r(z) TA))

with u(z;) = GQU (z;) = n(N;), so
GQU[ (m) = minj—1 . p n(m(z;)TA).
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Chapter 8

An Extended Model

Allowing Partially
Inconsistent Belief Sates:
Application to Possibilistic
Case-Based Decision Theory

The decision models described so far obviously rely on a possibilistic
representation of the belief states. Such a representation, i.e. a possibility
distribution, can be made explicit for instance if (uncertain) generic
knowledge and information is available under the form of a possibilistic
knowledge base (Dubois et al., 1997g). But, suppose that the available
information about the consequences of decisions appears in the form
of already experienced instances of decision problem cases. A decision
problem case is an account of a previous situation where a decision was
made, and the actual consequence of that decision was recorded. A
decision problem case can be thus formalised as a 3-tuple (situation-
description, decision, consequence). The idea of the so called “Case-Based
Decision Theory” is to select a decision that gave good results in the past
in situations similar to the current one.

For example, it is possible, and probably more realistic, to present the
omelette story of Savage of Section 4.6 as a case-based decision problem.
The memory would consist of descriptions of eggs broken in the past
by the agent, the decisions made about those eggs and the outcomes
(described in Table 4.1). Descriptions could be done in terms of attributes
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like colour, the smell, weight of the egg, etc. The decision made about
a new egg for a new omelette could then be based on the resemblance
between the present egg and the past ones. If the egg looks fresh (e.g. is
similar to the descriptions of past fresh eggs) then Break the egg In the
Omelette (BIO), if the the egg looks rotten then Throw it Away (TA),
if the egg is only mildly fresh but not clearly rotten, or it is a new type
of egg not encountered in the past then for instance Break it Apart in a
Cup (BAC).

In such a framework, as it has been mentioned in Section 2.3, Gilboa
and Schmeidler (1995) have proposed a case-based decision model where
the decision-maker, in face of a new situation sg, is supposed to choose
a decision d which maximises a counterpart of classical expected utility.
Namely,

USO,M(d) = Z (s,d,x)EM Sim(SOa 8) ’ u(m)

where Sim is a non-negative function which estimates the similarity
between situations and the current situation sg and u provides a numerical
preference for each consequence z.

Dubois and Prade (1997d) propose another approach to case-based
decision, based on possibility and necessity measures. Instead of
averaging the preference of consequences obtained in similar situations,
weighted by similarity degrees, they propose to look for decisions that
always gave good results in similar experienced situations.

In the next Section, a link is established between Dubois and Prade’s
Case-based and Qualitative Decision models, by estimating how plausible
T 18 a consequence of a decision d, in the current situation sg, in terms of
the extent to which sg is similar to situations in which © was experienced
after taking the decision d. So again, a decision or action d can be
identified with a possibility distribution on consequences.

This link between similarity on situations and possibility distributions
on consequences allows us to apply the possibilistic qualitative criteria
described in the previous Chapters to case-based decision problems.
However, working with case-based decision we face with problems
in which non normalised possibility distribution are involved. Non-
normalisation problems may also appear in DT when different sources of
information about the actual situation are available and they are partially
conflicting. Namely, in such a case, if a min-based aggregation of the
corresponding possibility distributions is performed to merge them into
a single one, then we can come up with a non-normalised distribution as
soon as their cores are disjoint, i.e. when the distributions are mutually
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inconsistent to some extent. But even under these hypotheses of partial
inconsistency, one may be interested in making rational decisions.

In order to allow a proper handling of non-normalised distributions,
in Section 8.2 we extend the basic model and provide corresponding
characterisations of the orderings induced by suitably modified utility
functions. Then, we shall be ready to return in Section 8.3 to the case
based decision problem, applying these utility functions. In Section 8.4
we analyse the example of the safety problem in the chemical plant from
a case-based decision problem view, while in Section 8.5 we consider the
case of non normalised distributions in a lattice measurement framework.
In Section 8.6 we extend the model in another direction to take into
account the performance of “similar” acts for evaluating the utility of
a decision d. This extension again leads us to deal with possibility
distributions on consequences, hence we may approach this type of
problem with the qualitative utility functions analysed in the previous
Chapters.

8.1 Possibilistic Case-Based Decision Theory

Dubois and Prade (1997d) propose an approach to case-based decision
based on possibility and necessity measures. Instead of averaging the
utility of consequences obtained in similar situations, they propose to
look for decisions that always gave good results in similar experienced
situations. As in Gilboa and Schmeidler (1995)’s proposal, they
assume a given memory of cases M and a “similarity”! function
Sim:S x § — [0,1] that measures the degree of similarity between two
situations, and a preference function u: X — [0, 1] representing preferences
on consequences. They propose the following utility function

Uyo m(dlu) = ming g pen (Sim(s, so) = u(z)),
where = is chosen as (z = y) = N(z)Lly with L a conorm and N an
involutive negation in the real interval [0,1]. If only ordinal interpretations
are meaningful, 1 is taken as mazimum, so
Usom () = mings g zyenr max(N (Sim(s, so)), u(z))-
The interpretation of this criterion is very natural if we think of it in
terms of fuzzy set inclusionship (see Section 5.1 for more details). Indeed,

'Actually we are speaking about a fuzzy proximity relation on S, ie Sim is a
symmetric and reflexive relation.
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let us respectively denote by Sim? and G¢ the fuzzy set of situations
which are similar to sy and where d was already experienced and the
fuzzy set of situations where decision d led to good results respectively,
with membership functions Sim?(s) = Sim(s,so) and G%(s) = u(z), if
(s,d,z) € M. Then, the above criterion of maximising U, ,, looks for
decisions d such that, in all situations where d was previously experienced,
it led to good results.
Indeed, if

{s| (s,d,z) € M, Sim(s, sg) >0} C {s|(s,d,z) € M, u(z) =1},

then U, ,/(d) =1, and

Ugo.m(d) = 0 as soon as 3s s.t. Sim(s,so0) = 1,(s,d,z) € M and u(z) =

Actually, U__ 1 (d) is a rather drastic criterion since it requires that in
all the situations similar to sg, d led to good results.

A more “optimistic” behaviour consists in selecting decisions which
led to a good result in at least one situation similar to sg. They model it
using the dual criterion

U;),M(d) = (syzr,lg)éM man(Sim(s, so), u(z)).
Thus, U:; 7 (d) is maximal as soon as there exists a case corresponding
to a situation completely similar to sy where d led to an excellent result.
The pessimistic and optimistic decision rules differ from the Gilboa-
Schmeidler rule in that they do not assume that results obtained in
past experiences accumulate and, particularly, compensate. For instance,
in the omelette example, using Gilboa-Schmeidler rule, a few bad
experiences with a certain kind of egg very similar to the current one can
be fully counterbalanced by sufficiently many half-fresh eggs of similar
appearance. The pessimistic criterion suggests mistrusting these eggs
and the optimistic one only partially tolerates them.
Observe that if the fuzzy set Sim? is normalised, then
U ar(d) 2 Uy 4(d)

50, 50,

as it is expected.

It is obvious the close relationship between these criteria and the ones
described in the previous Chapters. Actually, one can represent the Case-
Based Reasoning Principle stated in (Dubois et al., 1997b) saying that
for each (s,d,z) € M,
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“the more similar sy is to s, the more plausible z is a
consequence for sy under decision d”,

by the following inequality
Td,s0(2) > max{Sim(so, s)| (s,d,z) € M},

where m45,:X — V is the possibility distribution representing the
plausibility of = being the consequence of d at sg. For computational
reasons (using a kind of minimum specificity principle (Dubois and Prade,
1987)) we can just take the equality above and let

74,50 (2) = max{Sim(so, s)|(s,d,z) € M2

and so, a decision or act d at the new situation sy can be identified with
the possibility distribution 74 ,. Taking U =V C [0,1], it can be shown
that

Uson(dlt) = QU™ (ma,s0|u) = minmax(N (a0 (2)), u(z)),

Unp 11(d]) = QU (ma,s|u) = max min(ma,s, («), u(z)).

We have, however, to be very cautious if we want to apply this
qualitative decision model: nothing prevents the distributions mq s, from
being non-normalised. And this may have undesirable consequences, such
as the fact that the pessimistic utility U, ,/(d) may be higher than the
optimistic utility U;E, 1 (d). For example, when

max  Sim(s,so) < 1,
(s,d,x)eM

it means that decision d has been never experienced on a situation
completely similar to sg. In particular, when

{s | (s,d,z) € M, Sim(s,s0) > 0} =0,

we have U__ ;,(d) = 1 which is not satisfactory.
In order to avoid these shortcomings, for distributions defined on [0,1],
Dubois et al. (1997b) suggest the following modifications. Consider

hSz'm(SO) = max{Sim(s, so) |(s,d,z) € M},

’By convention we take max § = 0.
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Sim* a renormalisation® of Sim and U, %, (U ", resp. ) the result of

considering Uy, (U;; ) with the similarity Sim* instead of Sim,

Us_O,M(d) = min(hSim(SO)’ Us_(:M(d))a
U:;,M(d) = max(l—hSZ-m(so),U:;‘M(d)).

Analogously, for each V' and U, we propose to modify our previous
definitions and let

Uso,n(d) = QU™ (ma,50),

where 7, 5, is the distribution associated to Sim and M, and

QU™ (m4,50) = min(H(ma,s,), QU™ (N (ma,s,))) (8.1)

where H(w) is the height of the distribution 7, H(w) = maxgzex =(z),
and N (mqs,) is a normalised version of 7q s, defined as

1, it 7wy (x) = H(ma,s,)
N(ﬂ-d,so)(x) =

Td,s0(Z), otherwise.

Notice that when H(my,,) = 1, the original expression is retrieved. The
rationale behind this expression is that our willingness to apply decision
d in sq is upper bounded by the existence of situations completely similar
to sg where decision d was experienced. Moreover 7y, is renormalised
in order to obtain a meaningful degree of inclusion. Thus, equation (8.1)
corresponds to the expression of the compound condition:

“there exist situations similar to sy where decision d was
applied and the situations which are the most similar to sg
are among the situations where decision d led to good results”.

Note that the similarity is no longer estimated in an absolute manner,
but in a relative way, hence the normalisation. Clearly, it would be also
natural that the optimistic evaluation be all the greater as the decision
d was never applied to situations similar to sp in the past (indeed, in
this case, the optimistic Decision Maker is prone to experiencing new
decisions on new situations he never met).

3There are several forms of defining the renormalisation of a fuzzy set A, they
suggest e.g. A*(z) = —2&)

max, A(z) "
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8.2 Representation of Possibilistic Utilities for
Non-Normalised Distributions

In Possibilistic Logic (Dubois et al., 1994), non-normalised possibility
distributions account for partially inconsistent belief states. Indeed, if
m:S — V is such that 7(s) < 1 for all s € S, it means that there is no
situation which is fully plausible. The consistency degree of 7 is measured
by the height of the distribution, H(m) = max,cg 7(s), whereas how far
H(m) is from 1, measured as ny(H(w)), provides an estimate of how
inconsistent the belief state is. Notice that in the case not dealt in our
framework of V' being the real unit interval [0, 1], the inconsistency degree
is usually 1 — H(m).

In this Section, we extend the possibilistic decision model described
through the previous Chapters in order to take into account, not
only fully consistent belief states, but also those which are partially
inconsistent. The idea is to adapt the solutions presented in the
previous Section, which basically consist of suitably transforming the
non-normalised distributions into normalised ones and then applying
the original model. However, the transformation is not simply a
normalisation, the inconsistency degree is also taken into account to
endow the possibility distribution with a uniform level of uncertainty.
Hence, we could say that, in doing the transformation, inconsistency
is exchanged for uncertainty (you may see the details in the next
Subsections).

8.2.1 The Pure Ordinal Case

Here we consider as the working set of possibilistic lotteries the set II1¢* (X )
of non-necessarily normalised distributions on X with values on a finite
linear uncertainty scale V, keeping the same definition of possibilistic
mixture of (3.1), i.e.

(A1, pfme) (z) = max{min(}, w1 (z)), min(p, 72 (z))},

with max(A, 4) = 1. Thus, the reduction property

(A7, p/(afm, B/m)) = (max(X, min(p, @) /71, min(u, B)/m2)

still holds.

Now, in the usual linear setting, i.e. with finite linear uncertainty
and preference scales V and U, we extend the utility functionals QU ~
and QU™ to evaluate non-normalised distributions of II°*(X) as well,
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reflecting the solution proposed at the end of the previous Section. Given
an onto order preserving mapping h:V — U and w:X — U as usual, we
define for any 7 € I1¢*(X):

QU (r|u) = min{QU " (N () u), n o ny (H(m))}
QU (mfu) = max{QU (N (m)|u), h o ny (H())}.

From these definitions, it is obvious that, for all 7 € II**(X), we
have QU (7) > QU (r), in particular, if 7 = 0, QU™ (7) = 0 and
QU™ (7) = 1. Moreover, QU (QU™ resp.) is an extension of QU (of
QU™ resp.) since, if 7 is normalised, H(w) = 1, and n o ny (1) = 1 and
hony (1) = 0, and thus QU™ and QU™ (QU ™ and QU™ resp.) collapse on
TI(X). As before, when clear from the context, we will omit the preference
function u from QU™ and QU T for the sake of a simpler notation.

Notice* that, instead of introducing the modifying factor H(7q,s,) into
the final step of the utility computations, one could already introduce this
factor in the normalisation of the distributions by considering

N (ma,50) = max(H(md,s0), N (Ta,s,))

and then just write, for instance, QU™ (w|u) = QU (N'(r)|u). We shall
however stick to the usual notion omrdinal) normalisation and explicitly
deal with the factors in spite of a bit heavier notation.

In order to characterise the preference orderings C induced in I1¢*(X)
by QU™ and QU™ we need to extend the axiom sets AX and AX™T

respectively, defined on II(X), with the following additional axiom:
o AT7: for all m € I**(X), 7 ~ (1/N (), ny (H(m))/X).

The intuitive idea behind axiom A7 is that, as already pointed
out, we make a non-normalised possibilistic lottery 7 indifferent to the
corresponding normalised lottery N (7), provided that it is modified by
a uniform uncertainty level corresponding to the inconsistency degree
of m, i.e. from a decision point of view, 7 is made equivalent to 7*,
where 7*(z) = max(N (m)(z),ny (H(r))). In other words, according to
Possibility Theory, the statement “it is certain that m represents the
belief state” is understood as “it is H(m)-certain that N (m) represents
the belief state”. Obviously, if 7 is an already normalised distribution,
N(m) = 7,H(n) = 1, and both statements are exactly the same.

Now, let us prove the following representation theorem.

“This remark was made by a referee of one of our publications.
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Theorem 8.1 (Representation Theorem)
A preference relation C on 11" (X ) satisfies axiom set AX* = AX + A7
(resp. AXTT = AX™ + A7) if, and only if, there exist

(i) a linearly ordered and finite preference scale U with inf(U) = 0 and
sup(U) = 1,

(ii) a preference function u:X — U such that u='(1) # ( # u='(0), and
(iii) an onto order-preserving mapping h:V — U,

in such a way that it holds:
for each m € 11**(X),

7 Cr iff QU (n'|u) C QU (7|u),

(w T x iff QUT(«'|lu) T QU (w|u) resp.) where, as usual,

n =ny o h.

Proof:
We only prove the theorem for the pessimistic criterion, the proof for the
optimistic criterion being very similar.

< ) We have to prove that, given a preference function w:X — V
verifying (ii), and an onto order preserving mapping h:V — U, the
ordering on possibility distributions of II**(X) induced by the utility
evaluation QU ~ satisfies the axioms of AX®*. Since QU™ coincides with
QU™ on II(X), all axioms from AX are automatically satisfied by the
theorem for the linear normalised case (Theorem 4.8). Thus, it only
remains to verify that A7 also holds. According to (ii), there is z
such that u(z) = 0, and thus QU (X) = 0. But since QU™ preserves
possibilistic mixtures, we have for all 7 € I1¢*(X),

QU™ (1/N(m),ny (H(r))/X) = min(max(n(1), QU™ (N(m))),
max(n(ny (H(r))), QU (X)))
= min(QU™ (N (m)),n o ny(H(r)))
= QU™ ().
Thus, 7 is equivalent to (1/N (), ny (H(w))/X) w.r.t. to the ordering
induced by QU ™.
—) Let us assume now that we have an ordering (I1¢*(X), C) satisfying
the axioms of AX®*. In particular, C satisfies all AX axioms, hence,

applying Theorem 4.8 again, we can suppose the existence of U, u: X — U
and h:V — U satisfying (i), (ii) and (iii), and such that the corresponding
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utility QU represents C on II(X), i.e. for all normalised 7, we have
that @' C « iff QU (v'|lu) C QU (w|u). Axiom A7 guarantees
that, for any 7, © ~ (1/N (), ny(H(w))/X). Since QU (X) = 0, and
(1/N(m),ny (H(r))/X) is a normalised distribution, we define

QU™ (r) = QU™ (1/N(m),ny(H(r))/X)
= min(QU ™ (N (7)), n o ny(H(r))).

Now, we have to verify that QU™ represents C, i.e. that for each m, S
I1°*(X) the following equivalence holds

©Cn if QU («') CQU (m).

Indeed, by the continuity axiom A4, there exist A and X' such that
(LN (7), v (H(m)/X) ~ (1/7Mz) and (1/N(x),ny(H(r))/X) ~
(1/z,X /z), where T and z denote a maximal and a minimal element
of (X, L) respectively. Therefore,

o Crx iff  (1/,MN/z) C(1/Z, )\ z),
and we have that:

e since QU™ represents C on II(X), (1/z,\/z) C (1/z,\/z) iff
QU™ (1/z,XN/z) < QU™ (1/z, M z),

* QU (m) = QU (1/N(m),nv(H(m))/z) = QU (1/Z,A/z),
» QU (n") = QU™ (1/N(n"),ny (H(n'))/z) = QU™ (1/Z, X /).

Hence, we finally have
that is, QU™ represents C . O

8.2.2 The Case of Max - T Possibilistic Mixtures

Given a t-norm T on V, let us consider now, in the set of possibility
distributions II1®*(X), the generalised max —T mixtures introduced in
Section 5.3

M+ (m,7'; @, ) = max(aTn, BT7'),
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with max(ca, 8) = 1. In this general setting, in order to correctly deal with
non-normalised distributions, we extend the utility evaluations GQU ~
and GQU T in an analogous way to the previous subsection:

GQU ™ (nfu) = min{GQU ™ (N () |u),n o ny (H(m))},
GQU (r]u) = max{GQU (N (r)|u), h o ny (H())}.

In a very mimetic way, we consider the axiom sets AX{ =
{Al, A2, A37, Adt, AT7}, and AXT"= {Al, A2T, A3r, A4%, A7+}
where the new axiom A7+ is the suitable adaptation of previous axiom
AT for the present type of mixtures.

e A7t: For all m € I®*(X), 7 ~ M1 (N (7), X; 1, ny (H(m))).
The corresponding representation theorem comes next.

Theorem 8.2 (Representation Theorem )

A preference relation C on I1°” (X ), equipped with a mixture operation
M+, satisfies the axioms AX$® = {Al,A2, A3+, Adr, AT} (resp.
AXFer = {A1, A2", A3+, A4%, AT+}) if and only if there exist

(i) a linearly ordered and finite preference scale U with inf(U) =0 and
sup(U) = 1,

(ii) a preference function u:X — U such that u=*(1) # 0 # u~1(0),

(iii) an onto order preserving mapping h:V — U satisfying coherence
wr.t. T,

in such a way that it holds
o Crn if GQU (r'|u) C GQU («|u),

(r' C m iff GQU T (n'|u) € GQU ™ (w|u) respectively), where, as usual,
we take n = ng o h.

Proof:

The proof is very similar to the case T = minimum of previous
subsection, so we shall only pay attention to main differences for the
pessimistic utility.

+ ) By Theorem 5.5, it only remains to verify axiom A7+. Taking into
account that GQU ™ coincides with GQU ™~ on II(X), and that GQU ~
preserves generalised mixtures, we have

GQU ™ (Mt(N(m), X;1,ny (H(n)))) = min{n(1T61), n(ny (H(x)) Td)}
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where n(d) = GQU (N (r)) and n(dy) = GQU~ (X) = 0. But, according
to the coherence condition, we have that n(ds) = 0 = n(1l) implies
n(ny (H(n))Tde) = n(ny(H(w))), so we actually have

GQU™ (Mr(N(m),X;1,nv (h(r)))) =min{GQU (N (7)),nony(H(m))}
= GQU~ ().

Hence, axiom A7+ is satisfied.

—) Since C satisfies AXT, we may establish the existence of U,
w:X — U and h:V — U satisfying (i), (ii) and (iii), such that GQU ~(7) =
ming, e x n(n(z;) TAi), where n(\;) = u(x;), represents C on II(X). In
particular, GQU ™ so defined preserves mixtures and verifies GQU ~(X) =
0. Axiom A71, 7 ~ M+ (N (n), X;1,ny(H(w))), allows us to define, for
each m € I1*"(X),

GQU™(r) = GQU™ (Mr(N(r),X;1,ny(H(r))))
= min{GQU ™ (N (7)),n o ny(H(r))}.
Finally, one can easily check that GQU ™ represents C on I1°*(X) using

the fact that GQU ™ already represents C on II(X), together with axioms
A7T and A4T O

Remark 10

Instead of using the involution ny in the definition of the mappings GQU ™~
and GQU™, one could simply use a more general function F:V =V st
F(1) =0, and define the pessimistic and optimistic utilities as

GQU . (m) = min{GQU (N (m)),hr(H(r))}
GQU;(T{') = max{GQU (N (r),nr(H(r))} (8.2)
where hp =ngohoF and np = ho F.

In that case, given such a function F, it is not difficult to show that
Theorem 8.2 is still valid provided that we replace axiom A7+ by an
analogous one:

o ATFr: Vr e I®*(X), m ~ M7(N(r),X;1,F(H(n))),
and GQU by GQUF.
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8.3 Back to Case-Based Decision

Again, using the link between similarity on situations and possibility
distributions on consequences, we just propose here to apply the
generalised qualitative utility functions GQU ™ and GQU ™ for case-based
decision problems. - -

So, if we are interested in acts d such that in all the situations similar
to sg, d led to good results, we are looking for decisions maximising the
function

GUIT‘,so(d) = @; (ﬂ-d,so) = min{h’F (H(Wd,so))a GQU_ (N(Trd,so))}

while if we are looking for decisions which gave a good result in a similar
situation we may want to maximise

GU} (d) = GQU i (T4,50) = max{np(H(ma,s,))), GRU T (N (a,0))}-

Finally, let us remark that GQU ~ (N (mq,5,)) can still be regarded as a
degree of inclusion [Sim*¢ C G%) of the normalised fuzzy set of situations
similar to s, Sim*¢, into the fuzzy set of situations in which d led to good
results, if we define

[Sim*® C GY] = Ming,(s g zyem (Sim™(s) = G%(s)) .

In this expression, =:V x U — U is a many-valued implication-like
operation of the type “not (a and not b)”, interpreting the “and” as it
was mentioned in Chapter 5 by a t-norm T on V and, because of the
different domains involved (V' and U) it has to be formally expressed as

a= f=n(aTy),

where n(y) = p. Analogously, GQU (N (mys,)) is still a degree of
intersection [Sim*? C G¥) provided that we define

[Sim*® C G = Maz(, gmyens (Sim*(s) @ G(s))

where ® is a t-norm-like operation defined as a® = h(a) Ty 5, where
Ty is a transform by A of the t-norm T (defined on V) into U.
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8.4 A Case-based Decision View of the Safety
Decision Problem in a Chemical Plant

To exemplify some of the notions introduced in this Chapter, let us return
to the safety problem in the chemical plant introduced in Section 5.2.

So far we have assumed that, in order to take a decision in front of a
problem in the plant, the head of the Dept. had available a report, under
the form of a possibility distribution, about the actual state of the plant.
Now, assume the following situation: the alarms turn on but, for some
strange reason, the head of the Dept. does not receive any report about
the emergency state of the plant, and he is only provided with the readings
of the two alarm systems (fire and pipeline pressure).

The possible values for the readings of each system are

® ¢y = normal,
e e; =small problem,
® ey = big problem,
e e3 = danger
This time, the readings he gets are:
system; = big-problem (e3)  systemg = normal (ep).

Nevertheless, he had recorded past experienced problems and for each of
those problems he stored triples of the form (state-description, action,
consequence), where state-descriptions consist of pairs (evaluation-
systemy, evaluation-systemsy), where system, refers to the fire alarm
system and systems refers to the pressure pipelines alarm system.

We shall apply the model for case-based decision previously described.
To do that, consider the similarity evaluation between situation-
description tuples defined as:

Sim((e’ia ek)7 (ej’ et)) = min(s(eia ej)a max(n(a), S(ek)a et)))

with a € V, and S the similarity on system evaluations defined in Table
8.1.

Notice that the global similarity is computed as a weighted-min
aggregation of the marginal similarities (which are the same), all of them
taking values in the common scale U. A value a < 1 denotes a partial
reliability on the alarm system 2. The available memory M of previously
experienced cases is given in Table 8.2.
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[Sleofer[es]es]

€o 1 |wg | ws| O
el || wg | 1 | wy | ws

€9 wy | Wy 1 ws
€3 0 ws | W 1

Table 8.1: Similarity on alarm system evaluations S(e;, e;).

‘ cases H evaluation sensorl ‘ evaluation sensor2 | decision ‘ consequence ‘
1 eo e1 d> (risk=0,cost=2)
c e1 €o d» (risk=0,cost=2)
cs es e1 dy (risk=1,cost=1)
ca e1 e ds (risk=0,cost=1)
cs e es ds (risk=0,cost=3)
Ce e1 es ds (risk=0,cost=3)

Table 8.2: Memory of cases.

According to the model, the Decision Maker has to rank the induced
possibility distributions by the current case ¢y = (e2,ep) and the above
similarity function Sim, which are defined as follows

a0 = 0

ma1 = (Sim((e2,e0),(e2,e1))/(Risk =1,Cost = 1),
Sim((ez2, e0), (e1,e2))/(Risk = 0,Cost = 1))
= (max(n(a),ws)/(Risk =1,Cost = 1),
max(wq, min(wr, n(a))/(Risk = 0,Cost = 1));

maz = (max(Sim((e2;eo), (eo,e1)), Sim((ez2, eo), (€1, €0)))/(Risk = 0, Cost = 2))
(max(ws, wr)/(Risk = 0,Cost = 2))
= (wr/(Risk =0,Cost = 2));

maz = (max(Sim((ez2,e0), (e2,e3)), Sim((e2,eo), (e1,€3)))/(Risk = 0, Cost = 3))
= (max(n(a), min(n(a),wr))/(Risk = 0, Cost = 3))
= (n(a)/(Risk =0,Cost = 3)).

Observe that if we do not pay attention to the fact that these
distributions are non-normalised and we rank them in terms of QU —,
we get:
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“(mdo

(ma0) =1,

U (mq1) = wy,
(ma2) = wr
(

a2
“(ma3) = max(a,w(;).

That is, for each a # 1, we have that dy (do nothing) is ranked as the best,
in spite of the fact that the alarm system 1 warns about a big problem, and
that personal safety is the most important criteria. Moreover, in the case
a = 1, it is equally supported either to do nothing or to evacuate, one
may be too dangerous while the other may result too drastic. However,
if decisions are ranked taking into account that the distributions involved
are non normalised we have that:

QU™ (m40) = min{0, QU™ (N (ma0))} = min{0,0} =0,

QU™ (7g1) = min{max(n(a), w6), QU™ (N (ma1))},

QU™ (mg2) = min{wr, QU™ (N (742))} = min{wr, wr} = wy,
QU™ (mg3) = min{n(a), QU™ (N (m3))}-

Hence, if @ < 1, QU™ (mg3) = min(n(a),ws), and QU (mg3) =
0 otherwise. ~Moreover, since QU™ (N(mq)) < ws, we have that
QU ™ (mq1) < wy. Therefore, dj is the best decision, which is coherent with
the fact of having one alert of a major problem and giving preference to
personal safety.

8.5 An Extension of the Model for Partially
Inconsistent Belief Sates Using Uncertainty
and Preference Lattices

Throughout these sections we have assumed that plausibility and
preferences are evaluated on (finite) linear scales. However, as already
claimed, sometimes we may face decision problems where the Decision
Maker’s preferences may be only partially elicited, or in case-based
decision problems where a complete global similarity between cases is
not available but only partially specified. Along this line, we have
proposed in Chapter 7 an extension of the axiomatic model where both
preferences and uncertainty are measured on distributive lattices that
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are commensurate. Now, this proposal is extended to also include belief
states that may be partially inconsistent.

As is in the linear case, there are some decision problems in which the
distributions involved are non normalised. Hence, we will consider other
functions that let us work with these distributions.

First, let us introduce the concepts of normalization and height of
a distribution in the context of lattices. Define H, the height of a
distribution, m: X — V, where (V,V,A,0,1) is a lattice, as

7-[(7.‘-) = VzEX 7T(.’L'),

and for each distribution we consider the subset of consequences with
mazimal plausibility

Xy ={zeX|VyeX n(y) # n(z)}.

We define N(w), the normalisation of m, as the normalised
distribution

1, if zeX,
N(m)(z) =

m(z), otherwise.

Analogously, we extend the set of possibilistic lotteries to the set II¢*(X)
of non-necessarily normalised distributions on V. Hence, first we need to
extend the concept of possibilistic mixture PME on I1¢*(X) to combine
71 and 7o with (A, u) € @y, with

Oy ={(Ap) eV XV[AVpu=1}
ie. PMEII®(X) x [1¥(X) x &, — II%(X), and we define
PME(my,mo, A\, p)(z) = (N 71, p/m2)(z) = (AAT(x)) V (18 A T2(2)).
Given a function F:V — V, such that F(1) = 0, now we may consider
the qualitative (or ordinal) utility functions on IT¢*(X), corresponding to

those considered previously:

QU™ (N (m)) A n(F(H(r))),
QU (N(m)) V h(F(H(m))).

QU ,(m)
QUE(m)
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Let Cp be a preference relation on II**(X). We will denote by C its
restriction to IT*(X), the set of normalised possibility distributions, and
by ~r and ~ the corresponding indifference relations.

In order to characterise the preference orderings induced by the
utilities QU; and QU;, we extend the axiom sets AXP and AXPT,

defined on (IT*(X), C), with the axiom:

e ATPF :Vr € NI**(X), m ~p (1/N(n), F(H(m))/X).

We say that a preference relation Cp on I1°%(X) satisfies axiom set
AXPN = AXPU{ATPF} (AXPN*t = AXPTU{A7PF?} resp.) if and
only if its restriction to IT*(X), satisfies AXP (AXP™" resp.) and Cp
also satisfies ATPF.

Theorem 8.3
Given a function F:V — V, such that F/(1) = 0, then a preference relation
Cr on I1¢*(X) satisfies axiom set AXPN (AXPN™ resp.) iff there exist

(i) a finite distributive utility lattice with involution (U, V, A,0,1,ny),

(ii) a preference function w:X — U, s.t. w (1) # 0 and A oy u(z) =0
(u'(0) # 0 and \/ . x u(z) =1 resp.),

(iii) an onto order-preserving function h:V' — U s.t. ny ohony = h, h
also satisfying

if A <> X then h()\) <> h(X),

in such a way that it holds:
! — ! —
T Cpm < @F(w) S@F(W),
(' Cpm < @;(W') < @;(7‘!’) resp.), withn = ny o h.

Proof:

Since the proofs for pessimistic and optimistic criteria are very similar,
we only provide the pessimistic one.

<) Consider now the utility function QU™ defined in terms of h and u.
Axioms AXP are verified because QU restricted to IT*(X) is equal to
QU since F(1) = 0, and by Theorem 7.9, we have that the ordering
induced by QU™ in II*(X) satisfies AX P. Now, we verify ATPF. Since
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QU ™ preserves mixtures because U is distributive, A7TPF verifies trivially.
Indeed by definition of QU and as

we have that
QUL(m) = QU™ (N(m)) An(F(H(m))) = QU™ (1/N (), F(H(r))/ X).

—) Since C, the restriction of Cp to IT*(X), satisfies axioms AX P, we
may apply Theorem 7.9. So, we have determined the existence of U, h
and wu satisfying the conditions such that QU ~ represents C, with

QU™ (r) = )\ (n(n(2)) V u(z)).
TeX

Since ATPF guarantees that
m~p (1/N(m), F(H(r))/X),
we define
QU .(m) = QU™ (1/N(m), F(H(m))/X).
Now, we verify that QU 7 Tepresents Cp, ie.
7 Cpm < @;(ﬂ”) < QU (m).

By A7TPF and A6 we have that there exists A, A’ such that 7 ~p
Ty, T ~F Ty, SO
QU (x) = QU(ry),
QU (') = QU . (my,)-
As ' Cp m <= =, Cp 7, and as QU represents C we have
that QU™ (my,) < QU (7).
Then, recalling that QU coincides with QU7 on II*(X), we obtain
that 7' Cp 7 <= QU (7') < QU ().
It remains to prove that QUp(m) = QU (N(w)) A n(F(H(n))).
Since QU ~ preserves mixtures, QU (X) = 0 and A7TPF guarantees that
7 ~p (1/N(r), F(H(r))/X), we finally have that

QU () = QU™ (1/N (x), F(H(w))/X) = QU™ (N (7)) An(F(H(x))).
O
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Generalised Utilities

As usual, we may consider that there are available in V more
operators, and this fact let us consider other utility functions. Now,
we introduce the corresponding extension of our previous proposal for
generalised qualitative utility functions GQU ™~ and GQU*. We propose
the qualitative (or ordinal) utility functions on IT°*(X),

GQU™ (N (m)|u) An(F(H(r)))
GQUT (N (m)[u) V h(F(H(x))). (8.3)

GQU ;™ (w|u)
GQU . (r|u)

where the necessary additional axiom is:
o ATFr: Vr e I®*(X), m ~ My (N(m),X;1, F(H(n))).

The representation theorem is analogous to the previous case and is
omitted.

8.6 Similarity between Acts for Possibilistic
Case-Based Decision Theory

Many economical decision problems such as whether or not to “Offer to
sell at price p” for a specific value p, would likely be affected by the results
of previous offers to sell with different but close values of p. We would like
to let the Decision Maker evaluate a new decision taking into account the
performance of other “similar” acts he has experienced.

Gilboa and Schmeidler (1996) made a proposal along this line, they
also claimed that while a straightforward application of CBDT to
economical models with an infinite set of acts may result in counter-
intuitive and unrealistic predictions, the introduction of a similarity
involving also acts may improve these predictions.

We will analyse, in the finite possibilistic context, a model to evaluate
utilities on each decision taking into account the performance of others
acts, i.e. to deal with cases in which the evaluation of an act may also
depend on past performance of the acts, maybe different but “similar”
acts. Therefore we shall consider a global similarity function over
problem-act pairs. The difference with the approach analysed in Section
8.1 is that for evaluating a decision now we are also interested in the
behaviour of “similar” acts in previous “similar” situations.

5Take into account that now we are considering distributions on lattices.
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Given a situation s and an act d, we will refer to the pair (s,d) as a
decision-case.

Our proposal is to estimate to what extent a consequence x can be
considered plausible of being the consequence of sy by d, in terms of what
extent the current decision-case (sg, d) is similar to previous decision-cases
(s,d') in which z was experienced. That is, for each case (s,d’,z) in a
memory M, a principle stating that

“The more similar are the decision-cases (sg,d) and (s,d’), the
more possible z is the consequence of d in sg”.

is assumed.

Considering D the set of available decisions, we assume a similarity
relation GISim available on the decision-case set, i.e. a function
G1Sim:(S x D)?> — V that measures the degree of similarity between
two pairs (situation, decision).

Therefore, according to this principle, analogously to Section 8.1, we
propose to consider the following utility function:

Uy, arldlu) = (s,drfr,lzi)neM (GL1Sim((s0,d), (s,d")) = u(z)) .

As already seen, this corresponds with a view of the degree of inclusion
of the fuzzy set of the similar decision-cases to (sg,d) into the fuzzy set
of good consequences experienced. That is, we are considering

GIG : {(s,d")|(s,d',x) e M} - U

the fuzzy set of decision-cases that obtained good results, whose
membership is GIG(s,d') = u(z).b
For each d, let

GISim? : {(s,d') | (s,d',z) e M} -V
be the fuzzy set of decision-cases which are similar to (sg, d), defined as

G1Sim%(s,d") = GISim((sg,d), (s,d')). Hence, the above expression for
Uy, 1(d|u) may be rewritten as the following degree of inclusion:

U,, y(dlu) = [GISim?® C GIG].

S

5GIG is well defined because we are assuming a minimal deterministic memory, i.e.
for each situation we only retain in the memory the case with the best consequence for
any decision.
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We may apply here the alternative implications analysed in Section
5.1, obtaining their respective utility functions. Analogously, we may
consider the intersection of the fuzzy set to reflect a more optimistic
behaviour:

Ul (dlu) = [GISim® N GIG).

174



Chapter 9

Further Results: Ordering
Refinements and Weaker
Commensurability
Conditions

In this Chapter, we introduce the last results obtained in the on going
work. The first concerns to the refinement orderings problem' when
ranking distributions. Indeed, in some problems it may be not enough to
rank distribution taking into account only one criterion, for example the
pessimistic criterion, and we may be interested in refining the ranking
with another criterion, e.g. the optimistic one.

The second topic is related with an issue that has been of our
interest since the beginning, the commensurability hypothesis between
the preference and the uncertainty sets. Up to now, we have assumed
the existence of an onto preserving mapping linking both sets. This fact
forced to restrict ourselves to work with problems in which the uncertainty
set has a greater cardinality than the preference one. Here, we propose
to weaken this hypothesis requiring h to be only an order-preserving
mapping satisfying h(max V) = max U and h(min V) = min U.

!This work was begun during a Short-Term Scientific Mission of the author within
the frame of COST Action 15, Many-valued Logics for Computer Science Applications,
at the Institut de Rechérche en Informatique de Toulouse (IRIT) with Dr. Henri Prade.
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9.1 Some Possible Refinements

We may consider different qualitative utility functionals for ranking
decisions, among them of course we have the pessimistic and optimistic
criteria QU™ and QU and their generalised versions GQU ™~ and GQU ™
introduced in Chapters 4, 5, and 7. However, in some decision problems
it may be interesting to consider some refinements of these orderings. In
this Section, we summarise our first results in this issue.

Among different possible refinements we may consider the following
ones:

1. A first approach is to use the optimistic criterion to refine the
pessimistic one, i.e.

7Conm << {{GQU (7|u) <y GQU (r'|u)} or
{[GQU™(r|u) = GQU™ (x'[u)] A
[GQU (n|u) <y GQU T (r'[u)]}},

where we are considering that both generalised utility functions are
defined in the same lattice U and with the same preference function
u. But sometimes we may have different lattices and preference
functions for both criteria, hence in such a situation the refinement
would be defined as:

rCin <= {{GQU (r|u”) <y- GRQU (n'|u™)} or
{[GQU (rlu™) = GQU (x'|[u”)] A
[GQU (xlu’) <y+ GQU (x'lu™)]}}.

2. In some cases, we may be interested in considering the problem of
evaluating a distribution 7 by applying two different criteria to =,
depending on the type of consequences. Indeed, suppose for instance
that the consequences involved in the safety decision problem may be
classified in two groups: consequences involving the safety of persons
and another group of consequences related to economic costs. In
this case, we may be interested in being conservative with respect
to consequences of the first set, while a more optimistic criterion
may be applied on the second set. That is, given a subset? I of X
we consider

7 Co ' < Ut(n) <y Ut(n"),

2 Analogously, if we are interested in a V-fuzzy set I on X.
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with
Ut(r) = min(GQU{E (rlut), GQU; (xlu™)),?

where
GQU; (rju™) = GQU (v A|u™)

and

GQU} (nlu™) = GQUE(w A I¢lu™),

where ™ A I denotes the intersection of the distributions, i.e. the
distribution, non necessarily normalised, defined as

(m A1) (z) = inf(n(z), I(x)).

m A I may be seen as the conditioning of 7w by the event I.
As we will apply the same set I for all distributions m, we will
call GQU7 the generalised utility function conditioned by 1. That is,

mCon’ = (GQUL(n|u™),GQU; (nu™)) <min (GQUL (x'lu™), GQU (n'[u7)).
3. Sometimes we may be interested in refining in a lezicographic style
ordering considering these priority levels: first <ggy-(.|u-), then

<GQU+(|ut) and finally SGQUI_(-IU’) . That is,

TCsn < {{GQU (r|u”) <y- GQU (x'|u™)} or

{GQU™ (r|u” )ZG “(r'um) A
GQUT (r|ut) <y+ GQUT (x'|u™)} or
{GQU™ (xu™) = GQU™ (n'|[u”) A
GQU+(7r|u+):GQU+( "lut) A
GQU; (rlu™) < Uy (x'[u7)},

4. or, analogously, considering SG’QUI‘"(-|u+) instead of SGQU{(-W—):

rCyn < {{GQU (r|u”) <y- GQU (7'|u™)} or
{GQU (n|u™) = GRQU  (x'|u™) A

GQU ™ (r|u™) <y+ GQU T (n'|u™)} or
{GQU (n|u™) =GQRU (x'|lu~) A
GQU+(7T|U+) GQU Y (r'|u™) A
QU (mlu™) <p+ GQU; (' |u)}.

3 As usual, I denotes the complement of I with respect to X.
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Let us show a little example about how these rankings may classify
distributions.

Ezample:
Let X = {z,z1,22,7} and its subset I = {Z,z1}. We consider U~ =
Ut =V ={0< u< X< 1}, and the distributions:

m=(1/Z,1/z1,\/z),

and
' = (1/%,1/z2, M/ z).
We assume both preference functions are the same, say u, with u(z) =
0, u(z1) = u, u(z2) = X and u(Z) = 1. So,
QU (n)=QU (r')=n(\) and QU (r)=QUT(x')=1.

That is, both distributions are indistinguishable w.r.t. the pessimistic and
optimistic criteria. Moreover, QUI+ cannot distinguish both distributions.
However, other rankings can do it. Indeed,

QU (7) = u(z1),while QU (') =1,

and
QU (m) = max{QU* (N (r A I¢)), h o ny(N)} = h(p) = p,
while
QUL (') = u(z2) = M.
Moreover,
Ut(r) = p and Ut(r') = A
¢
Remark 11

We might wonder if the GQUT rankings induced by subsets of the same
cardinality coincide. This is not true. Indeed, given proper subsets of
X with the same cardinality, we can show that the orderings induced by
GQU conditioned by these subsets may be difterent.

Given Y1 C X, Y5 C X, s.t. |Y1| = |Y2|,

GQUy, (r) > GQU;, (x') - GQUy,(r) > GQUy ().
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Indeed, suppose, X = {z; C ... C x5}, consider the “crisp”
distributions
™= {.T1,$3,$4},7T, = {‘Tl,x25$5}a

and the sets
Yi =X —{z1,z3} and Yo = X — {z1,z2}.

So, we have that

QUy (1) > QUy (7'),
while

QUyo(m) < QUso(n').

That is, the rankings conditioned by Y1 and Y. are different.

There several other refinements, for example, other refinements
orderings based in ordinal information are: discrimaz and leximin. If
T = (x1,...,2n),¥ = (Yy1,---,Yn),, considering the set D(z,y) = {i|z; #
yi }, we have that

T Zdiscrimaz § <= maxicp(z,y)Li > maZxicp(z,y)Yi,

while
T Zleximin Y < T* Zjeg Y¥,

where 7%, y* are increasing reordering of 7 and 7 (for more details you
may see (Dubois et al., 1996a; Moulin, 1988)).

9.1.1 Axiomatic Characterisation of some Refinement
Orderings

Here we provide the axiomatic characterisation of some refinements of
the orderings involving the generalised qualitative criteria. In particular,
we characterise the refinement orderings C;,C3 and C£4 previously
introduced. First, let us introduce some definitions analogous to the ones
introduced in Chapter 6. Given a finite set R = {C;}i=1,... & of binary
relations on sets {Ei}izly___,k respectively, for each “boolean” mapping
g:{0,1}* x {0,1}* — {0, 1}, the following relation may be considered:

9((#El(€1a€’1)a---aﬂgk(ekaefc))a
(MQ (6,1561), s augk(e;caek))) =1

ol
N
e

gy
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where € = (e1,...,€x), € = (€},...,€}), and pc, is the membership of

the preference ordering C; .

Recall (see Section 6.1) that Pareto and lexicographic orderings are
particular types of the relations 4% .

Counsider (V,A,V,T,1,0,1,ny) a finite distributive residuated lattice
with involution for uncertainty and two utility finite distributive lattices
with involution (U~,A™,V~,ny-,0,1), (UT,AY, VT, ny+,0,1), both
lattices being commensurate with V, i.e. there exist two onto order
preserving functions h=:V — U™, h*:V — U™, both h’s satisfying
also coherence w.r.t. T, and let v=:X — U—, u™:X — UT be two
preference functions representing preferences on consequences on these
lattices such that (u™)7'(1) # 0 # (u)710), Ayex®)(z) =0
and V, cx(u')(z) = 1. Then we can consider the following “utility”
functional:

RGQU " (|(w™,uh)(h™, 1 1)) = (GQU~(-Ju™,h7),GQUt (-|u’, k1)),

where GQU ™ (-|lu~,h™) is the generalised pessimistic utility function
defined in terms of 4~,h~ (and the involution in (U~,<7)) and the t-
norm T in V, and GQU*(-Ju™,h™) is the optimistic one expressed in
terms of u,h" and T.

Notation 9.1

For the sake of a simpler notation, we shall write RGQU_’+(-\(u_, u™))
instead of RGQU " (-|(u=,ut)(h~,h*)) when the mapping h involved
in the GQU function has in its notation the same sign that u. The same
rule is applied to GQU, in the sense that instead of writing, for instance,

GQU ™ (-|lu=,h™) we will write GQU~ (-|u™).
Under these hypotheses, and given a boolean function g, we may
consider the orderings? induced by g and RGQU " (+|(uv~,u™)) defined as
™ <?u—,u+} 7' <= RGQU T (rw|(u~,u™)) 4'({]5—,9} RGQU "t (rn'|(u,u™)).
That is,
T 4-‘{’“ ) ! =

9((1<- (GQU™ (n|u™), GQU™ (x'|u”)), ue+ (GQU T (nu™), GQU™ (' [u™))) ,
(1<~ (GQU™ ('|u™), GQU™ (nu7)), pc+ (GQUT (n'|u™), GQU* (n|u™)))) = 1.

It is obvious that not for all g we obtain an ordering, however for decision making
we are interested in those that result in orderings.
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Remark 12

In particular, if we choose g for lexicographic ordering, we have that the
refinement orderings C1,C3 and T4 proposed in the beginning of the
Chapter are obtained. For example, if we take,

9(z,y) = max(min(z1, 1 — y1), min(z1,y1, 2)),
and C1=XgQu-(u-)y C2=<GQu+(|u+); We have that
O e {GQU-(xlu-) < GQU-(x|u-)} V

{GRQU (r|u~) = GQU («'|u~) and
GQU™ (rlu™) < GQU* (n'|u™)}}.

As a first approach for characterising these orderings, we propose
the following set of axioms, RAXY, for a preference relation C on
(I*(X), Mr):

e GAO: There exists a set R = {C~,C*} of orderings such that C =
<%, ie.

m L T = g ((Mg— (ﬂ'aﬂ'l)aﬂg*' (ﬂ-aﬂ'l)) ’ (/I’E— (ﬂ'laﬂ-)a/j’g*' (ﬂ'laﬂ-))) =1

e AzGroup: T~ satisfies AX Pr, while C* satisfies AX P#-' .

Then, the following theorem is a consequence of the representation
Theorem 7.14.

Theorem 9.1 (Representation Theorem)
Given a boolean mapping g, a preference relation C on (II*(X), M),
satisfies the axiom set RAXY if and only if there exist:

(i) two utility finite distributive lattices with involution
(U=,A",V~,ny-,0,1), and (U, AT, VT, ny+,0,1),

(ii) two preference functions u=:X — (U~,<7), ut:X — (UT,<T)
such that (u=)"'(1) # 0 # (u™)"10), Agex(u)(z) = 0 and
VmEX(u—'—)(x) =L

(iii) two onto join-preserving mappings h~:V — U, h*:V — U™, both
satisfying coherence w.r.t T, also satisfying

if A <> M then A= () <> h~(X),

ng-oh”ony =h~, ny+ohtony =h", and

if A <> ) then AT ()\) <> AT(X),

181



in such a way that it holds:
rC« iff 7 %?u_’w} ~

The vectorial function of utility inducing -\<~f{’u_’u+} being

RGQU " (|(u™,u")) = (GQU™(-]u™, k™), GQU* (-]ut, h™)),
with n = ny- oh™.

Proof:

—) Since relation £~ satisfies AX Pr and C* satisfies AX P{-L , then the
existence of {(U~,<7), (Ut,<™)}5, {u*,u~} and {h~, hT} is guaranteed
by the Theorem 7.14. So, it only remains to verify that the relation
induced by RGQUi’+ and g coincides with C .

As T~ and CT are represented by GQU ~(-|u~,h™) and GQU *(-|u™, ht)
respectively, we have that

TC™ 7 < GQU (nlu™,h™) <~ GQU («'|u~,h™),
and
rCT 7' <= GQUT(r|u™,h") <t GQUT (x'|ut,hT).
That is,
pe-(m,m) = pe- (GQU (m|u™), GQU (n'|u"))

and
pe+(m,1') = per (GQU (nfu™), GQU™ (n'[u™)).
Hence, applying GAO, we have that

rCn <= g((pc-(m7"),pc+(m, 7)),

£~
(/I’E (7T ,7), /I’E"‘(ﬂ'laﬂ-))) =1
= g((n< (GQU™ (n|u”), GQU™ (n'|u7)
e (GQU (xlut), GQU (x'|u*))).

(h<-(GQU ™ (w'|u™), GQU ™ (w|u”
<+ (GQUT (' |[u™), GQU™ (nfu™)

!
<~ 7 -\<?u_’u+} T

);
)
));
) =

<) Given {(U~,<7),(UT, <N} {uT,u"} and {h™,hT}, we consider
C~ and C' as the preference relations induced by GQU ™ (-|u~) and

5< is the order induced in the lattice by the meet or joint operation of the lattice.
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GQU ™ (-]u™) respectively. By the Theorem 7.14, we have that T~ satisfies
AXPr and C* satisfies AX Py . That is, AzGroup is verified.
Taking into account the definition of 4%_ wt and the fact that

tGQu-(-fu=) (T, ™) = p<- (GQU ™ (r|u™), GQU™ (r'|u7)),
and

RGQU+(-|ut) (7'(', 7[',) = H<+ (GQU+ (7T|u+)a GQU+(7T,|U+)),
we have that

"= 9((Begu- () (T ), Bagut(uh (T, ),

(Baou- (ju (™, 7), haou+(u+) (7', 7)) =1

g
T Sumuty T

That is, GAQ is verified. O

9.1.2 A First Approach for Characterising Refinements
Orderings Applying the Same Preference Function
on Consequences

Now, we focus in the refinement orderings that apply the same preference
function on consequences. As a first approach for characterising these
orderings, we propose the following set of axioms, MRAXY, for a
preference relation C on (IT*(X), M+):

e GAO: There exists a set R = {C~,C*"} of orderings such that C =

<%, Le.

m C ud — g ((/‘LE_ (7T7 Wl)a Hc+ (7T7 ﬂ-l)) y (IU’E_ (Trla 7T)a Hc+ (Trla 77'))) =1
e AzGroup: C~ satisfies AX Pr, while C* satisfies AXP.

o AxCompl

l.zC y < zCty.

2. Let 7z, be a maximal and a minimal element of
(X,C7) =(X,C"), denote w, = MT(E,Q,L)\),T{';\'— =
M+(Z,z,),1). Then,

o + -+ +
7r)\IZ 7ru<:>7r/\:| Ty -

3. | X/~ [ = TI(X)/ ~ |
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Observe that as consequence of axiom AxCompll, we have that
X/~ [ =X/ ~"|.

Before considering the characterisations of these orderings, let us
introduce some necessary results:

Proposition 9.2
1. Consider two finite lattices U,U’, b: U — U’ a lattice isomorphism
, a preference mapping u : X — U, and an onto linking mapping
h : V — U, satisfying coherence.
Ifu' = bow and h' = bo h, then the orderings induced by GQU
w.r.t. U',h' v and w.r.t. U, h,u, are the same.

2. Given a finite linear scale U, and two onto mappings u : X — U,
u' : X — U, such that they represent the same ordering in U, i.e.

u(z) <u(y) <= u'(z) <u'(y),
then u = u'.
Proof:

1. We consider the optimistic criterion, being the pessimistic very
analogous. We have that

GQU T (x|U', W, u' \/ B (m(z) TAL)
reX

with h'(A}) = u/(z). Moreover, since v’ = bowu, h' =bo h, we have
that bo h(AL) = A'(\.) = u/(z) = bowu(z), that is, h(X\}) = u(z),
hence

GQU ™ (x|U,h,u) = \/ h(n(z)TA}).

reX
Hence, as b is a morphism and
GQUT (x|U', W', u') = \/ B (m(z) TAL)
T€X
!
= \/ (boh)(n(z)TA,)
T€X
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= b(\/ h(w(m)T,\;)>

rzeX
= b(GQU+(7l'|U, h'7 ’U,)),

both orderings are the same.

2. Indeed, consider (X,C), with z C y <= u(z) < u(y)( <
u'(z) < u'(y)). Suppose that u # u', hence W = {z|u(z) # u'(z)} #
(. Let zg, the minimum, w.r.t C, of W. Without loss of generality
we may assume, that u'(z9) > u(zo), as v’ is onto there exists z; € X
s.t. u'(71) = u(zo) < w'(wg). That is, 71 C .
By hypotheses, u'(z1) < u/(z9) <= u(z1) < u(zo), so, we have
that u(z1) < u(zg) = u'(z1), that is, u(z1) # u'(z1), hence z; € W.
Contradiction because x1 C xg, and z¢ is the infimum of W. Hence
u=u'.

O

Notice that 2) is not true if U is not linear. Indeed, consider
U ={a,b,c} st. a < byc < b, X = {z1,22,23}, and u,u’ defined in
Table 9.1, u, v’ satisfy that u(z) < u(y) <= u'(z) < v/(y) and they are
different mappings.

=
E

1 || a| c
Hi) b b
I3 Cc a

Table 9.1: v and ' definitions.

Then, the following theorem is a consequence of the representation
Theorem for the linear case and the previous proposition.

Theorem 9.3 (Representation Theorem)
Given a boolean mapping g, a preference relation C on (II*(X), M+),
satisfies the axiom set M RAXY if and only if there exist:

(i) a finite linear scale of utility U
(ii) an onto preference function u:X — U,

(iii) an onto order-preserving mapping h:V — U, satisfying coherence
wrt T,
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in such a way that it holds:
rCa if 4?%1” .

The vectorial function of utility inducing -\<~‘{’u,u} being

RGQU " (|(u,u)) = (GQU ™ (-|u, h), GQU™* (-u, h)),
withn = ny o h.

Proof:

—) As usual, CT stratifies II(X) in a linearly ordered set of classes of
equivalently preferred distributions (7' € [n] iff # ~ 7). The number
of classes is just the number of levels needed to rank order the set of
distributions.

Therefore, we take as preference scale (U',<') the quotient set
[I(X)/ ~T together with the natural (linear) order

[]T <t [t ff xCto.

Again, as usual we define the order-preserving function h*:V — U™ as
ht(X) = [r)], while we define GQU* (M~ (Z,z; A, 1)) = h*(}), and then
we extend it due to axiom A4%. While u™:X — U™ is defined as u™(z) =
GQU™(z). It is known that GQU ™ (7) = max;—1,.., h(m(z;)TX;)) and
that GQU™ represents C T .

Analogously we defined U~ ,u",h™, s.t. GQU(-|lU~,u=,h™)
represents =~ Now, we verify that also GQU ™ (-|U~,u~,h~) represents
CT.

Indeed, as by AzCompl2 we have that

+ —+ -+ - =
7r)\IZ7r <:>7T>\Zl7ru

I

then U ,U" are isomorphic. Let b : U~ — U™ an isomorphism.
Moreover,

hT(A\) <t AT () mct 7rlf

T,
h=(A) <7 h™(w)
boh™(\) <" boh™(u).

1ree

Hence, by Proposition 9.2, h* = boh™. Analogously, as by AzCompll we
have that u™,u " represent the same ordering, and by AzCompl3, both
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mappings are onto, again by Proposition 9.2, we have that u™ = bou™.
Therefore,
SGQU (U u h ) TRGQUA({UFut ht) -

Hence, we define U =U ", h=h",u=u".

So, it only remains to verify that the relation induced by RGQU_’+
and g coincides with C .
As T~ and CT are represented by GQU ™ (:|u,h) and GQU ™ (-|u,h)
respectively, we have that

7 C™ ' <= GQU (n|u,h) < GQU ™ (n'|u, h),

and
7 Ct ' <= GQU (n|u,h) < GQU ™ (x'|u, h).
That is,
pe-(m,7") = p<(GQU ™ (7fu), GQU ™ (7'|u))
and

e (m, 1) = p<(GQU* (xlu), GQU™* ('u).
Hence, applying GA0, we have that

!

= g((pc-(r 7r)u:+(7r7f))
(#c(' )Mg( ™)) =1

TCw

= 9((n<(GQU™ (n|u), GRU™ (n'|u)),
p<(GQUT (nu), GQU (' |u))),

(1< (GQU™ (n'|u), GQU™ (r|u))

)

p<(GQUT (n'|u), GQU (w|u)))) =

!
= <?u,u} .

+) Given (U,<)u and h, we consider T~ and C* as the preference
relations induced by GQU ™ (-|u) and GQU ™ (-|u) respectively. By the
Theorem 5.5, we have that T~ satisfies AXPr and C* satisfies AX P .
That is, AzGroup is verified.
Taking into account the definition of {,fu,u} and the fact that

KaQu—(-|u) (7T, 7!") = MS(GQUi (7T|u)a GQU™ (71',|’U,)),

and
teou+(lu) (T, ') = p<(GQU ™ (x]u), GRQU* ('|u)),
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we have that

Tty ™ = 9(H6Qu- (o) (T, ), BaQut () (T, 7)),

(Beou- () (™', ), hagu+(u (7', T) =1

That is, GAQ is verified. AzCompl, verifies trivially. O

9.2 A First Approach with a Weaker
Commensurability Hypothesis

In the models developed up to now, we have been assuming an hypothesis
of commensurateness between the plausibility set V' and the preference
set U in order to define the criteria for ranking possibility distributions.
Actually, in Section 4.4, it is assumed the existence of an order-preserving
mapping h:V — U such that h(1) = 1 and h(0) = 0 to define the
qualitative utility functions. However, to characterise the orderings, h
is also required to be onto (Lemma 4.7 and Theorem 4.12).

Now, we are interested in characterising the orderings resulting when
h is not required to be onto. This weakening of the commensurability
hypothesis will allow us to deal with other types of problems, in particular,
those in which the cardinality of the preference valuation set may be
greater than the cardinality of the uncertainty valuation set.

9.2.1 A New Working Framework

Let us define the framework for this section. V' will denote a finite linear
plausibility scale, where inf(V) = 0 and sup(V) = 1, and II(X) will
denote the set of consistent possibility distributions on X over V, i.e.

II(X) = {mX — V|maxgex w(z) =1}.

U will denote a finite linearly ordered scale of preference (or utility),
with sup(U) = 1 and inf(U) = 0. As usual, we assume as working
hypothesis the existence of a preference function representing Decision
Maker’s preference on consequences, i.e. there exists a function u: X — U
that assigns to each consequence of X a preference level of U such that
u(z) < u(y) if and only if y is at least as preferred as z.

Let h:V — U be an order preserving function relating both scales V
and U such that ~A(0) =0, A(1) = 1. In such a framework, assuming also
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that h is onto, we have been considering the preference relations induced
by the utility functions

QU (mfu) = minmax(n(w(z)), u()),

where n = ny o h, ny is the reversing involution in U, and

QU (r|u) = max min(h(r(z)), u(z))-
zeX

Notation 9.2

As usual, for the sake of a simpler notation, we shall write QU ~ () instead
of QU (w|u) when the mapping u is not relevant for the context. In fact,
these utility functions also depend on the mapping h linking both scales
. With the goal of simplicity, we will omit it and will use the notation
of QU to refer a utility involving an onto h and QUw for the case of not
requiring h this onto condition.

9.2.2 Qualitative Utility Functions with a Weaker
Assumption of Commensurability

Let us remark that the great difference with the cases analysed previously
in Chapter 4 and with the work of (Dubois et al., 1997e) is that now A is
not required to be onto.

Given h : V — U, for any 7 € II(X), consider the qualitative utility
functions

QUyy (mlu) = minmax(n(r(z)), u(z))

where n = ny o h, ny being the reversing involution in U, and

QU (mlu) = max min(h(r(z)), u(z))-

Notice that QUy, (-|u) and QUy, (+|u), restricted to X, coincide with the
preference function u, i.e. QUyy (z|u) = u(z) = QU (z|u), for all z € X.
As usual, since n%] is the identity in U, the mapping h can also be defined
from n, namely h(A) = ny(n(A)).

It is interesting to notice that these functions still preserves the
possibilistic mixture:

Lemma 9.4
QU and QUV"['; preserve the possibilistic mixture in the sense that

QUyy (A/m1, p/m) = min{max(n(A), QUyy, (m1)), max(n(p), QUy (m2))},
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and

QUyy (A7, p/m2) = max{min(h(X), QUyy (1)), min(h(n), QUy; (m2))}.

We omit the proof since it is easy to verify that in the proof of Lemma
4.5 we do not apply the fact of h being onto.

Corollary 9.5

The following properties remain true for QUy,, and QU;{,:
1. QU (max(my,72)) = min{QUy, (1), QUy, (7o)}
2. if QUy, (1) < QUy, (o), then

QUyy (M1, p/m2) = median{QUy, (m1), QUy, (m2), ()}
3. if QU (m1) > QU (m2) then

QU (N 71, p/m2) = median{QUy;, (1), QUy, (72), n(p) }-

The fact of allowing h to be a mon onto mapping results in that
the continuity axiom A4 may be not true. Indeed, if we consider
V={0,1}, U ={0 < w < 1} and X = {z, =1, T}, with u(z) =
0, u(z1) = w, u(Z) = 1, it is obvious that QU (7) = minge, u(x).
That is, the ordering induced by QUy, coincides with the mazimin
criterion while the ordering induced by QU;{, coincides with the mazimaz
one. Observe that if 7 = z1, there does not exist A € V such that
™~ (1/Z, M/ z).

Now, let wus introduce the axiomatic setting we propose for
characterising the ordering induced by these pessimistic qualitative utility
functions.

9.2.3 Axiomatic Setting Proposed

The above discussion has led us to propose this new set of axioms AX M
for preference relations on II(X) with the max-min mixture as the internal
operation on IT(X).

o Al(structure) : L is a total pre-order .
o A2(uncertainty aversion): if 1 < 7' = 7' C 7.
e A3(independence) : m ~ mg = (A7, pu/7) ~ (N9, /7).
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Let T and z be a maximal and a minimal of (X,C) respectively. We
denote by m, the lottery (1/z,\/z).

e A4C(relaxedcontinuity): There exists a subset® Xy € X such
that all maximal elements of (X,C) and all minimal elements of
(X,C) are in the complement of Xy, and such that

Vo € II(X)) either (AANEV st. m~my )or (dx € Xypm s.t. ™~ x).
A

o AzMix:

1. if z,y € Xnup, B €V then

z if (zCy)or(zCmp)
(1/z,Bly) ~q 75 fyCmgCo
Y ifﬂﬂ_[yliﬂc,

2. if z € Xy then

my if (my C ) or (my Emy)
(1/my,B/z) ~§ 75 HzCmy Cmy
r ifmyCaCm,.

The underlying idea in A4C is to relax the continuity of the preference.
Now, we may say that there exists a subset on X such that either the
distributions are preferentially equivalent to individual consequences on
this set, or, the distributions are preferentially equivalent to having a A
level of uncertainty with respect to T.

Remark 13
Let us consider the simplest scale of uncertainty, V. = {0,1}, that is,
consequences can be either fully possible or fully impossible. This is a
very particular case since for any preference scale U, the only requirement
to be fulfilled by a mapping h:V — U is that h(0) = 0 and h(1) = 1. In
this framework TI(X) is just the power set 2% and the resulting utility
functionals are
Uy (Alu) = mi
QUyy (Alu) = minu(z),
+ A —
QUyy (Alu) = maxu(z),

6Observe that Xya = 0 is possible, and then axiom A4 (see Section 4.4) is
recovered.
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leading to the well-known mazimin and mazimaz decision models.

Now, it is very easy to check that, in order to fully characterise a
preference relation on 2% induced by these QU and QU;{,, the above
axioms simplify to these ones:

e Al: C is a total preorder,

o A2: if AC B then BC A,

e A3: if A~ B then AUC ~ BUC,

o A4C': for all A C X, there exists x € X such that A ~ z,
o AzMix: if z Cy then {z,y} ~ z.

Actually, in this setting axiom A2 is redundant since it is a logical
consequence of the remaining axioms. Moreover, as we are working as
usual with a finite set X, A4C' is a consequence of AxMizx.

The axiomatic frameworks 4 la Savage of these maximax and maximin
criteria are provided in (Brafman and M.Tennenholtz, 1996; Brafman and
M.Tennenholtz, 1997).

Some Auxiliary Results

Now, we introduce some results that will be applied to characterise the
pessimistic orderings.

Lemma 9.6
Axioms Al, A2, A3, A4C and AxMix imply

Ax2: If A is a crisp subset of X then there isx € A s.t. x ~ A.

Proof:
Suppose A = {z1,z9} with ;1 C z9. Note that A = (1/z1,1/z2). If
T1 ~ x9, then A ~ x1. Now, we assume 1 [ z3.
By A4C, there are four alternatives for x1, zs:

1. 3, Ast. 21 ~ (1/Z,A\/z) and o ~ (1/T, u/z).
2. dx,y € Xynst. 21 ~x and o9 ~ y.
3. 3 xeV,r e Xyy s.t. z1 ~x and z3 ~ 7, .

4. I eV,ox e Xyy st 21 ~ 7, and z3 ~ .
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Now, we analyse them:

1. By A2, as 1 C x2 then A > u. Applying reduction of lotteries, we
have that

A~ Trr;lax()\,u) ~ (1/5’ )‘/Q) ~ I1.
2. As A~ (1/z,1/y) and z C y by Az Mizl, we have that

A~zx~xy

3. Since A ~ (1/z,1/(1/z,\/z)), applying AzMiz2 we have that

AN.’L‘N.Tl.

4. Finally, A ~ (1/7} ,1/z) and by AzMiz2, it results

ANﬂ';N.’Bl.

Therefore, if 1 C zo,then it holds that A ~ z;.
The case when A has p elements is an easy generalisation. Indeed, suppose
the Lemma is valid if |A| = p. Let now A be such that |A| = p+ 1, and
let z1 be one of its minimal elements w.r.t. C .

Since A = (1/z1,1/A — {z1}), by induction hypothesis we have that
if z9 is one of the minimal elements of A — {z1} w.r.t. C, then

A~ (1/:[1,1/.’172) ~ I1.

O

An interesting property of a preference relation C on II(X) satisfying
Al, Az2 and A2 is that the extremal elements of (X, C) are maximal and
minimal elements of (II(X'), C) as well. Indeed, recall that we have proved
Lemma 4.1:

If C verifies axioms Al, Az2 and A2, and z, T are a minimal
and a maximal element of X, respectively, then:
® T~ Wy~ X.

z and T are also the minimal and maximal elements of
(II(X), B).
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9.2.4 Representation of Pessimistic Qualitative/Ordinal
Utilities

Next, we show that the preference ordering on II(X) induced by the

qualitative pessimistic utility QUy,;, satisfies the above set of axioms.

Lemma 9.7
Let <qu; be the preference ordering on II(X) induced by QUy;, i.e.

™ <qu,, ' iff QU (m) < QUy (7).
Then < Quy, the verifies axioms set AX M.

Proof:

Axiom Al is easily verified, also A2 is a consequence of maximum and
minimum being non decreasing functions, while A3 results from the fact
that QUy,;, preserves max-min possibilistic mixtures.

Thus, we only check axioms A4C and AzMiz. If h is onto, Xy = 0,
and A4C reduces to A4, hence, we are in the case detailed in Section 4.4.
Now, we consider the case of h being non-onto. Let

Xnm = ({z] u(z) € n(V)})".
As u=(1) # 0 # u=1(0) and h(0) = 0 and h(1) = 1, if z is a maximal
or a minimal element of (X, #QUV;)’ then = ¢ Xnar.

With respect to A4C, we have to prove that if 7,z are a maximal and

a minimal element of (X, X QU ), for any distribution « in II(X') we have

either

(A s.t. QUy () = QUi (1/7, A/ z))
or
(Fz € Xyum s.t. QUy, (7)) = QU (x)).
By definition of QUy;,, for each 7, we have that exists zo € X s.t.
QUyy, () = max(n(m(x0)), u(xo))-
Hence,

o if QU (7) = n(w(zo)), then taking A = 7(zo)(obviously A is in V'),
we have that QU () = QU (1/Z,A/z).

e Otherwise, QUy;,(7) = u(xg). In this case, there are two alternatives,
either u(zg) € n(V) or not. In the first option, we have that there
exists A € V s.t. QUy (7)) = u(zo) = n(A) = QU (1/7,\/z).
While in the second option, we have that u(zg) € Xnyum, and
QUy, (1) = u(zo) = QUyy (o).
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Finally, is not difficult to verify AzMiz taking into account Lemma
9.4. O

Now, we can show that the preference orderings satisfying the axioms
proposed can always be represented by a pessimistic qualitative utility of
the type of QU .

Theorem 9.8 (Representation Theorem of Pessimistic Utility)
A preference relation T on II(X) satisfies axiom set AX M if, and only
if, there exist

(i) a finite linearly ordered utility scale U with inf(U) = 0 and
sup(U) = 1,

(i) a preference function u:X — U such that u='(1) # 0 # u~1(0),

(iii) an order-preserving’ function h:V — U such that h(0) = 0 and
h(l) = 1,
in such a way that
o Crw iff il <qu; ™
where <quy, is the ordering in II(X) induced by the qualitative utility

QUyy, (1) = minge x max(n(w(z)),u(z)), being as usual n = ny o h.

Proof:

The “if” part corresponds to the preceding Lemma. As for the “only
if” part, we go on structuring the proof, analogously to our previous
approaches, in the following three steps:

e In step (1) we define the utility scale U and an order preserving
function A from V to U.

e In step (2) we define a function QU;;:II(X) — U representing C,
i.e. such that

QU () < QU (x") iff =«Ca.
e Finally in step (3) we prove that

QUyy () = minge x max(n(n(z)), u(z)),

"Note that h is not required to be onto.
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where u:X — U is the restriction of QU,, to X and n = ny o h, ny
being the reversing involution on U.

Now, we develop these steps.

1. As usual, C stratifies II(X) in a linearly ordered set of classes of
equivalently preferred distributions (' € [n] iff ¥ ~ 7’). The number
of classes is just the number of levels needed to rank the set of
distributions. Therefore, we take as utility scale U the quotient set
II(X)/ ~ together with the natural (linear) order

[7] < [7] iff m C o

Denote by 1 and 0 the maximum and minimum elements of
II(X)/ ~, i.e. of U. As Lemma 4.1 still holds, T and z are a
maximal and minimal elements of (X, C) respectively, then [z] =1
and [z] = 0.

Let m, be the possibility distribution corresponding to the
qualitative lottery (1/Z, A/z) and define the order reversing function
n:V = U as

n(A) = [m, ]

Observe that, since (1/z,1/z) ~ z, we have

n(1) = [(1/z,1/z)] = [z] = 0,

and

n(0) = [(1/z,0/z)] = [z] = 1.

A2 guarantees that n reverses the order.

Let h = ny on, ny being the reversing involution in U. It is obvious
that h satisfies the conditions required.

2. Now, we define the qualitative function QUy;, on II(X) in three steps.

(a) First, let us define QUy,, (1/Z, A/z) = n(A).
It is easy to check that

my E7y, = QU (7)) < QU (7).
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(b) Secondly, let us define for each z € Xyy, QU (z) = [z].
Analogously, it is easy to verify that, restricted to distributions
of type z, QU,,, represents C .

(c) We extend QUy, to any lottery as follows.

Since for any 7, A4C guarantees that either (I\ s.t. 7 ~ 7))
or (3z € Xy s.t. ™~ x), we define

— oy nA) ifIX stom~my
QU (m) = { [z] if 3z € Xnp st T~ 2.

Notice that QUy;, is well defined: by A4C it is not possible to
have A € V and z € Xyp st. © ~ (1/Z,A/z) and 7 ~ .
However, one of these cases may happen:

e dz, 2’ € Xnp, st. T~z and T~ 2/, or

e there exists p # A such that m ~ 7w and 7 ~ ).
But, since ' ~ m ~ z, we have that 2/ ~ z, therefore they are
in the same equivalence class, and QUy, (7) = [z] = [2']. In the

other case, since 7, ~ 7" then [r)] = [7,], so n(A) = n(u).

Finally, it is not difficult to verify that QUy; represents C .
This is due to the fact that any 7 is equivalent to some 7, or
to some z € Xyu and QUy;, represents C over the m,’s and
over the z's in X .

3. Now, we define u: X — U as
u(z) = QUy, (2).

Notice that u(Z) = 1 and u(z) = 0, and thus, u~(1) # 0 # u~1(0).
It remains to prove that QU (7) = mingex max(n(r(z)),u(z)).
With this goal, we will prove the following equalities:
e QU (1/m1,B/m2) = min(QUy, (m), max(n(B), QUy,(m2)).

By A4C, there are several alternatives for my, w9 :

(a) Ju, A st. m ~ (1/7,A/z) and 72 ~ ;.

(b) 3z,y € Xnpr 8.t m ~ x and mp ~ y,

(c) INeV,z € Xny st. T~z and mp ~ 7, ,

(d) IXeV,z € Xyu s.t. mp ~ 7, and mp ~ .
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Now, we analyse them:
(a) By A3,
(1/m1, B/m2) ~ (1/7y, B/(1/%, u/z)),
and reducing lotteries we obtain
(1751 i) ~ (1/F, max(\, min(s, §)) ).
Therefore,
QUyy (1/m,B/m2) = n(max(A, min(u,3)))

= min(n()), max(n(x),n(6)))
= min(QUiy (m1), max(n(8), QUyy (r2))).

(b) Again by A3,
(1/m1, B/ma) ~ (1/z, B/y).
Now, taking into account AxzMixz, we have that

z if(zCy)or(zC )

(/z,B/y) ~q 75 HyCrmgCax
Y ifﬂﬂ_EyEm.

So,

u(z) if (z Cy)or (z T mp)

QUy(1/z,Bly) = n(B) ifyCmg Cx
u(y) ifmg CyC oz

That is,
QUi (1/m1, B/m2) = min(QUi (m1), max(n(8), QUi (m))).
(c) Now,
(1/m,B/m2) ~ (1, B/75) ~ (12 1T 5 )
and by AzMiz, we have that

Trnin(A,8)7 if Eﬁr:lin()"ﬂ) C x))or
- 7Tr:lin ~ X
(1/z, 1/7rmin()\,ﬂ)) ~ A5)

x, fXCzC Wr;in(A 5)"
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So,

QUyy (1/m, B/m2) = min(u(z),n(min(}, B)))
— min(QU (m), max(n(8), QU (m))).
(d) Analogously, if 71 ~ (1/Z,A/z) and 7y ~ z, then

(1/m1, B/m2) ~ (1/7y, B/ ),

50,
my if (my C ) or (my Cmy)
(/m1,B[ma) ~{ T ifaCmy Comy
x if Ty CoxComy.
Hence,

QU (1/m, B/m2) = min(QUy, (71 ), max(n(B), QUy, (72))).
In particular, we have that
QUyy (max (7, m2)) = min(QUy;, (m1), QUy, (m2)).
This may be easy generalised to

QUI;,(_EIlla.X m;) = min QU (7).

i=1,..., =1,...,
e Now, we verify

QU,, (r) = i_nllinp max (n(m(z;)), u(z;)).
As 7 is normalised there exists z; € X such that 7(z;) = 1.
Without loss of generality we assume j = 1.

Then, let
m = (1/z1, m(x;)/zi)-

Since m = max;—1,.., 7;, we have:

QUy(r) = QUy(max m)
= ._nllin QU™ (m;)
i=1,...,p
= __Irllin {min(u(z1), max(n(mr(z;)), u(x;))}
i=1,...,p

=% min  max(n(n(z,)), u(s:)).

8Note that (1) = 1, so u(z1) = max(u(z1), n(mw(z1)).
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This ends the proof of the theorem. O

9.2.5 Representation of Optimistic Qualitative/Ordinal
Utilities

For modelling an optimistic behaviour of the Decision Maker, we consider

the axiom set AXMT = {A1, A2+, A3, AACT, AzMiz ™}, with 7 =

(A\/Z,1/z) where as usual T and z are a maximal and a minimal element

of (X, L) respectively, with

o A2T: if 7 < 7' then 7 C 7/,

e A4Ct: There exists a subset? Xy C X, such that all maximal
elements of (X,C) and all minimal elements of (X,C) are in its
complement, such that

Vr € II(X) either (A€ V st. m~nf)or (3z € Xnyp st. 7~ z).

o AxMiz™:
1. ifz,y € Xnypn, B €V then

x if(xgy)or(xng)
(1/z,B/y) ~ Wg' ify:lﬂg' my
Y ifﬂ;jij,

2. if x € Xy then

m if (v 3 2) or (xf 3 7f)
B
(1/7¥,B/z) ~ ﬂ; ifx:l’fr;:lﬂ;\_
z  ifmy Jx 3wy

As in the pessimistic case, we have the following results, whose proofs
are analogous to the previous ones, so they are omitted here.

Lemma 9.9
1. Axioms Al, A2%, A3, A4Ct and AzMiz™ imply

Ax2: If A is a crisp subset of X then there is x € A s.t. x ~ A.

9Observe that Xy = 0 is possible, and then axiom A4% is recovered.
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2. we still have the Lemma 4.11:
If C verifies axioms Al, A2%, and Az2, and  and T are a
minimal and a maximal element of X, respectively, then:
e the following equivalences holds: T ~ (1/z,1/z) ~ X.

e z and T are the minimal and maximal elements of
(II(X), C) respectively.

Lemma 9.10
Let % QUi be the preference ordering on II(X) induced by QUi i.e.

™ <qu, i QUL (m) < QUL ().
Then < g+ verifies the axioms set AXM +.
w

The respective Representation Theorem is:

Theorem 9.11 (Representation Theorem of Optimistic Utility)
A preference relation C on II(X) satisfies axiom set AX M if, and only
if, there exist

(i) a finite linearly ordered utility scale U with inf(U) = 0 and
sup(U) = 1,

(ii) a preference function u:X — U such that u=1(1) # 0 # u=1(0),

(iii) an order preserving function h:V — U such that h(0) = 0 and
(1) = 1,

in such a way that

! . !
o Cr iff T <QU;{, M,

where <qui is the ordering in II(X) induced by the qualitative utility

QUV}L,(W) = maxgex min(h(w(x)), u(x)).

9.2.6 Utilities for Non-Normalised Distributions

Now, we consider as the working set of possibilistic lotteries the set
IT**(X) of non-necessarily normalised distributions on X with values on
the finite uncertainty scale V, keeping the usual definition of possibilistic
mixture.

We extend the utility functionals QUy,, and QUV"{, to evaluate non-
normalised distributions of II**(X) as well. Given an order preserving
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mapping h:V — U, s.t. h(0) = 0 and h(1l) = 1, and F:V — V s.t.
F(1) = 0, we define, for any m € II**(X):

QU (rlu) = min{QUy, (N (m)|u),n o F(H(r))},
@;’V(ﬂu) = max{QU,}, (N (r)|u),h o F(H(m))}.

From these definitions, it is obvious that, for all # € TI¢*(X), we have
@;}LV(W) > QU (), in particular, if 7 =0, QU (7) = 0 and @;},(ﬂ)
= 1. Moreover, QUy, (QUY;, resp.) is an extension of QUy, (of QU
resp.) since, if 7 is normalised, H(n) = 1, and n o F(1) = 1 and
ho F(1) =0, and thus QUy, and QUy;, (QU;, and QU resp.) coincide
on II(X).

In order to characterise the preference orderings C induced in I1¢*(X)
by QU W and QU ;FV we need to extend the axiom sets AXM and AXM™
respectively, defined on II(X), with the usual additional axiom:

e ATF: for all 7 € I**(X),m ~ (1/N (7)), F(H(rn))/X).
Now, let us prove the following representation theorem.

Theorem 9.12 (Representation Theorem)
A preference relation C on II1°* (X ) satisfies axiom set AX M = AXM+
ATF (resp. AXM*e® = AXM™* + A7F) if, and only if, there exist

(i) a linearly ordered and finite preference scale U with inf(U) = 0 and
sup(U) = 1,

(ii) a preference function u:X — U such that u='(1) # 0 # u~'(0), and
(iii) an order preserving mapping h:V — U, h(0) = 0 and h(1) = 1,
in such a way that it holds, for each m € T1¢*(X),

™ Cnx i QU (7'|u) QU (7[u),

(' Cr  iff QU (n'|u) C @"ﬁ,(ﬂu) respectively) where, as usual,
n = ny o h.

Proof:
We only prove the theorem for the pessimistic criterion, the proof for the
optimistic criterion being very similar.
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<+ ) We have to prove that, given U, a preference function u:X — V,
and an order preserving mapping h:V — U, verifying (i),(ii) and (iii),
the ordering on possibility distributions of II**(X’) induced by the utility
evaluation QU satisfies the axioms of AXM**. Since QUy;, coincides
with QUy;, on II(X), all axioms from AXM are automatically satisfied
by Theorem 9.8. Thus, it only remains to verify that A7F also holds.
According to (ii), there is z such that u(z) = 0, and thus QUy;, (X) = 0.
Since QUy;, preserves possibilistic mixtures, we have for all = € II**(X),

QUy, (1/N (), F(H(r))/X) = min(max(n(1), QUy (N (7)),
max (n(F(H(r))), QUy (X)))
= min(QUy, (N (7)), n o F(H(x)))
= QU (7).

Thus, 7 is equivalent to (1/N (), F(#(x))/X) w.r.t. to the ordering
induced by QUy, .

—) Let us assume now that we have an ordering (II**(X), C) satisfying
the axioms of AX M*. In particular, C satisfies all AX M axioms, hence,
applying Theorem 9.8 again, we can suppose the existence of U, u: X — U
and h:V — U satisfying (i), (ii) and (iii), and such that the corresponding
utility QU,,, represents T on II(X), i.e. for all normalised =, we
have that 7' C « iff QUy, (n'|u) T QUy,(w|u). Axiom ATF guarantees
that, for any =, © ~ (1/N(m), F(H(r))/X). Since QUy,(X) = 0, and
(1/N(m), F(H(m))/X) is a normalised distribution, we define

QU (7) = QUy(1/N(r), F(H(r))/X)
= min(QUy, (N (n)),n o F(H(r))).

Now, we have to verify that QUy;, represents E, i.e. that for each
m, © € II*(X) the following equivalence holds

o Cr  iff @;V(W') C QU ().

Indeed, by axiom ATF, m ~ (1/N(m),F(H(r))/X) and 7' ~
(1/N(x"), F(H(n"))/X), so we have that

' Cr = n' ~ (1/N(x'), F(H(x')/X) E (1/N(x), F(H(r))/ X),

and since QUy;, represents C on normalised distributions, we have that
m Cm = QUy (1/N(), F(H(r'))/X) < QU (1/N(m), F(H(m))/ X).
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As QU,,, preserves mixtures we have that
7 C7 <= min(QUy (N (")), n o F(H(r"))) < min(QUy (N (7)), n o F(H(T))).

That is,
o Cr iff @;V(ﬂ'l) C QU ().

Remark 14
We have considered other alternatives for characterising the ordering
induced by QUy;,, in particular these ones:

1. The set of axioms { Al, A2, A3, AAL, Ax2} with
o AAL:VreIl(X) Jzo€e X IN €V st. 7w~ (1/T,\/x0)-
2. The set {Al, A2, A3, A4L, Az2, A-Monotony}, with
e A-Monotony: if m C w9 then (1/m,A/m1) C (1/7, A/m2).
However, they do not characterise it as the following examples show.

Ezample:
Consider the following examples:

l.Let X ={zCzC T}, Xnvm ={z}, V={0< B <1}, and consider
the relation
cCxCrglCx,

also satisfying

z~ (1/z,B/z) ~ (u/Z,1/z) VpeV.

All other distributions are taken equivalent to z.

This relation does not satisfy AzMiz2, since although z C g C T,
instead of being (1/Z, 8/x) ~ w5 we have (1/Z,8/z) C j.

That means that having a relation satisfying A1— A3, A4L and Ax2
is not enough for having a relation that is representable by QUy,,
since of course QU satisfies Az Miz.

2. Let X ={zCzC 7T}, Xnm = {2}, V ={0< B <1}, and consider
the relation
zCxCmg T,
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also satisfying
T~ (1/z,8/x),

and

z~ (u/Z,1/z) VYpeV
All other distributions are taken equivalent to .
This relation does not satisfy AzMiz2, since although z C g C T,
instead of being (1/Z, 8/x) ~ w5 we have (1/z,8/z) D my.
Again, this shows that having a relation satisfying Al —
A3, A-Monotony, AAL and Ax2 is not enough for having a relation
representable by QU .

¢
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Chapter 10

Possible Applications of the
Possibilistic Decision Model

In this Chapter we analyse two possible applications of the
qualitative/ordinal models we have been working with. Indeed, we show
that these models may be applied to solve problems of making decisions
in the context of two of the projects in which the Institut d’Investigacid
en Intel.ligéncia Artificial (IITA-CSIC) is actually involved: Co-Habited
Mized-Reality Information Spaces project (COMRIS) and FishMarket!.
In the case of COMRIS we propose an approach to solve a particular
decision problem in it, while in FishMarket we revise an approach already
proposed by other ITIA researchers.

10.1 Co-Habited Mixed-Reality Information
Spaces Project

Big conferences bring different ways for interacting: people talk about
the results obtained, show demos, want to meet people with the same
interests, etc; moreover, the same person may has different roles during
the event like being an invited talker and looking for partners for an
european project.

Usually there are a lot of available information, events and possible
activities on different topics, making the organisation for optimising the
participation a non trivial work.

'For more details you may see http://www.iiia.csic.es/Projects/comris/ and
http://www.iiia.csic.es/Projects/fishmarket/ respectively.
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The Co-Habited Mized-Reality Information Spaces project (COMRIS)
(deVelde, 1997) propose an approach for integrating software and human
agents moving in virtual and real spaces closely related (see Figure 10.1
(Plaza et al., 1998)).

Vs

Information Layer

Distance
Interest

Topology

— Topology
‘H Information Pusif / \

@ Context Perceptipn
Human

Virtual Space

\ _/

Physical Space

Figure 10.1: A description of the virtual interest-based space and the
physical proximity-based space of COMRIS.

COMRIS chooses for experimentation a conference center as their
framework.

“In the mixed-reality conference center real and virtual
conference activities are going on in parallel. Each participant
wears its personal assistant, an electronic badge and ear-phone
device, wirelessly hooked into an Intranet. This personal
assistant - the COMRIS parrot - realises a bidirectional link
between the real and virtual spaces. It observes what is
going on around its host (whereabouts, activities, other people
around), and it informs its host about potentially useful
encounters, ongoing demonstrations that may be worthwhile
attending, and so on. This information is gathered by several
personal representatives, the software agents that participate
on behalf of a real person in the virtual conference. Each
of these has the purpose to represent, defend and further a
particular interest or objective of the real participant, including
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those interests that this participant is not explicitly attending
to.”

The COMRIS project studies the synergy of these two spaces, and
their relationship. Its goal is to help the user in optimising the user’s
participation in terms of his interests while attending to the conference.
With this goal they propose (Plaza et al., 1998):

“To develop software agents inhabiting the virtual space that
take up some specific activities on behalf of some interest
of an attendant in the conference. Specifically, a Personal
Representative Agent (PRA) is an agent inhabiting the virtual
space that is in charge of advancing some particular interest of
a conference attendant by searching for information and talking
to other software agents.”

Next, we analyse the application of the possibilistic decision making
model in the context of the COMRIS Project.

10.1.1 The Framework

For each user, we have two different type of agents:

e Personal Representative Agents (PRAs for short), each one pursuing
a different interest for a same user. They search information at the
virtual space for some particular interests, for example, one of them
may be in charge of looking for appointments with people who may
know about vacancies in their laboratories while other is instructed
to look for activities related with the topic CBR. The collection of
the possible actions in which the PRA may participate, in order to
achieve user interests, is provided by the conference organisation,
for instance, meeting people, attending a demo, etc. The PRA
chooses its “best” proposal in terms of the knowledge about user
preferences and the context information (i.e. the physical situation
and the activity of the user and of other attendants) it has. It will
try so send this information to the user, but its communication with
him is not direct, since a user may have several PRAs that would
try to compete for his attention. Each PRA sends its information
to a Personal Assistant agent.

e Personal Assistant (PA) agents coordinate the proposals presented
by all the PRAs of the users. Each user has only one PA that
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evaluates all proposals in terms of the contextual information it has.
That is, it “solves” the problem of competition, in the sense that it
decides which PRA will be listened by the user.

Relevance degrees:

egreat importance
*moderate importance
doubtful importance

Tasks: Relevance Tasks: Relevance
) degrees: :
* Appointments £ * Appointments degrees:
ePropaganda || t&reat *Propaganda || sgreat
importance . importance
«Reminder *Reminder
o emoderate || eProximit emod
. ‘ y moderate
Proximity importance importance
"dOUbthI edoubtful
importance importance
*null enull

Figure 10.2: Comris Framework
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Each PRA presents its most relevant proposal among one of the
following;:

e an appointment with a person (app),
e a prozimity alert of a person or event of interest for the user (pro),

e a proposal of receiving propaganda (rp) related with events like
demonstrations, future conferences, etc.,

e a commitment reminder of an event that will happen soon (rem)
and to which the user has promised to be present, for example, it
may remember the user that he has soon a meeting;

together with a estimation of the relevance degree of the proposal:
e great importance (gi),
e moderate importance (mi),
o doubtful importance (di),
o null.

In fact, a PRA not only has to provide a relevance of the proposal but
an argumentation of it as well. However, this point is out of the scope of
our work.

For more details of the project you may consult the URL
http://www.iiia.csic.es/ Projects/comris/ or (Plaza et al., 1998).

10.1.2 Owur Proposal

As it is mentioned, the PA’s goal is to choose, in the current context,
one of the received proposals to send it to the user, but previously the
PA has to assign its own evaluation of relevance to the proposal. On
the other hand, the goal of each PRA is to make a proposal to the PA
based in the result/proposal of each task (the set of available tasks being
{appointment, proximity, propaganda, reminder}), taking into account
the local context? information available it has. An assignment of the
proposal relevance has to be made as well.

2This context information although in some sense is more “partial” than the one
managed by its PA, however, may result more complete in the sense that not only
include context information about his owner but the one provided by PRAs of other
persons as well.
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In this framework, the available information is of qualitative nature rather
than numerical. Possibilistic Decision Theory is specially suited for this
framework since it can be based only on ordinal scales of uncertainty and
preference. Besides, the feasibility of working with partial orders may be
useful in this context, because sometimes giving a total global preference
may result very difficult for the user.

Moreover, is it feasible to have available a memory of cases
summarising the behaviour of the PA and PRAs in previous experienced
situations. This, leads us to propose that:

e PA may be supported in looking for its goal by Possibilistic Case-
Based Decision Theory (PCBDT).

e Analogously, PCBDT may be applied for giving support to each
PRA for making its decisions.

Following, we focus in the behaviour of the PA.

PA’s Decision Making Problem

We assume as available a memory of cases for helping the PA. Consider
cases given by the following 4-tuple:

cpa = (vs, prozimity-context,winner,user-feedback),
where

o vs = ((dy,relr), ..., (dy,rely)), with (d;, rel;) describing the proposal
d; made by the PRA; and the importance, rel;, that the PRA;
assigned to its proposal, n being the number of PRAs the user has.

e prozimity-context is a 3-tuple (user-loc, user-neigh, user-activ)
representing the information that PA has about the actual context
of the user. Where user-loc gives information about the place in
which the user is (e.g. hall, meeting point, demo-rooms, etc.),
user-neigh is a list of the keywords in common that the user and
the participants that are “near” the user have. Finally, user-activ
provides information about the type of activity in which user is
involved (e.g. session, social event, appointment, etc.).?

3As it is said, we assume that there may exist different levels of information with
respect to this topic, the PA having the most complete one, and each PRA has a partial
view of it.
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e winner is a pair (PA-proposal, PA-eval-rel), where PA-proposal is
one of the d; received, which the PA preferred, while PA-eval-rel is
the own evaluation of the relevance that PA assigns to PA-proposal.

e Finally, user-feedback is a pair (z1,z2) reflecting the user opinion.
Its first component v; is user’s evaluation on PA’s proposal, while
the second one v9 is his evaluation of the relevance PA has assigned
to it.

For applying PCBDT, also a similarity function defined on the set
of pairs (vs,prozimity-contezrt) has to be available, as well as the user’s
general preferences. The latter is referred to his main or priority goals.
For example, although he may be more interested in the keyword Decision
Theory than in CBR, however, if his first goal is to obtain a fellowship,
the user might prefer an appointment for a possible fellowship related
to CBR to a invited talk about Decision Theory. With respect to the
similarity on pairs (vs,proxzimity-context), it may be given either explicitly
(i.e. directly from the user) or it may be evaluated in terms of marginal
similarity functions corresponding to tasks, labels of relevance, etc, and
then, for instance, performing a weighted aggregation where the weights
may depend on the user general preferences. That is,we can propose the
following expression:

SIM ((vsg,conty), (vs1,conty)) = GAGG(Sst(vsg,v81), Scont(conty, conty),

Wst, wcont)

where GAGG is an aggregation operator and and ws; and weont are the
weights related with S and Sg.,: respectively, and

Sst('USOa Usl) = AGG(Stask(d(l)a d%)a ey Stask(dga d};)a

Srel(rel?, Tel%), een, Srel(rel?, Tel%), Wiask, Wrel)

with vsy = ((d¥,relf), ..., (dE,relk)), and Sisp, Srer and Seony are the
marginal similarity functions defined on task proposals, labels of relevance
and proximity contexts respectively and wy,sr and wye; are the weights
related with Sy, and S, respectively, and AGG is an aggregation
operator.

Ezample:

As a matter of example, we consider a simplified perspective of the
problems involved in this project. For instance, we may assume user-
feedback is measured on U = E x E, with E={0< X< pu <1},
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and ng being the reversing involution on E. The set of labels
for user-activ is {private, social, public-active, public-passive}, while for
user-loc is {working-room, social-room, private-room}.

The similarity function Si,s; on tasks defined over E, is described in
Table 10.1, while the similarity on labels of relevance, S,¢;, is provided in
Table 10.2.

| Stask || app | pro | rem | rp |

app 1 7 A 0
pro W 1 A 0
rem A A 1 0

rp 0 0 0 1

Table 10.1: Similarity between tasks.

| Sper || gi | mi | di | null |
gi 1] pw | A 0
msi
di
null

(=l RS

1 1A 0
A1 0
010 1

Table 10.2: Similarity between relevance labels.

Now, we consider the similarity function on contexts defined as:

~

Secont(contg, cont;) = min(Seont((user-locy, user-acty),

(user-locy, user-acty)), Sg(ukw(Lo), Ukw(L1))),

where S'C(mt is the similarity function on pairs (user-loc, user-act), while
Sg is the similarity on E, provided in Table 10.3, and uy,,(L) summarises
the user preference with respect to the keywords involved in the list L
(list of keywords of interest for the user’s neighbours).

Now, we assume that memory of cases provides us directly with ug,, (L)
instead of L.

The aggregation operator can be defined, for example, as

GAGG(z,y;wy,we) = (np(w1) V) A (ng(wz) V y).
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(Se JO[A[p]1]

0 [1]plX[0
Alp |l p]|A
pollA el p
1 O A|p|l

Table 10.3: Similarity on E.

and

AGG(T,y;wi,w2) = (ng(w)V ( m,)) A
i=1..n

(ng(w2) V ( yi) )-

Consider the current situation-context described as:

(vso, conto) = (((appl, mi), (rem2, mi), (rem3,ds)), (work — room, p, social)),

and suppose there are 3 PRAs. Hence the similarity on states is:

Sst(vso,vsi) = (nE(Wesk) V /\ Stask (d.(;’ dz)) A
7=1,...,3

(ng(wre) V /\ Srel(rel;-),rel;-)).
j=1,..,3

The subset of cases of the memory M related with the current
situation, that is, cases in which P A has proposed an appl, rem?2 or rem3
with some relevance level, is described in Table 10.4.

Hence, for each PA’s available decision d*, we define the associated
distribution as usual, i.e.

Td,(vso,conto) (T) = \/{SIM(('usO,conto), (vs, cont))| ((vs,cont),d,z) € M}.

Notice that for defining these distributions it is necessary to know the
similarity S,ont ON pairs (user-loc, user-act), at least for some particular
pairs. Table 10.5 provide these similarity values.

Now, we consider some of the associated distributions:

4Recall that since PA has to choose between the received proposal, the possible
decisions are (appl,rel), (rem2,rel) and (rem3,rel), where rel is the degree of
relevance that PA assigns to the proposal.
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‘ vs ‘ prox — cont

‘ winner ‘ us — feed ‘

c1 ((appl, gi), (pro2, mi), (rem3, gi)) (soc — room, 1, publ — pass) (rem3, gi) (1,1)
¢ ((rpl, mi), (rem2, gi), (pro3, di)) (work — room, p, publ — pass) | (rem2,mi) (1, )
c3 | ((appl,di), (rem2, mz), (rem3, ms)) (soc — room, A, social) (rem2, mi) (1, )
ca | ((appl,mi), (pro2,mi), (rem3, di)) (soc — room, u, social) (appl, di) (1,X)
cs ((appl, mi), (rem2,di), (rp3, di)) (work — room, p, social) (appl, gi) (1, )
ce | ((appl,di), (rem2,mi), (rem3,di)) (work — room, p, social) (appl, g7) (1, )
cr | ((reml,di), (pro2, mi), (rem3,di)) (work — room, p, social) (rem3, gi) (M)
cg | ((prol,mi), (app2, mi), (rem3,di)) (private — room, u, social) (rems3, gi) (py A)
cy ((appl, gi), (app2, gi), (rem3, di)) (work — room, p, social) (rems3, gi) (0,0)

Table 10.4: The memory of cases M.

‘ Scont H (work — room, social) ‘
(work — room, pub — pass) A
(soc — room, social) 1
(work — room, social) 1
(private — room, social) 1
(work — room, pub — pass) A

Table 10.5: Some values of the similarity Seont-

e for d=(app1,g1),

SIM((vsg,conty), (vss, conts))V

STM((vsg, conty), (vsg, contg)),
Td,(vso,conto) ("I") =

0,
e for d=(appl,di),

SIM ((vsg, conty), (vss, conts)),
ﬂ.d,(ﬂso,conto) (-’17) = { (( 0 0) ( 4 4))

0,
o if d=(rem3,gi),
SIM((vsg, conto), (vs1,contt)),
SIM((vsg, conty), (vs7,contr)),
Td,(vso,conto) (.’L‘) = SIM((USOa Conto)a (USSa contg)),
SIM((vsg, conty), (vsg, conty)),

=)

7
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if z = (1,p)
otherwise,
ifz=(1,X)
otherwise,
if x=(1,1)
if x=(\ M)
if z=(u,A)
if z=1(0,0)
otherwise




e for d=(rem2,mi),

STM ((vsg, conty), (vsa, conts))V
SIM((vsg, conty), (vs3,conts)), if z=(1,p)
Td,(vso,contp) ("I") =

0, otherwise.

Hence, once we are provided with, or have choosen, the values of the
weights Wigsk, Wrel, Weont and wg, we are ready to rank the distributions.

As several of these distributions may be non-normalised, we apply
@; and @;,5 where we consider F' = ny. In U we may consider
different orderings like Pareto, minimum, lexicographic, etc.. So, we
would consider for each d the values

Ub:, (Uso,conto)(d) - @; (Wd,(vso,conto))

= no nV(H(Wd, (vso,conto))) A GQU (N(ﬂ-d,(vso,conto)))a

and

U;',(vso,conto)(d) = GQU+(N(7Td,(vso,conto))) \ (h 0 nV)(H(Wd,(USO,conto)))a

where these values are obtained taking into account the ordering
chosen in U. For example, the distributions associated to PA’s
proposals not made before like (rem3, di),(rem3, null),(rem3, di), (rem2,
di), (rem2,null), (rem2,gi), (appl,mi) or (appl,null), are null. Hence,
their utilities are Oy and 1y w.r.t. pessimistic and optimistic criteria
respectively.

¢

PRA’s Decision Making Problem

Now, we focus on the behaviour of each PRA, which is the main interest of
the ITTA COMRIS team. PRA has to make a proposal to the PA based
in the results/proposal of each task, taking into account the available
local context information it has. The relevance of its proposal has to be
assigned as well.

5In fact, we have not provided in Chapter 8 the extension for non-normalised
distributions for the utility functions introduced in Chapter 6, but it may be done
analogously.

217



As in the case of PA, we think PCBDT may provide support for this
problem if we assume we have a memory of cases storing the performance
of proposals made in the past by the PRA, and the ones made by others
PRAs, together with the final PA proposal.

Indeed, a PRA-case may be represented as the 4-tuple:

Cpra= (vs, partial-contezt, PRA-task-prop, PA-answer)
with:
e ys is defined as previously, i.e. vs = ((dy,rely), ..., (dn,rely)).

e partial-contert is a variable describing the actual context taking into
account the information that the PRA has.

e PRA-task-prop is a 4-tuple descriptor, (app-result, prozimity-result,
propaganda-result, reminder-result), each component representing
the “best” task-proposal. Observe that the winner task, i.e. the
task that PRA proposed, is included (with its degree of relevance)
in vs. Indeed, if we are working with the PRA;, the winner task is
d;.

e PA-answer is a pair (win?, PA-relevance) representing the feedback
that PA may provide its PRA, win? tells wether this PRA was or
not the winner, and PA-relevance is the relevance assigned by PA
to the proposal (this wants to reflect that for example the relevance
function of the PRA may be modified for next time taking into
account the PA’s answer, since PA has more information).

The possibility distributions associated to each decision are defined as
usual, then they are ranked applying the generalised utility functions for
non-normalised distributions as usual.

Finally, let us introduce, some comments on PRA’s Tasks. So far, we
have assumed that each PRA has the results of each task, now we are
interested in analysing a bit more this point, that is, having a local context
information, some knowledge about user preferences with respect to the
activity he/she is interested, which may be the best proposal for a task.
As an example, we consider the appointment task. Its goal is to look for
the more interesting appointment in terms of the available information
it has about the preferences of the user and the other participants of the
conference.

The available information in this moment specifies the actual situation
as
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Task H Characterisation of its result

Appointment (reg, kw,TA, g, partial — contextayy)
Reminder (deadline, distance-from, T A, kw, partial — contezt,epm,)
Prozimity (reg or event, kw, partial — contexty,,)

Propaganda (kw, way-of, T A, g)

with

with:

Table 10.6: Results of the Different Tasks

s ={si|i € I},
I a finite set, and

s; = (reg, kw, T A, g, partial-context,,,),

reg: is the identifier of the person, for example, the registration
number each participant has.

kw: is a (or a set of) keyword(s) in which the user is interested.

TA: stands for a type of activity, (for example grants, future projects,
etc.). This wants to represent that although the user may be
interested in an appointment related with a certain kw, it is not
the same interest for example for a person who gave an invited talk
related with this topic or for a person who is selling books of this
issue.

g stands for the group to which the person belongs (we may have
a classification taking into account for example the organisation of
the person pertains).

partial — contextypy, as usual, it summarises the information of
context related with this task, in this case, the appointment one.

As it is mentioned, the goal of the appointment task is to choose the

best
with
have

ranked s;. The ranking has to take into account user’s preferences
respect to kw and TA, i.e. u = f(kw,TA). However, other facts
to be taken into account, for example, it may be the case that the

preferences also are expressed in terms of g.
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Another point to consider is the number of persons related with kw
and TA that are available as well as whether they are near the user
(which may be known by the partial — context,y,), and of course the
user-activ has to be taken into account, mainly if the activity proposed
is a forthcoming event.

As a conclusion we may say that this is a first analysis and several
points need to be considered with more detail. However, it already allows
us to propose some answers to the decision making problems involved in
the project. Of course, we are interested in following this work to improve
our proposal and to face some issues not yet worked.

10.2 FishMarket: A Possibilistic Based
Strategy for Bidding

Electronic commerce is currently an increasing area of interest,
there are many research works related with this matter in the
broad sense of it. In particular, there is a considerable num-
ber of electronic auction houses (as you may see in the URL
http://fullcoverage.yahoo.com/Full_Coverage/Business/Online_Auctions/,
for instance, http://www.auctionline.com or http://www.onsale.com,
etc.). Taking into account the actual development of internet, and in
particular of electronic commerce, we think that this is an interesting
topic.

In auction houses, different bidding protocols may be applied, for
example the Downward Bidding Protocol (DBP also known as Dutch
Bidding Protocol) or the English Bidding Protocol.

The FishMarket project is mainly concerned with communicational
aspects of multi-agent systems (see http://www.iiia.csic.es/
Projects/fishmarket/ for more details). To test these ideas, Rodriguez-
Aguilar et al. (1998) propose a multi-agent test-bed, FMY96.5%, which is
an electronic auction house that allows the definition and evaluation of
some experimental trading scenarios, in particular the FishMarket one
with a Dutch Bidding Protocol. In this context, a very interesting issue is
to model buyer’s strategies to bid. The goal is to model a buyer’s strategy
to make a bid, trying to maximise the tournament evaluation function,
taking into account that the strategies of other buyers is unknown. To
bid in a such environment means to decide a price to offer taking into

SCurrently, it is available a new version FM100, which may be download at
http://www.iiia.csic.es/Projects/fishmarket /agents2000/FM100/index.html.
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account all the available information like goods that will be auctioned
and their expected resale prices, other buyers in the buyers’ room as
well, etc. This information has to be handled with some restrictions,
the behaviour of other buyers may be approximated but not precisely
predicted, deliberations are time-bounded, etc. That is, the buyer has to
bid in an uncertain environment, i.e. he has to face a decision problem
under uncertainty. Garcia et al. (1998b) made a first proposal in this line
applying the possibilistic qualitative decision model.

Although, in this moment the problem is only attacked in terms of
tournaments, rather than in actual market situations, the analysis is
interesting. It is a problem with a lot of information and so with many
possible sources of uncertainty as well.

Of course, there are many possible approaches for modelling the
strategy of buyer’s bidding, moreover, inside the model there are many
alternatives available. The knowledge the agent has about the other
agents’ strategies is usually incomplete, if we assume that the knowledge
the agent has is reduced to a memory of previous market situations and
their results, and to general information about the market, Possibilistic
Case-Based Decision Theory may be useful.

In the following, we describe the FishMarket environment and the
restrictions in which the problem of bidding will be attacked. In Section
10.2.2, we introduce Garcia et al. (1998b,1998,1998a)’s proposal. In a first
analysis of their proposal, we realise that the implementation of the model
has some drawbacks. In Section 10.2.3, we make some remarks about
them, like for instance that there are some specification problems with the
referential sets, and that they do not take into account that the possibility
distributions involved are probably non-normalised. This latter point
may have unsatisfactory results as it has been mentioned before in this
dissertation. In order to solve the issue of possible non-normalised
distributions, we propose to use the generalised utility functions we have
described in Chapter 8. Finally, we also include some remarks about some
points that, although are not directly related with our framework, may
result interesting to develop in the future from the application point of
view.

10.2.1 Background: The FishMarket Environment

The definition of a tournament involves a set of descriptor parameters, for
example, the time between prices, decrement or increment in the price,
goods that will be auctioned, etc..
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In order to characterise the elements of FishMarket as a tournament
scenario, Garcia et al. (1998b) first introduce the notion of Tournament
Descriptor. A Tournament Descriptor is described as the 6-tuple

T = <Ap7'ice, 87 S,@,,U/, E)a

Aprice being the decrement of price between two consecutive quotations;
B={by,...,b,} is a finite set of identifiers of all’the participating buyers,
and S for the participating sellers; Cr is a vector which components are
the initial endowment of each buyer at the beginning of each auction;
g € M is the tournament mode where M = {random, automatic,
one auction, fish market, ...} is the set of possible tournament modes.
Finally, E is the buyers’ evaluation function.

The FishMarket uses a specific Downward-Bidding Protocol (DBP),
which is implemented in FMY6.5, as follows:

Step 1 The auctioneer chooses a good out of a lot of goods that is sorted
according to the order in which sellers deliver their goods to the
sellers’ admitter.

Step 2 With a chosen good g, the auctioneer opens® a bidding round by
quoting offers downward from the good’s starting price, previously
fixed by the sellers’ admitter, as long as these price quotations are
above a reserve price previously set by the seller.

Step 3 For each price called by the auctioneer, several situations might
arise during the open round in an interval of time previously fixed:

o Multiple bids: Several buyers submit their bids at the current
price. In this case, a collision comes about, the good is not
sold to any buyer, and the auctioneer restarts the round at
a higher price. Nevertheless, the auctioneer tracks whether
a given number of successive collisions is reached (Cmaz), in
order to avoid an infinite collision loop. This loop is broken by
randomly selecting one buyer out of the set of colliding bidders.?

e One bid: Only one buyer submits a bid at the current price.
The good is sold to this buyer whenever his credit can support

"In fact, they forget to include in this set by the buyer agent which is being modelled.

8We assume that a condition that is checked by the auctioneer is whether there is
any buyer with credit higher than the reserve price.

?Other option for assigning the good to a buyer may be considered.
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his bid. Whenever there is an unsupported bid the round is
restarted by the auctioneer at a higher price, the unsuccessful
bidder is punished with a fine, and he is expelled out of the
auction room unless such fine is paid off.

No bids: No buyer submits a bid at the current price. If the
reserve price has not been reached yet, the auctioneer quotes
a new price which is obtained by decreasing the current price
according to the price step. If the reserve price is reached,
the auctioneer declares the good withdrawn (i.e. the good is
returned to its owner) and closes the round.

Step 4 The first three steps repeat until there are no more goods left.

For

describing the FishMarket environment these additional

parameters are involved:

Ps

to

tr

Cmax

Sf

Since a Dutch Bidding Protocol is assumed, the price is
decreasing . Ps represents the decrement of price between
two consecutive offers shouted out by the auctioneer.

is the delay between consecutive offers.

Delay between the end of a round and the beginning of
the next round.

Maximum number of successive collisions. The auctioneer
randomly chooses one buyer out of the set of bidders when
the maximum number of successive collisions is reached.

This coefficient, Sanction factor, is utilised by the buyers’
manager to calculate the amount of the sanction to be
imposed on buyers submitting unsupported bids.

Price increment determines how the new offer is calculated
by the auctioneer from the current offer when either a
collision, a fine or an expulsion occur.

As it is said, it is a vector which establishes the available
credit of each buyer. At the beginning of each auction of
the tournament all them are provided with the same credit

For example, for the “Agent Mediated Electronic Commerce III

Trading
http://w

Agents’ Tournament”, they are initialised (for more details
ww.iiia.csic.es/Projects/fishmarket/agents2000/tourdesc.html)

as it is shown in Table 10.7.
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Parameter ‘ InitialValue ‘

Ps 50EUR

to 500ms

tr 4000ms
Cmazx 3

Sf 25%

Pi 25%

Table 10.7: Initialisation of the Parameters.

While Cr, that is, the buyers’ credits initial value, is assigned in terms
on the number of participants, usually they assign each buyer an initial
credit on EUR that results of dividing 70,000 by the total number of
buyers.

Available Information for Buyers

All the buyers that are in the auction room are provided with general
information of the goods that will be auctioned before the tournament
begin. They are informed of the types of goods (i.e. cod, prawns, etc.)
that will participate in the auction as well as the number of boxes of
each type of good, and the upper and lower bounds for the starting and
resales prices. Indeed, up to this moment all these numbers are generated
by uniform distributions on different intervals. At the beginning of the
tournament, buyers are only informed on these intervals, not on the values
on which the distributions results (see Table 10.8). But in the beginning

‘ good ‘ number of boxes ‘ starting price ‘ resale price ‘
cod UJ[1..15] U[1200..2000] | U[1500..3000]
tunafish U[1..15] U[800..1500] | U[1200..2500]
pPrawns UJ[1..15] U[4000..5000] | U[4500..9000]
halibut UJ[1..15] U[1000..2000] | U[1500..3500]
haddock UJ[1..15] U[2000..3000] | U[2200..4000]
Table 10.8: Previous information available

of each round, a more precisely information is given. That is, the number
of boxes of each good is precisely known as well as the starting price and
the resale one.
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Figure 10.3: The Parameter Setting that buyers see.

Determining the evaluation of Buyers

There are many different possible functions for evaluating the behaviour
of the buyer agents. The one proposed in http://www.iiia.csic.es/
Projects/fishmarket/ is

E(b) = Z In(k + 1) Bg (b) (10.1)
k=1

b being a buyer, By (b) stands for the accumulated benefit ' of buyer b
during auction k, and z is the number of auctions of the tournament.

They argue that this evaluation tends to favour buyers learning in
order to improve their strategy.

10.2.2 Previous Proposal: Building a Possibilistic-Based
Strategy for FishMarket

We are in a decision problem, where our buyer agent has to take a
decision, i.e. to choose a bid among a set of available alternatives taking
into account its preferences on the set of possible consequences in terms
of maximising its utility. The winner is determined as the the buyer
maximising (10.1). The buyer has to take into account not only its

0The benefit is the difference between the resale price and the paid price.
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benefits but other buyers’ benefits as well. The agent has to choose a
bid for each round of each auction of the tournament.
Garcia et al. (1998b) affirm that:

“ Due to the nature of the domain faced by the agent, we must
demand that such bidding strategy balances the agent’s short-
term benefits with its long-term benefits in order to succeed in
long-run tournaments.”

They structure their proposal in three steps:
e They apply interpolation to obtain a first subset of possible bids.
e Fuzzy Rules are applied for improving the global behaviour.

e Possibilistic Case-based Decision Model is applied on this subset of
bids to came up with a single bid.

First of all, let us introduce the definitions of the problem they suggest.

The Decision Problem

For each round the agent has to choose a bid between the allowed ones.
A memory of cases M summarising the behaviour of market in previous
situations of (past and the current) tournaments is assumed, hence the
idea is to apply Possibilistic Case-Based Decision Theory to choose a
bid. The first requirement is, obviously, the identification of the variables
involved in the problem. Garcia et al. (1998a) propose to counsider the
following ones. The modelled buyer agent will be denoted by by, while
the market situation at round r, of the auction a will be specified as:

s = (TaaaTagapaap'I‘shEaEa R)7

with 7 being the type of the good ¢ to be auctioned, p, is its starting
price, p,¢ is its resale price. As it is mentioned, C is the vector of buyers’
credits and E is the vector of scores (E; is the score of buyer b; in terms of
the evaluation function E). Finally, R is the number of remaining rounds
to end auction a.

The set of possible decisions D for a round r, that is, the set of bids
that the agent by may do in a market situation s, is initially defined by
them as:

D = {bid(p) | p = pa — M-Lprice;m € N,prsy <p < Cr(by)}, (10.2)
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where bid(p) means that the agent submits a bid at price p, Apyjce being
the decrement in the price (also denoted by Ps) and p,s, the reserve
price. At each round, if the reserve price is not reached, one of the
possible buyers acquires the good. For each round, the set of possible
consequences is defined as the set

X = {win(bi,p) | 1=0,...,n;p€ [prsv + Aprice,pa]}a (10-3)

where x = win(b;, p) means that buyer b; wins the round by submitting
a bid at price p. As it is mentioned, a memory of cases M summarising
the behaviour of market is assumed. They consider the following cases:

Cc= (s’b7p8)

with s the market situation previously defined, b the buyer who bought
the good at a price p;.
Let us summarise the different stages they proposed:

o Interpolation: To apply directly the possibilistic case-based model
to this set D might be too slow for this type of problem, hence the
idea is to reduce the set of potential bids according to the general
trend of the market. This is the goal of the interpolation stage.
They assume a principle establishing;:

“Similar market situations usually lead to similar sale
prices of the good”.

The idea is to take advantage of the interpolation mechanism
implicit in the fuzzy case-based reasoning model proposed in
(Dubois et al., 1997b). That is, for each case (s,p) € M'! gradual
fuzzy rule (you may see Dubois and Prade (1996¢) for the semantics
of fuzzy gradual rules)

“If S is § then T is § ”,

where 3 is the fuzzy set of situations similar to s, and p is the fuzzy
set of prices similar to p; 3 and T are variables defined on situations
and prices respectively. This leads them to define the following fuzzy
set of possible bids:

. ! ~ ~7 ]
prLd(p ) = I(S(SO)ap(p ))7
11They omit the reference to the buyer arguing they are only interested in the
situation and in the sale price.
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with I a residuated implication. As a memory of cases M is assumed
as given, and similarity functions 7 on prices and situations S are
assumed as well, they consider:

pbid(p) = min I(S(s,s0), 7 (p,p'))-
(s;p)eM
Finally, they propose to restrict the set of bids to By, the a-cut of
pbid (a > 0), ie.
B, = {p' | pbid(p') > a}.

e Fuzzy Rules: Garcia et al. (1998a) argue that for modelling the
rational behaviour of buyers in particular situations which may
not be sufficiently described by the cases in the memory M, they
consider the following set of fuzzy rules:

if [C(b;) is high] and [R is very_short] and [E(b;) is low]
then ABidy, is very_positive,

if [C(b;) is medium] and [R is very_short] and [E(b;) is low]
then ABidy, is slightly_positive

e Possibilistic Case-Based Decision Theory: As it was mentioned,
in PCBDT instead of ranking decisions, possibility distributions
on consequences are ranked. Hence, it is necessary to obtain the
possibility distributions associated to each decision, in this case,
to each bid that the buyer by may make, for the current market
situation sp. Garcia et al. (1998a) define first the distributions
in terms of the similarities on situations and prices. Indeed, they
assume the principle:

“the more similar is (sg,po) to (s,p), the more possible b;
will be the winner in sy (paying a price p)”

Hence, for each consequence win(b;, pg) they consider that for each
(s,b;,p) € M, they have that

Tso (win(bs, po)) 2 5(s0) ® P(po)

with § the fuzzy set of situations similar to s and p the fuzzy set of
prices similar to p'2 and ® is a t-norm on [0, 1]. Hence, they propose

2Both sets are defined in terms of similarity functions from situations and prices
respectively over [0,1].
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for each b; # by and for all win(b;,pg) € X:

7s, (win(b;, = max 5(s0) ® p(pg).
olwinbipo) = - max - (s0) @ 5

From these distributions, for each participating buyer b; # by, they
propose an initial fuzzy set Bz'dgi of the possible winner bids

with p such that win(b;,p) € X.

Following, they modify these sets by the fuzzy rules previously
mentioned, that is,

Bidy, = Bidy, & ABidy,,
where @ denotes fuzzy addition, i.e.
Bidy, (p) = max{min{Bid;, (p1), ABidy, (p2)} | p = p1 + 2},

and ABidy, is the fuzzy set representing the expected variation on
the observed bidding strategy of other buyers. Now, they define the
possibility distribution associated to each bid pgy as:

— each b; # by

Bidy (p), if pa >p> pa
Tso,pa (WiN(bi, p)) =

0, otherwise

— for by, they retrieve those cases such that the sale price was not
greater than pg, i.e. a subset of the memory M,, = {(s,b;,p) €
M | p < pg,b; # b()}. Then

max  Bid¢ (p'), if p=
_ (e s, D1 W) P =pa
Tso,pa (Win(bo, p)) =

0, otherwise

Finally, they rank decisions applying QU ~(|u) and QU ™ (|u), u being the
preference functions on consequences x = win(b;,p). Several functions
u may be considered, with this goal, they introduce one arguing that
it models an agent that is conservative when it is winning and becomes
aggressive when it is handing back. The preference function is defined in
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terms of a scoring function f, and a linear scaling function r over [0, 1].
Where f is defined as:

k-t if k<0
f(bi, s0,p) = { k-t~ otherwise,

with

k= (151;2( E(bj)) — E(b),

and
t = (R—1)/(max(Cr(b;) — p.1) - (prst — p))-

They assume that p.g — p > 0, that is nobody pay more than the resale
price, and no buyers make unsupported bids, i.e. Cr(b;) —p > 0.13. They
mention that k “ accounts for the position of buyer b; with respect to the
other buyers in the ranking of scores”, and the first factor involved in ¢
estimates the cost of winning the round, while obviously (p,s — p) is the
benefit of the buyer agent. Finally, they define

u(win(bi, p)) = { :E{gi)?éjﬂé(f);z)’), i)f:nlile?“?ise (10.4)

where r is a normalisation linear scaling function.

10.2.3 Comments on the Proposal

In a first analysis we realise about the following drawbacks of the proposal:

e D and X are not well defined, and it seems that the involved
measurement sets may be not finite.

e The problem may involve non-normalised distributions and this fact
is not taken into account in the proposal.

Next we give more details about these points, and we introduce some
general comments on the proposal.

Some Problems Detected

e The definitions of D (10.2) and X (10.3) may result confuse. They
are expressed in terms of the reserve price, however, the buyer agents
have not information about it. Thus, both sets are not well defined.

3However, it seems that these hypotheses may be too strong, since in some
tournaments it is the case that some buyers do not satisfy these conditions.
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There is another upper bound for possible decisions that could be
taken into account: the resale price. Since the evaluation function
takes into account the benefits of the agents in terms of the difference
between the paid price and the resale price p,s, the bids greater or
equal than p,y must be discarded as feasible bids for our buyer.

Obviously a buyer may submit a bid greater than his available credit,
however he could not win because his bid will be discarded. This
fact allows us to restrict the values of p in the set of consequences
X.

A little remark is that taking into account (10.3) X seems a non
finite set, but it is easy to see that it if we assume that Ay € N,
X is finite as soon as we consider:

X = {U”n(bup)lz =0,...,n; Aprice <Pp=>pa _m-Ap'rice < m(bv,), m € NU{O}}

while for the initial decision set D we propose:

D= {bid(p) | P < Prsty Dprice TP = Pa — MLDprice < @(bo),m e NU {0}}

e The proposed preference function u is not well defined since in the
case that it only remains one round to finish an auction, that is,
when R = 1, then ¢t = 0. Hence, if b; is a buyer that is not winning
in this moment, i.e. (max;z; E(b;)) — E(b;) > 0, f(b;,s0,p) is not
well defined for each p.

We wonder how this function works when the auction begins, in
particular which values takes during the rounds of the the first
auction (which value takes k7)?

It is not clear for us the meaning of r in (10.4), since it seems it is
not only a linear function to scaling f but it may exchange the order
in the ranking.

We think that the function should consider that the case of a buyer
(in particular, if it is currently in a better position in the evaluation
ranking w.r.t. our agent) paying a price greater than the resale one,
i.e. b; s.t. win(b;,p) with p > p,g. This is a case that benefits for
our agent since that agent has loss if he pays this amount.

We consider that this preference function u has to be analysed with
more detail, * but it may be interesting to take into account other

Y711 particular, if we adequate it to a finite set, and U and V as well, we will be able
of characterising the behaviour of the agent we are modelling as well.
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facts as well.

e In PQDT we may face in with non-normalised distributions. This
point has not been taken into account in Garcia et al.’s proposal.
Indeed, the possibility distribution 7y, may be non-normalised, then
the distributions 7, ;, may be non-normalised as well.

In this dissertation we have analysed the drawback of applying the
QU utility functions to non-normalised distributions, to avoid it,
we propose to apply the generalised utilities for non-normalised
distributions introduced in Chapter 8.

Some General Comments

e In the proposal, some fuzzy rules are suggested to improve the

heuristic in order to reduce the number of decisions to be evaluated.
They argue that they attempt to model the rational behaviour of
buyers in particular situations.
We are not convinced about applying rules to model the behaviour
of the other agents, however, we agree in the convenience of applying
fuzzy rules, but we are thinking in rules “directly” related with the
behaviour of the buyer agent by. As an example, we may consider
rules like:

— if [pot — benefit is high] and [R is short], then [p is nearly —
to — min — {pa, Cr(bo)}].
— if [R = 1] then p = Cr(by).

that may result useful. Another option for proposing rules is to take
into account the available credit that the other buyers have in this
round.

e We suggest that a first analysis, before starting the auction, may
be to determine which are the more potential profitable rounds to
participate. It might be done in terms of a possibility distribution
evaluating the potential benefits margin expressed as the expected
difference between the initial sale price and the expected resale one.

e In the suggested algorithm for DBP, in Step 3, it is analysed the
situations that may occur during the round: multiple bids, one bid,
no bid.

In the case of only one bid, if the buyer has not enough credit,
the round is restarted at a higher price. May be this is the usual
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procedure in the actual market, but it seems this results in a
disadvantage for other buyers, why at a higher price?, why not
restart the round at the price in which was stopped?

e It seems that the credit of the buyers is not controlled when the
round begins. Suppose that the reserve price of the good is higher
than the credit of each possible buyer, why not to declare the good
withdrawn?

We are interested both in deepening the analysis of their current
proposal and in the necessary improvements for adapting it to actual
auction houses.
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Chapter 11

Conclusions and Future
Work

In Decision under Uncertainty it is usually the case that the available
information is of qualitative nature rather than numerical. Possibilistic
Qualitative Decision Theory is specially suited for this framework since
it can be based only on ordinal scales of uncertainty and preference.

In this proposal, our aim has been to develop some extensions to the
initial proposal of Dubois and Prade (1995) for making decision under
uncertainty in a framework analogous to vonNeumann and Morgenstern
(1944) assuming that uncertainty is of possibilistic nature. The initial

working hypotheses were:

To deal with individuals’ preferences.

To assume rationality hypothesis, i.e. DM will try to maximise his
benefit.

To deal with one-shot decision problems.

To assume the feasibility of representing DM’s preference relation
on consequences by a preference function v on them is assumed.
But, instead of choosing u as a real-valued-function as it is usual,
we consider that it is defined over a finite linearly ordered set U.

The sets of decisions, of consequences X, and of situations S are
finite.

Uncertainty, assumed of being of possibilistic nature, is measured
on a finite linearly ordered set V.
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e The valuation sets for measuring uncertainty and preferences are
assumed to be commensurate, that is, there exists an onto order
preserving mapping h linking them.

e A decision or act d on S is represented by a function d : S —» X
which provides the consequence of the decision in each situation.
Hence, each decision is identified with a possibility distribution on
consequences. Therefore, choosing decisions amounts to ranking
possibility distributions on consequences.

The original proposal by Dubois and Prade deals with normalised
distributions considering the max-min possibilistic mixture as its internal
operation, in the sense that the qualitative utility functions they propose
not only preserve the ordering but the possibilistic mixture as well.

In this context, the extensions we have proposed are:

e Besides max-min mixtures of possibility distributions, we have
considered other mixtures involving t-norms T on V. We
have axiomatically characterised the behaviour of the generalised
qualitative utility functions that preserve these possibilistic
mixtures. Namely, in the same context but requiring h to further
verify a coherence condition w.r.t. T, we have defined the pessimistic
(optimistic) generalised qualitative utility as:

Vr e II(X), GQU™ (r|u) = ming,ecx n(m(z:)TAi),

with n()\;) = u(z;), ny being the reversing involution in U, and
n = ny o h. The dual optimistic evaluation is defined as

vr e I(X), GQU™(r|u) = mazgcx h(m(z;)Tvi),

where h(7;) = u(x;).
These utilities may result in different rankings than the ones induced
by the qualitative criteria introduced by Dubois and Prade.

e We have considered partially ordered uncertainty and preference
measurement sets. There are certain kinds of decision problems
where we are not able to measure uncertainty and/or preferences
in linearly ordered scales, but only in partially ordered ones. For
example, preference on consequences may be given in terms of a
vectorial function over a product of linear scales if preference is
expressed in terms of a set of criteria. To deal with these types
of problems, we have provided different generalised utility functions
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for these cases taking into account the available operations in the
set of uncertainty values V. We have also been working with
different (finite) lattice structures where to measure preferences and
uncertainty. Again, we have supplied the respective utility functions
for working in these structures and the characterisations of the
preference relations that are representable by them.

e We have considered the applications of the possibilistic decision
models for case-based decision problems. We have proposed to
estimate to what extent a consequence z can be considered plausible,
in a current situation sy after taking a decision d, in terms of the
extent to which the current situation sg is similar to situations in
which z was experienced after taking the decision d. This amounts
to assume, for each case (s,d, z) in a memory M, a principle stating
that

“The more similar sg is to s, the more plausible z is a
consequence of d at sg”.

According to this principle, one can derive the possibility
distribution associated to each decision. Thus, the utility of a
decision can be estimated in terms of its associated distribution.
Besides, we have shown that the utility of a decision may be
evaluated also taking into account the previous behaviours of other
similar decisions.

e In Possibilistic Case-Based Decision Theory or in Decision Making
problems involving several sources of information, we may be faced
with non-normalised possibilistic distributions. We have extended
the model to deal with these types of problems.

e We have also proposed an approach to weaken the commensurability
hypothesis, not requiring h to be onto. We have provided the
characterisations of these resulting orderings for finite linear scales.

e Sometimes it may be not enough to rank distributions taking into
account, for example, the pessimistic criterion, and it is interesting
to refine it by another one, for example by the optimistic one. We
have analysed the characterisations of some refinements involving
the generalised qualitative criteria we have proposed.

The proposed extensions provide us with possibilistic qualitative
models of broader applicability. These decision models may be useful for
a large range of applications in different areas, from Medicine to Economy.
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Future Work

We have provided several extensions to the model, however, it is also true
that there are still several extensions and improvements of Possibilistic
Qualitative Decision Theory to be developed, extensions that will become
interesting not only from a theoretic point of view, but also in order to
provide a better decision theoretic support to many real problems as well.
Let us summarise some of them:

o Commensurability: This hypothesis has been a point for interest of
some researchers (see for example (Fargier and Perny, 1999) in a
la Savage framework). In particular, the onto condition involved
in the commensurability mapping forces us to restrict our work
to problems in which the uncertainty set has a greater cardinality
than the preference one. We have already proposed to weaken this
hypothesis, by not requiring the commensurability mapping h to be
onto, but we have restricted to linear scales and to work with max-
min mixtures. Hence, it will be interesting to extend our analysis
of weakening commensurability to distributive lattices. Moreover,
it will be interesting also to analyse the behaviour of other utility
functions involving t-norms on V. This problem is more complicated
since the onto condition is also required to guarantee the good
definition of the utility functions.

o Refinement Orderings: This point may result specially interesting
since in many applications refinements of orderings are necessary.
We are interested in deepening the analyses on the characterisations
of some refinements involving the generalised qualitative criteria we
have proposed. A related topic is conditional preferences. Sabbadin
(1998a) has worked with them in the Savage framework, and it may
be interesting to see how conditional preferences can be introduced
in our framework.

e Frameworks: There are a number of algebraic structures (e.g.
interval orders, semiorders or distributive lattices without requiring
their maximal elements to be equivalent) that are being applied
by other researchers, in other contexts, for evaluating preferences.
We want to analyse the feasibility of measuring uncertainty and/or
preference in these more general structures.

There are two frameworks that may also result interesting from the
characterisations point of view. Indeed, as it has been mentioned,
Godo and Torra (1998a) propose a method for aggregating
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qualitative information weighted with natural numbers, by mean of
qualitative weighted means involving t-norms on the set of values.
Their characterisations have not been provided yet. (Dubois et al.,
2000) propose a family of mixtures that combines probabilistic and
possibilistic mixtures via a threshold, also suggesting hybrid utility
functions for this framework. We are interested in the behaviour of
these utilities.

Another point is to consider non finite structures for representing
uncertainty and preferences.

Dynamic Decision Problems: There are some works studying the
problem of adapting these possibilistic qualitative decision models
to dynamic problems (Pereira et al., 1997; Fargier et al., 1996). We
are interested in analysing them from the axiomatic setting point of
view.

Applications: As it is obvious, up to now, we have been mainly
involved in the representational issues of these possibilistic decision
models, however, as we are also interested in applying the models,
we hope that in our future works we will be involved in other
actual decision making problems. In particular we are interested
in following with the analysis of the the decision problems involved
in both projects we have been working on.
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