
The Roots of Lisp
paul graham

Draft� January ��� �����

In ����� John McCarthy published a remarkable paper in which he did for pro�
gramming something like what Euclid did for geometry�� He showed how� given
a handful of simple operators and a notation for functions� you can build a
whole programming language� He called this language Lisp� for �List Process�
ing�� because one of his key ideas was to use a simple data structure called a
list for both code and data�

It	s worth understanding what McCarthy discovered� not just as a landmark
in the history of computers� but as a model for what programming is tending to
become in our own time� It seems to me that there have been two really clean�
consistent models of programming so far
 the C model and the Lisp model�
These two seem points of high ground� with swampy lowlands between them�
As computers have grown more powerful� the new languages being developed
have been moving steadily toward the Lisp model� A popular recipe for new
programming languages in the past �� years has been to take the C model
of computing and add to it� piecemeal� parts taken from the Lisp model� like
runtime typing and garbage collection�

In this article I	m going to try to explain in the simplest possible terms
what McCarthy discovered� The point is not just to learn about an interest�
ing theoretical result someone �gured out forty years ago� but to show where
languages are heading� The unusual thing about Lispin fact� the de�ning
quality of Lispis that it can be written in itself� To understand what Mc�
Carthy meant by this� we	re going to retrace his steps� with his mathematical
notation translated into running Common Lisp code�

� Seven Primitive Operators

To start with� we de�ne an expression� An expression is either an atom� which
is a sequence of letters �e�g� foo�� or a list of zero or more expressions� separated
by whitespace and enclosed by parentheses� Here are some expressions


foo

��

�foo�

�foo bar�

�a b �c� d�

The last expression is a list of four elements� the third of which is itself a list of
one element�

��Recursive Functions of Symbolic Expressions and Their Computation by Machine� Part
I�� Communications of the ACM ���� April ��	
� pp� �������

�



In arithmetic the expression � � � has the value �� Valid Lisp expressions
also have values� If an expression e yields a value v we say that e returns v� Our
next step is to de�ne what kinds of expressions there can be� and what value
each kind returns�

If an expression is a list� we call the �rst element the operator and the
remaining elements the arguments� We are going to de�ne seven primitive �in
the sense of axioms� operators
 quote� atom� eq� car� cdr� cons� and cond�

�� �quote x� returns x� For readability we will abbreviate �quote x� as �x�

� �quote a�

a

� �a

a

� �quote �a b c��

�a b c�

�� �atom x� returns the atom t if the value of x is an atom or the empty
list� Otherwise it returns ��� In Lisp we conventionally use the atom t to
represent truth� and the empty list to represent falsity�

� �atom �a�

t

� �atom ��a b c��

��

� �atom ����

t

Now that we have an operator whose argument is evaluated we can show
what quote is for� By quoting a list we protect it from evaluation� An
unquoted list given as an argument to an operator like atom is treated as
code


� �atom �atom �a��

t

whereas a quoted list is treated as mere list� in this case a list of two
elements


� �atom ��atom �a��

��

This corresponds to the way we use quotes in English� Cambridge is a
town in Massachusetts that contains about ������ people� �Cambridge�
is a word that contains nine letters�

�



Quote may seem a bit of a foreign concept� because few other languages
have anything like it� It	s closely tied to one of the most distinctive features
of Lisp
 code and data are made out of the same data structures� and the
quote operator is the way we distinguish between them�

�� �eq x y� returns t if the values of x and y are the same atom or both the
empty list� and �� otherwise�

� �eq �a �a�

t

� �eq �a �b�

��

� �eq ��� ����

t

�� �car x� expects the value of x to be a list� and returns its �rst element�

� �car ��a b c��

a

�� �cdr x� expects the value of x to be a list� and returns everything after
the �rst element�

� �cdr ��a b c��

�b c�

�� �cons x y� expects the value of y to be a list� and returns a list containing
the value of x followed by the elements of the value of y�

� �cons �a ��b c��

�a b c�

� �cons �a �cons �b �cons �c ������

�a b c�

� �car �cons �a ��b c���

a

� �cdr �cons �a ��b c���

�b c�

�� �cond �p� e�� � � � �pn en�� is evaluated as follows� The p expressions are
evaluated in order until one returns t� When one is found� the value of
the corresponding e expression is returned as the value of the whole cond
expression�

� �cond ��eq �a �b� �first�

��atom �a� �second��

second

�



In �ve of our seven primitive operators� the arguments are always evaluated
when an expression beginning with that operator is evaluated�� We will call an
operator of that type a function�

� Denoting Functions

Next we de�ne a notation for describing functions� A function is expressed as
�lambda �p� � � � pn� e�� where p� � � � pn are atoms �called parameters� and e is
an expression� An expression whose �rst element is such an expression

��lambda �p� � � � pn� e� a� � � � an�

is called a function call and its value is computed as follows� Each expression
ai is evaluated� Then e is evaluated� During the evaluation of e� the value of
any occurrence of one of the pi is the value of the corresponding ai in the most
recent function call�

� ��lambda �x� �cons x ��b��� �a�

�a b�

� ��lambda �x y� �cons x �cdr y���

�z

��a b c��

�z b c�

If an expression has as its �rst element an atom f that is not one of the primitive
operators

�f a� � � � an�

and the value of f is a function �lambda �p� � � � pn� e� then the value of the
expression is the value of

��lambda �p� � � � pn� e� a� � � � an�

In other words� parameters can be used as operators in expressions as well as
arguments


� ��lambda �f� �f ��b c���

��lambda �x� �cons �a x���

�a b c�

There is another notation for functions that enables the function to refer to
itself� thereby giving us a convenient way to de�ne recursive functions�� The

�Expressions beginning with the other two operators� quote and cond� are evaluated dif�
ferently� When a quote expression is evaluated� its argument is not evaluated� but is simply
returned as the value of the whole quote expression� And in a valid cond expression� only an
L�shaped path of subexpressions will be evaluated�

�Logically we don�t need to de�ne a new notation for this� We could de�ne recursive
functions in our existing notation using a function on functions called the Y combinator� It
may be that McCarthy did not know about the Y combinator when he wrote his paper� in
any case� label notation is more readable�

�



notation

�label f �lambda �p� � � � pn� e��

denotes a function that behaves like �lambda �p� � � � pn� e�� with the additional
property that an occurrence of f within e will evaluate to the label expression�
as if f were a parameter of the function�

Suppose we want to de�ne a function �subst x y z�� which takes an ex�
pression x� an atom y� and a list z� and returns a list like z but with each
instance of y �at any depth of nesting� in z replaced by x�

� �subst �m �b ��a b �a b c� d��

�a m �a m c� d�

We can denote this function as

�label subst �lambda �x y z�

�cond ��atom z�

�cond ��eq z y� x�

��t z���

��t �cons �subst x y �car z��

�subst x y �cdr z�������

We will abbreviate f � �label f �lambda �p� � � � pn� e�� as

�defun f �p� � � � pn� e�

so

�defun subst �x y z�

�cond ��atom z�

�cond ��eq z y� x�

��t z���

��t �cons �subst x y �car z��

�subst x y �cdr z�������

Incidentally� we see here how to get a default clause in a cond expression� A
clause whose �rst element is �t will always succeed� So

�cond �x y� ��t z��

is equivalent to what we might write in a language with syntax as

if x then y else z

� Some Functions

Now that we have a way of expressing functions� we de�ne some new ones in
terms of our seven primitive operators� First it will be convenient to introduce

�



some abbreviations for common patterns� We will use cxr� where x is a sequence
of as or ds� as an abbreviation for the corresponding composition of car and
cdr� So for example �cadr e� is an abbreviation for �car �cdr e��� which
returns the second element of e�

� �cadr ���a b� �c d� e��

�c d�

� �caddr ���a b� �c d� e��

e

� �cdar ���a b� �c d� e��

�b�

Also� we will use �list e� � � � en� for �cons e� � � � �cons en ���� � � � ��

� �cons �a �cons �b �cons �c ������

�a b c�

� �list �a �b �c�

�a b c�

Now we de�ne some new functions� I	ve changed the names of these functions
by adding periods at the end� This distinguishes primitive functions from those
de�ned in terms of them� and also avoids clashes with existing Common Lisp
functions�

�� �null� x� tests whether its argument is the empty list�

�defun null� �x�

�eq x �����

� �null� �a�

��

� �null� ����

t

�� �and� x y� returns t if both its arguments do and �� otherwise�

�defun and� �x y�

�cond �x �cond �y �t� ��t ������

��t ������

� �and� �atom �a� �eq �a �a��

t

� �and� �atom �a� �eq �a �b��

��

�� �not� x� returns t if its argument returns ��� and �� if its argument
returns t�

�



�defun not� �x�

�cond �x ����

��t �t���

� �not �eq �a �a��

��

� �not �eq �a �b��

t

�� �append� x y� takes two lists and returns their concatenation�

�defun append� �x y�

�cond ��null� x� y�

��t �cons �car x� �append� �cdr x� y�����

� �append� ��a b� ��c d��

�a b c d�

� �append� ��� ��c d��

�c d�

�� �pair� x y� takes two lists of the same length and returns a list of two�
element lists containing successive pairs of an element from each�

�defun pair� �x y�

�cond ��and� �null� x� �null� y�� ����

��and� �not� �atom x�� �not� �atom y���

�cons �list �car x� �car y��

�pair� �cdr x� �cdr y������

� �pair� ��x y z� ��a b c��

��x a� �y b� �z c��

�� �assoc� x y� takes an atom x and a list y of the form created by pair��
and returns the second element of the �rst list in y whose �rst element is
x�

�defun assoc� �x y�

�cond ��eq �caar y� x� �cadar y��

��t �assoc� x �cdr y�����

� �assoc� �x ���x a� �y b���

a

� �assoc� �x ���x new� �x a� �y b���

new

�



� The Surprise

So we can de�ne functions that concatenate lists� substitute one expression for
another� etc� An elegant notation� perhaps� but so what� Now comes the
surprise� We can also� it turns out� write a function that acts as an interpreter
for our language
 a function that takes as an argument any Lisp expression� and
returns its value� Here it is


�defun eval� �e a�

�cond

��atom e� �assoc� e a��

��atom �car e��

�cond

��eq �car e� �quote� �cadr e��

��eq �car e� �atom� �atom �eval� �cadr e� a���

��eq �car e� �eq� �eq �eval� �cadr e� a�

�eval� �caddr e� a���

��eq �car e� �car� �car �eval� �cadr e� a���

��eq �car e� �cdr� �cdr �eval� �cadr e� a���

��eq �car e� �cons� �cons �eval� �cadr e� a�

�eval� �caddr e� a���

��eq �car e� �cond� �evcon� �cdr e� a��

��t �eval� �cons �assoc� �car e� a�

�cdr e��

a����

��eq �caar e� �label�

�eval� �cons �caddar e� �cdr e��

�cons �list �cadar e� �car e�� a���

��eq �caar e� �lambda�

�eval� �caddar e�

�append� �pair� �cadar e� �evlis� �cdr e� a��

a�����

�defun evcon� �c a�

�cond ��eval� �caar c� a�

�eval� �cadar c� a��

��t �evcon� �cdr c� a����

�defun evlis� �m a�

�cond ��null� m� ����

��t �cons �eval� �car m� a�

�evlis� �cdr m� a�����

The de�nition of eval� is longer than any of the others we	ve seen before� Let	s
consider how each part works�

The function takes two arguments
 e� the expression to be evaluated� and
a� a list representing the values that atoms have been given by appearing as

�



parameters in function calls� This list is called the environment� and it is of the
form created by pair�� It was in order to build and search these lists that we
wrote pair� and assoc��

The spine of eval� is a cond expression with four clauses� How we evaluate
an expression depends on what kind it is� The �rst clause handles atoms� If e
is an atom� we look up its value in the environment


� �eval� �x ���x a� �y b���

a

The second clause of eval� is another cond for handling expressions of the
form �a � � ��� where a is an atom� These include all the uses of the primitive
operators� and there is a clause for each one�

� �eval� ��eq �a �a� ����

t

� �eval� ��cons x ��b c��

���x a� �y b���

�a b c�

All of these �except quote� call eval� to �nd the value of the arguments�
The last two clauses are more complicated� To evaluate a cond expression

we call a subsidiary function called evcon�� which works its way through the
clauses recursively� looking for one in which the �rst element returns t� When
it �nds such a clause it returns the value of the second element�

� �eval� ��cond ��atom x� �atom�

��t �list��

���x ��a b����

list

The �nal part of the second clause of eval� handles calls to functions that
have been passed as parameters� It works by replacing the atom with its value
�which ought to be a lambda or label expression� and evaluating the resulting
expression� So

�eval� ��f ��b c��

���f �lambda �x� �cons �a x�����

turns into

�eval� ���lambda �x� �cons �a x�� ��b c��

���f �lambda �x� �cons �a x�����

which returns �a b c��
The last two clauses in eval� handle function calls in which the �rst ele�

ment is an actual lambda or label expression� A label expression is evaluated
by pushing a list of the function name and the function itself onto the environ�
ment� and then calling eval� on an expression with the inner lambda expression
substituted for the label expression� That is�

�



�eval� ���label firstatom �lambda �x�

�cond ��atom x� x�

��t �firstatom �car x������

y�

���y ��a b� �c d�����

becomes

�eval� ���lambda �x�

�cond ��atom x� x�

��t �firstatom �car x�����

y�

���firstatom

�label firstatom �lambda �x�

�cond ��atom x� x�

��t �firstatom �car x�������

�y ��a b� �c d�����

which eventually returns a�
Finally� an expression of the form ��lambda �p� � � � pn� e� a� � � � an� is eval�

uated by �rst calling evlis� to get a list of values �v� � � � vn� of the arguments
a� � � � an� and then evaluating e with �p� v�� � � � �pn vn� appended to the front
of the environment� So

�eval� ���lambda �x y� �cons x �cdr y���

�a

��b c d��

����

becomes

�eval� ��cons x �cdr y��

���x a� �y �b c d����

which eventually returns �a c d��

� Aftermath

Now that we understand how eval works� let	s step back and consider what
it means� What we have here is a remarkably elegant model of computation�
Using just quote� atom� eq� car� cdr� cons� and cond� we can de�ne a function�
eval�� that actually implements our language� and then using that we can de�ne
any additional function we want�

There were already models of computation� of coursemost notably the
Turing Machine� But Turing Machine programs are not very edifying to read�
If you want a language for describing algorithms� you might want something
more abstract� and that was one of McCarthy	s aims in de�ning Lisp�

��



The language he de�ned in ���� was missing a lot� It has no side�e�ects� no
sequential execution �which is useful only with side e�ects anyway�� no practical
numbers�� and dynamic scope� But these limitations can be remedied with
surprisingly little additional code� Steele and Sussman show how to do it in a
famous paper called �The Art of the Interpreter���

If you understand McCarthy	s eval� you understand more than just a stage
in the history of languages� These ideas are still the semantic core of Lisp today�
So studying McCarthy	s original paper shows us� in a sense� what Lisp really is�
It	s not something that McCarthy designed so much as something he discovered�
It	s not intrinsically a language for AI or for rapid prototyping� or any other
task at that level� It	s what you get �or one thing you get� when you try to
axiomatize computation�

Over time� the median language� meaning the language used by the median
programmer� has grown consistently closer to Lisp� So by understanding eval

you	re understanding what will probably be the main model of computation
well into the future�

�It is possible to do arithmetic in McCarthy�s ��	
 Lisp by using e�g� a list of n atoms to
represent the number n�

�Guy Lewis Steele� Jr� and Gerald Jay Sussman� �The Art of the Interpreter� or the
Modularity Complex �Parts Zero� One� and Two��� MIT AI Lab Memo ��� May �����

��



Notes

In translating McCarthy	s notation into running code I tried to change as little
as possible� I was tempted to make the code easier to read� but I wanted to
keep the �avor of the original�

In McCarthy	s paper� falsity is represented by f� not the empty list� I used
�� to represent falsity so that the examples would work in Common Lisp� The
code nowhere depends on falsity happening also to be the empty list� nothing
is ever consed onto the result returned by a predicate�

I skipped building lists out of dotted pairs� because you don	t need them to
understand eval� I also skipped mentioning apply� though it was apply �a very
early form of it� whose main purpose was to quote arguments� that McCarthy
called the universal function in ����� evalwas then just a subroutine that apply
called to do all the work�

I de�ned list and the cxrs as abbreviations because that	s how McCarthy
did it� In fact the cxrs could all have been de�ned as ordinary functions� So
could list if we modi�ed eval� as we easily could� to let functions take any
number of arguments�

McCarthy	s paper only had �ve primitive operators� He used cond and
quote but may have thought of them as part of his metalanguage� He likewise
didn	t de�ne the logical operators and and not� but this is less of a problem
because adequate versions can be de�ned as functions�

In the de�nition of eval� we called other functions like pair� and assoc��
but any call to one of the functions we de�ned in terms of the primitive operators
could be replaced by a call to eval�� That is�

�assoc� �car e� a�

could have been written as

�eval� ���label assoc�

�lambda �x y�

�cond ��eq �caar y� x� �cadar y��

��t �assoc� x �cdr y������

�car e�

a�

�cons �list �e e� �cons �list �a a� a���

There was a small bug in McCarthy	s eval� Line �� was �equivalent to�
�evlis� �cdr e� a� instead of just �cdr e�� which caused the arguments in
a call to a named function to be evaluated twice� This suggests that this de�
scription of eval had not yet been implemented in IBM ��� machine language
when the paper was submitted� It also shows how hard it is to be sure of the
correctness of any length of program without trying to run it�

I encountered one other problem in McCarthy	s code� After giving the def�
inition of eval he goes on to give some examples of higher�order functions
functions that take other functions as arguments� He de�nes maplist


��



�label maplist

�lambda �x f�

�cond ��null x� ����

��t �cons �f x� �maplist �cdr x� f������

then uses it to write a simple function diff for symbolic di�erentiation� But
diff passes maplist a function that uses x as a parameter� and the reference
to it is captured by the parameter x within maplist��

It	s an eloquent testimony to the dangers of dynamic scope that even the
very �rst example of higher�order Lisp functions was broken because of it� It
may be that McCarthy was not fully aware of the implications of dynamic scope
in ����� Dynamic scope remained in Lisp implementations for a surprisingly
long timeuntil Sussman and Steele developed Scheme in ����� Lexical scope
does not complicate the de�nition of eval very much� but it may make compilers
harder to write�

�Present day Lisp programmers would use mapcar instead of maplist here� This example
does clear up one mystery� why maplist is in Common Lisp at all� It was the original mapping
function� and mapcar a later addition�

��


