
LISP AND SYMBOLIC COMPUTATION, 10, 39–60 (1997)
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Adding Support for Persistence to CLOS via Its
Metaobject Protocol

ARTHUR H. LEE alee@psl.korea.ac.kr
Department of Computer Science, Korea University, Seoul 136-701 Korea

JOSEPH L. ZACHARY zachary@cs.utah.edu
Department of Computer Science, University of Utah, Salt Lake City, UT 84112 USA

Abstract. Language-level support for object persistence frees programmers from having to confront a broad class
of database issues from within their applications. By virtue of its metaobject protocol, CLOS is a language whose
semantics can be tailored by individual programmers. We used the metaobject protocol to extend CLOS with
support for object persistence. Our goal was to obtain a version of CLOS with persistence to which we could
easily port a commercial geometric CAD modeling system. We describe the design and implementation of our
persistence extension and highlight the strengths and weaknesses exhibited by the CLOS metaobject protocol
during our experiment. For many aspects of the implementation we found that the metaobject protocol was ideal.
In other cases we had to choose among paying a large performance penalty, extending the protocol, and bypassing
the protocol by modifying the language implementation directly.

Keywords: Open Implementation, Metaobject Protocol, Object Persistence, CLOS

1. Introduction

Language-level support for object persistence frees application programmers from having
to deal with a broad class of software engineering concerns. Without adequate support for
object persistence at the language level, programmers must confront database issues from
within their applications. We faced this issue within the context of the Conceptual Design
and Rendering System (CDRS) [14, 15], a geometric CAD modeling system, written in the
Common Lisp Object System (CLOS), that is being used in dozens of major automotive
and product design companies worldwide.

CLOS [3] has an open implementation by virtue of its metaobject protocol. By encapsulat-
ing a fundamental portion of its semantics within a set of default classes and empowering the
programmer to derive new versions of these classes, the designers of CLOS have provided
a language whose semantics can be tailored by individual programmers.

We used the metaobject protocol to extend CLOS with support for object persistence.
Our goal was to obtain a version of CLOS with persistence to which we could easily port
CDRS. We originally wanted to modify CLOS strictly via the metaobject protocol, so that
no changes to the compiler, runtime system, or the existing application program would
be required. Although we ultimately compromised slightly on this point and devoted
considerable engineering effort to the implementation, the final product, although fully
expressive, was judged too inefficient for commercial use.

In this paper we will focus on describing the design and implementation of our persistent
CLOS and highlight the strengths and weaknesses exhibited by the CLOS metaobject



40 LEE AND ZACHARY

protocol during our experiment. (A detailed presentation of the design and an analysis of
performance measurements appears in [17].) We will also describe some of the main issues
that we had to resolve while adding persistence to CLOS. Adding persistence to CLOS is
no small undertaking, and the metaobject protocol is quite general, so we are convinced that
our experience is relevant to programming at the metalevel in general. For many aspects of
the implementation we found that the metaobject protocol was ideal. In other cases we had
to choose among paying a large performance penalty, extending the protocol, and bypassing
the protocol entirely by modifying the language implementation directly. Some of these
difficulties were language-specific (due to CLOS) while others were problem-specific (due
to the nature of implementing persistence).

The remainder of this paper is organized as follows. In Section 2 we discuss object
persistence, open implementation, the CLOS metaobject protocol, and our approach to
adding persistence via metalevel programming. In Section 3 we describe in detail how we
used the metaobject protocol to add support for object persistence. In Section 4 we describe
a minor extension that we had to make to the protocol to deal with one level of indirection
on slot accesses. In Section 5 we detail how incremental saves of objects to the database
are handled, and in Section 6 we describe how we cope with shared, structured, non-object
data. After we survey other uses of programming at the metalevel in Section 7, we conclude
in Section 8.

2. Background

2.1. Motivating Application

The Conceptual Design and Rendering System (CDRS) [14, 15] is a geometric CAD modeler
that is being used by designers in dozens of major automotive and product design companies
worldwide. The work presented in this paper was initially motivated by the problems of
object persistence encountered in CDRS. CDRS is an object-intensive application written
mostly in Common Lisp [29] as extended by CLOS. A typical model manipulated by
CDRS contains tens of thousands of objects that may not all fit into memory, exhibits a
wide variation in the sizes of objects, requires complex data structures within objects, and
has rich semantic and structural relationships among objects. Supporting object persistence
is particularly difficult in the presence of these characteristics.

CDRS uses a naive file-based, batch-oriented approach to object persistence that has
proven ill-suited to the mix of objects that it manipulates [16]. All objects in a model are
saved to a file at the end of a design session and are reloaded at the beginning of the next
session. This approach requires a huge amount of physical memory, frequent large garbage
collections, and a long time to load and save models. CDRS uses 500 megabytes of swap
space, requires up to 128 megabytes of main memory, and spends almost 30 minutes loading
or saving a typical model. To make matters worse, users tend to save models frequently for
fear of losing them due to reliability problems.

The solution that we sought was to introduce a tighter interface with a database system by
providing incremental saves and loads. We attempted to do this not by modifying CDRS
but by modifying CLOS via its metaobject protocol.



ADDING SUPPORT FOR PERSISTENCE TO CLOS 41

2.2. Open Implementation

Traditionally, black box abstraction has been used to control the complexity of a software
module by exposing its functionality while hiding its implementation. Recently, however,
researchers have explored a different kind of modularity calledopen implementation[10,
11, 12, 13, 19].

Under black box abstraction, the implementation decisions encapsulated within a module
are generally made in the light of assumptions about the way in which the client will
ultimately use the module. Kiczales [11] terms such decisions, necessarily made in the
face of incomplete information,mapping decisions. A mapping conflictoccurs when the
assumptions made by the implementor work at cross purposes to an eventual client’s actual
needs. Clients typically resolve mapping conflicts by adding extra code to their applications
to compensate for the mapping decisions made in the module. Kiczales calls this “coding
between the lines.”

The open implementation approach separates implementation decisions intobaseand
metaparts. The base part of the implementation is closed as in a black box abstraction.
The meta part is open to modification by clients via the meta interface specified by the
module designer, who carefully decides what will be open and what will be closed. An
open implementation thus has both a conventional interface (exposing functionality) and a
meta interface (exposing aspects of the implementation).

2.3. The CLOS Metaobject Protocol

CLOS has an open implementation, and the CLOS metaobject protocol is the language’s
meta interface. It is implemented in an object-oriented fashion by exploiting reflective
techniques [26, 27]. Via the metaobject protocol, users can alter the semantics of CLOS by
using the standard object-oriented techniques of subclassing, specialization, and method
combination.

Programmers build applications in CLOS by making use of the five basic elements of the
language: classes, slots, methods, generic functions, and method combinations. Each such
element in a program is represented as a CLOS object. This object is called ametaobject, and
its class is called ametaclass. For example, a user-defined classstudentwill be represented
as a metaobject that contains the structure and gives the semantics of thestudent class.

Because of this organization, the default semantics of CLOS can be given by the imple-
mentations of five metaclasses, one for each of classes, slots, methods, generic functions,
and method combinations. The larger part of these implementations comprise thebasepart
of CLOS.

The five metaclasses from which metaobjects are made behave much like other classes
in CLOS. Thus, one can change the semantics of a metaobject by modifying its metaclass.
Although a user class definition can be freely changed, a metaclass definition can only
be changedincrementallyvia subclassing, specialization, and method combination. Those
aspects of the language that can be changed in this fashion comprise themetapart of CLOS.
This meta interface—the metaobject protocol—is part of the CLOS definition.



42 LEE AND ZACHARY

-� Database

Application

Meta

Store

CLOS

Common Lisp

Figure 1. MetaStore architecture

2.4. MetaStore

We used the metaobject protocol to add persistent objects to CLOS. The resulting system,
MetaStore, has two major components: a language extension portion (Meta) that was
implemented via the CLOS metaobject protocol, and a persistent object store (Store) that
provides database management. The organization of MetaStore is diagrammed in Figure 1.
Our goal in extending CLOS and creating MetaStore was to incorporate persistence into
the existing CDRS implementation in as transparent a manner as possible. We will focus in
this paper on describing the language extension portion and detailing the lengths to which
we eventually went to provide transparent persistence via the metaobject protocol.

MetaStore supports the creation of persistent objects at the user level via inheritance. An
application programmer specifies that the objects of some class, sayC, are to be persistent
by specifying the metaclass ofC to bepersistable-metaclass rather than the default
standard-class. Thestandard-class metaclass encapsulates the properties that all
user-defined classes have in common, andpersistablemetaclassmakes persistence one
of those properties.

We distinguishtransient objectsfrompersistable objects. A transient object is an object in
the conventional sense, whereas a persistable object is one whose value can persist between
sessions. Based on our experience with CDRS, there are many classes whose objects need
not be saved because they can be easily reconstructed. In the case of CDRS, treating all the
data in a program as persistable, as is done in PS-Algol [6] and by Jacobs [9], would have
been both unnecessary and impractical.

A persistable object becomes apersistent objectwhen it is eventually saved to the object
base. This distinction is important, since our experience with CDRS shows that about 90%
of the data that is created is never written to the database; instead, it is collected as garbage.
We also distinguish between persistable and transient slots within a persistable object. Only
the persistable slots of a persistable object are ever saved to the object store; the contents
of transient slots are discarded.



ADDING SUPPORT FOR PERSISTENCE TO CLOS 43

Finally, we distinguish atomic and composite slots. Anatomicslot is one whose value
is of an atomic data type, whereas acomposite slothas as its value composite data such as
arrays and lists. In CDRS, we found that over 85% of the space occupied by a typical object
was consumed by a small number of large slot values. Saving and restoring an object as a
single entity, including all of these large slot values, would have been impractical. Instead,
we decided to save and restore composite slot values as separate entities.

The application programmer’s interface to MetaStore is illustrated by the class definition
below.

(defclass student ()
((name :initform "")
(id :initform -1)
(major :initform ’undecided)
(hobby :initform ’guitar :TRANSIENT T)) (1)
(:METACLASS PERSISTABLE-METACLASS)) (2)

Line (2) of thestudent class causes MetaStore to treatstudent objects as persistable,
while line (1) specifies thathobby is a transient slot. Our original goal was that the
inclusion of:METACLASS and:TRANSIENT options be theonlyhooks from an application
into MetaStore. As we detail in the next section, we ultimately retreated somewhat from
this goal in the face of compelling efficiency concerns.

A persistable object, like any other object, is created by a call to the CLOS method
make-instance. In MetaStore, when a persistable object is created, it is assigned a unique
persistent identifier (PID). The persistable object in Figure 2 contains a PID slot in addition
to the user-defined atomic slota and composite slotb. A unique PID is necessary to map
physical addresses to logical addresses as objects are saved to the object base, and to map
from logical addresses to physical addresses as objects are loaded from the object base.
Address translations in MetaStore are done by pointer swizzling [16].

When an atomic persistable slot of a persistable object is modified, thedirty bit of the
object is set (see Figure 2). This slot, just like the PID, is added automatically when a
persistable object is created.

Composite slots are handled differently. Upon creation of a persistable object, an interme-
diary data structure called aphole(persistenthole, much like a placeholder in MultiScheme

O1: pid 25

dirtyp nil

a 3.33

b - phole1 - (list-10)

Figure 2. A persistable object in MetaStore



44 LEE AND ZACHARY

O2: pid 27

dirtyp nil

a 3.4

b

c 50

d

- phole1 - array-10

- phole2 - (list-20)

Memory Disk

Figure 3. A husk object

[20]) is added between the object and each of its persistable composite slot values. A dirty
bit for the composite slot is maintained in its phole. When the slot value is modified or
mutated it is the phole, instead of the object, that is marked as dirty. Thus, MetaStore uses
a two-level dirty bit scheme to support its slot-level persistence granularity.

The dirty bits in the pholes within an object are used to determine which persistable
composite slots must be written to the database when an object is saved. The persistable
atomic slots of a dirty object are saved as an object, and the dirty composite slots are saved
separately. All newly created-objects and composite values are treated as dirty, of course,
until they are first saved.

MetaStore implements persistence by maintaining a virtual object space within virtual
memory. As the object space fills, MetaStore flushes some of the objects to disk and makes
their virtual images available for garbage collection. When an object isflushed, only the
values of its composite slots are saved to disk and removed from virtual memory. The
object that remains, with its composite slots referring to uninstantiated pholes (Figure 3),
is called ahusk1.

When the process that created an object terminates, the husk itself is finally saved (if
necessary) and removed from virtual memory. When another process loads the saved object,
only the husk is initially loaded (unless the object is requested to be fully instantiated). The
values of the composite slots are loaded lazily as demanded by the application. From
an application’s point of view, this approach to loading, along with the incremental saves,
amortizes the costs of saving and loading models over an entire design session, thus reducing
the user’s waiting time.



ADDING SUPPORT FOR PERSISTENCE TO CLOS 45

3. Structure and Behavior of Persistable Objects

The metaobject protocol is ideal for making language extensions that involve modifications
to the structure of objects or simple changes to their behavior. We made a number of
such extensions in MetaStore, including such things as maintaining PIDs and dirty bits,
differentiating transient and persistable objects, and specializing the behavior of read and
write accesses. We describe some of the key modifications in this section.

3.1. Persistable Class Metaobject Class

The first step in modifying the behavior of objects is to definepersistablemetaclass
as a subclass ofstandard-class. Whereasstandard-class encapsulates the standard
behavior of classes as defined by CLOS,persistable-metaclass is used to modify that
behavior in support of persistence. The new class is an example of a specialized class
metaobject class [12].

(defclass persistable-metaclass
(standard-class)

())

This new class, of course, specifies the same structure and behavior as its superclass at this
point. Aspects of the behavior of each instance (i.e., object) of a user-defined persistable
class are governed by an instance (i.e., metaobject) of this metalevel class. By adding to
persistable-metaclass using the mechanism established by the metaobject protocol,
we were able to make the extensions described in the remainder of this section.

3.2. Persistence via Inheritance

MetaStore treats transient and persistable objects differently by using inheritance to dif-
ferentiate the two kinds of objects. MetaStore definespersistable-root-class and
makes it a superclass of each persistable user class. A user class does not have to specify
persistable-root-class explicitly as a superclass, and thus it remains invisible to user
programs. Instead, theinitialize-instance phase of class definition is modified via
the metaobject protocol to incorporate the superclass automatically.

The purpose ofpersistable-root-class is twofold. Structurally, it adds extra infor-
mation such as a persistent ID (pid) and a dirty bit (dirtyp) to each object:

(defclass persistable-root-class ()
((oid :initform (make-oid ...))
(dirtyp :initform t ...)
)
(:metaclass persistable-metaclass))

Behaviorally,persistable-root-class provides the following functionality for all
persistable classes:



46 LEE AND ZACHARY

• It provides the default method for checking the consistency of objects, which MetaStore
runs before an object is saved. This default method is a dummy routine; it exists to
provide a method that application programs can specialize via inheritance. It is common
for an object in CDRS to have “wrong” data; this method affords a way for an application
to detect and repair problems before an object is saved.

• It handles flushing out objects as required by the virtual object memory manager. For
a detailed description of the virtual object memory management algorithm see [16].

• It handles encoding objects for saving and decoding them for loading. Address trans-
lations are done as a part of this process.

3.3. Persistent Identity and Creating Persistable Objects and Husks

MetaStore customizes the behavior of themake-instance method. When a persistable
object is created by a call tomake-instance:

• Pholes are added to each persistable composite slot.

• The necessary information for the virtual object memory is recorded.

When an object is loaded, it is loaded as a husk. Husk creation is handled somewhat
differently from object creation. When an object is created via a call tomake-instance:

• An instance is allocated by the protocol routineallocate-instance.

• The allocated instance is initialized with values specified forinitforms in slot defini-
tions.

When a huskO is to be created from an object stored on disk, we could do so by calling
make-instance and then replacing the atomic slot values ofOwith the saved values and the
composite slot values ofO with empty pholes. This would waste time and space because
the values specified by theinitforms would be computed and immediately discarded.
Instead, a husk is created as follows:

• An instance is allocated by the routineallocate-instance.

• Only the transient slots are initialized with values specified forinitforms in slot
definitions.

3.4. Accessing Objects

Each read or write access is intercepted by the metaobject protocol so that appropriate
persistence-related actions can be performed.

On a read access, if the accessed slot is a persistable composite slot that is not yet loaded,
then the value of the slot is read in from disk. If the slot is a transient or atomic slot, then



ADDING SUPPORT FOR PERSISTENCE TO CLOS 47

the value should already be in memory and is returned. All this is handled by modifying
the behavior of theslot-value-using-class method, which is the workhorse of the
user accessible routineslot-value. This is done by defining an:around method on
slot-value-using-class.

A write access is more complicated than a read access. On a write access to a non-transient
slot, the following are taken care of by MetaStore:

• If both the current and new values are atomic, set the object’s dirty bit.

• If the current value is atomic (or uninitialized) and the new value is composite, add a
phole to the slot with its dirty bit set. Set the dirty bit of the object as well.

• If the current value is composite and the new value is atomic, remove the phole and set
the object’s dirty bit.

• If both the current and new values are composite, set the phole’s dirty bit.

All of this is handled by modifying the behavior of(setf slot-value-usingclass),
which is the workhorse of the user accessible routine(setf slot-value). This is done
by defining an:around method on(setf slot-value-using-class).

3.5. PersistableSlot-DefinitionMetaobject Class

When a class definition is processed, aslot-definitionmetaobject class is created for each
slot. MetaStore defines an extra slot option,:transient, so that each slot can be declared
as transient or persistable. This is supported in two places:

• standard-direct-slot-definition: The instances of this class hold intermedi-
ate, not yet fully processed slot-related information from the class definition form.
We definepersistable-standard-direct-slot-definition as a subclass of
standard-direct-slot-definition with an extra slot,transientp, and its
:initarg, :transient.

• standard-effective-slot-definition: The instances of this class hold slot-
related information that has been fully processed (finalized) using inheritance rules.
We definepersistable-standard-effective-slot-definition as a subclass
of standard-effective-slot-definition with extra slottransientp and its
:initarg, :transient.

Thus far, we have taken care of the static parts. We also have to tell the system whichslot-
definitionmetaobject class should be instantiated to implement each persistable slot. We do
this by giving implementations ofpersistable-standarddirect-slot-definition
as well aspersistable-standard-effective-slotdefinition. These are used by
two generic functions: the former is used bydirect-slot-definition-class and the
latter byeffective-slot-definitionclass. Both initialization and reinitialization of



48 LEE AND ZACHARY

instances are funneled to the generic functionshared-initialize. Here, we first make
the value of slot option:transient available for use.

There is one more thing to take care of. A rule for inheritance regarding transience of
slots must be enforced. A slot is treated as transient only if all classes in the inheritance
chain that define a slot with that name have the same declaration. (This was also done in
[23].) This is done at the time effective slot definitions are computed by the generic function
compute-effective-slot-definition.

4. Indirection on Slot Access

MetaStore supports persistence at the slot level, thus requiring us to maintain one level of
indirection for each persistable composite slot. The contents of a persistable composite slot
is a pointer to a phole, which (among other things) contains a pointer to the actual composite
slot value.

When a user program issues aslot-value call to a persistable slot, MetaStore must
follow pointers and return the value stored in the phole. The implementation of MetaStore,
however, must sometimes directly obtain the phole via the same call. Supporting this
behavior was not entirely straightforward.

The solution requires providing two different semantics forslot-value depending upon
where and for what purpose it is called. The metaobject protocol provides no support for
this differentiation. Solving this problem involved making minor modifications to the
protocol. Specifically, we had to add an extra method for accessing slot values at the
protocol implementation level. This kind of language-specific problem in CLOS could be
avoided by a minor change to the design of the protocol.

5. Maintaining Dirty Bits

Only dirty (modified) persistable objects are ever saved to the database. Because the small-
est grain size of persistence is the composite slot, each persistable object and persistable
composite slot value has its own dirty bit. Maintaining the dirty bits of objects was straight-
forward. We will concern ourselves here with the much more challenging problem of
maintaining the dirty bits of composite slots.

The dirty bit of a composite slot is kept in its phole, and must be set whenever the slot is
written or its contents are modified. Doing this via the metaobject protocol proved difficult.
Performing a write on a slot value via the public interface of the containing object, i.e., via
(setf slot-value), poses no problem. The problem occurs when programmers obtain
a slot value via areadaccess (viaslot-value or an accessor) and then mutate that value.
The following code fragment demonstrates the problem.

(let ((arr1 (slot-value object1 ’slot1)))
(setf (aref arr1 3) 4.5))

Here, the value (an array) of the slotslot1 is read and locally bound toarr1. The array
is then modified. However, since this modification is not made through the phole associated



ADDING SUPPORT FOR PERSISTENCE TO CLOS 49

with slot1, the dirty bit in the phole cannot be set. To make sure that the dirty bit is set,
the user program could do the following.

(let ((arr1 (slot-value object1 ’slot1)))
(setf (aref arr1 3) 4.5)
(setf (slot-value object1 ’slot1) arr1)) (1)

The extra call, labeled(1), would solve the problem since(setf slot-value) can be
easily modified via the metaobject protocol to maintain dirty bits.

Although we use an array as an example here, all composite values except objects pose
this problem. The fundamental problem is that the Common Lisp functions that mutate
structured values such as arrays cannot be customized via the metaobject protocol.

In the remainder of this section, an expensive but complete solution that maintains dirty
bits without any help from either the application program or the compiler is described first,
followed by a more practical solution that requires the cooperation of user programs. We
ultimately implemented the simpler solution in MetaStore.

5.1. A Complete Solution

The goal is to support incremental saving without requiring application programs to deal
with dirty bits at all. That is, we want the maintenance of dirty bits to be transparent to user
programs. We describe an algorithm that satisfies this goal.

Although all non-object composite values pose this problem, we will concentrate on
arrays, which are entirely typical. The basic idea behind this solution is to maintain dirty
bits indirectly via a hash table. The solution requires that we

• maintain an“eq” -test hash table,ht1, containing dirty composite values and

• overload the write access routine for arrays,(setf aref).

When an arraya1 is write accessed, as in:

(setf (aref a1 3) a-new-value)

a1 is added toht1. Since only dirty values are added toht1, the number of entries will
stay small if frequent incremental saves are made.

We overload(setf aref) as follows:

(defsetf aref (arr &rest subscripts) (new-val)
‘(progn (setf (gethash ,arr ht1) t)

(setf (sysaref ,arr ,@subscripts) ,new-val)))

This new version of(setf aref) has the additional task of adding the array being
modified toht1. This modification assumes that the workhorse system routine foraref is
sysaref. If we don’t have access to this routine due to restrictions posed by the substrate
vendor, as is the case with Lucid Common Lisp [18], then we must require our application
programs to use a different name in place ofaref, paref, and include the following
definition instead:



50 LEE AND ZACHARY

(defmacro paref (arr &rest subscripts)
‘(aref ,arr ,@subscripts))

(defsetf paref (arr &rest subscripts) (new-val)
‘(progn (setf (gethash ,arr ht1) t)

(setf (aref ,arr ,@subscripts) ,new-val)))

Thus, a user program would have to useparef and(setf paref) to access any poten-
tially persistent array. Failure to do so would result in loss of data consistency.

When a persistable object is ready to be saved, we treat each persistable composite slot
value as follows. We traverse the entire structure reachable from the slot, stopping when
we reach objects. If any structured value that we encounter is inht1, we treat the entire
slot value as dirty. If the slot value is dirty, we save it as a unit into the object base and then
remove all dirty substructures contained in the slot value fromht1.

This solution does not work properly if non-object structured data is shared among slots.
We discuss this problem in detail in Section 6.

5.2. Feasibility of the Complete Solution

There are both performance and engineering problems with the solution that we have just
described.

• Each write access to a composite value must bear the cost of adding an entry to the hash
table.

• The entire structure of each persistable composite slot of a persistable object must be
traversed to see if any substructure is dirty. Each composite value encountered during
the traversal must be looked up in the hash table.

• Each time a model is saved, every persistable object in the entire system must be
traversed.

• Under some implementations of CLOS, existing applications must be modified to use
paref in place ofaref.

5.3. A Practical Solution

The extra costs associated with the solution described in the previous section led us to a more
pragmatic compromise solution that puts more of a burden on the application programmer.
If a slot value is modified via the public interface, i.e., via(setf slot-value), then there
is no extra responsibility on the part of an application program. However, if a user program
mutates a slot value, then it must inform MetaStore that there is a modification being made.
There are two ways to do this:



ADDING SUPPORT FOR PERSISTENCE TO CLOS 51

• (mark-dirty object1 &rest slot-names): For each slot inslot-names,
object1 is marked dirty if the slot is a persistable atomic slot, and the slot itself is
marked dirty if the slot is a persistable composite slot. If no slot name is given, i.e.,
slot-names is nil, thenobject1 and all the persistable composite slots are marked
dirty.

• Instead of the usualwith-slotsmacro of CLOS, user programs can use an alternative,
with-pslots, with the following syntax and semantics.

(with-pslots (slot1 (slot2 :dirty) (slot3 :dirty)) object1
(body-of-usual-with-slots))

This specifies that sometime during the evaluation of the body of this construct, the
values ofslot2 andslot3 will be modified. with-pslots will signal to MetaStore
that these slots are dirty and then call the usualwith-slots. This way, if a persistable
value is accessed many times in a tight loop, the dirty bit will be set only once.

6. Shared Structures

Structured data in Common Lisp can be shared freely. This greatly complicates the problem
of supporting persistence of shared structures. We could find no acceptably efficient solution
within the metaobject protocol. The central problem is that structures such as arrays and
lists, unlike objects, cannot be given unique identifiers via the protocol.

To illustrate the problem, suppose a composite slot value, the arraya1 of the objectO1 in
Figure 4, is ready to be saved. Also suppose thata1 has another array, saya2, as one of its
elements. Finally, suppose that a slot of another objectO2 also hasa2 as its value through
a third arraya3. Thus,a2 is shared indirectly byO1 andO2.

Assuming that only objects have dirty bits, and also assuming bothO1 andO2 are dirty,
if both O1 andO2 are saved, two copies ofa2 will be saved: once byO1 and again byO2.
WhenO1 andO2 are both loaded at some later time,b of O1 andc of O2 will have their own
copies of the original arraya2.

A complete solution that, while inefficient, allows persistable structures to be shared is
described first, followed by the practical solution that was implemented in MetaStore in
which non-object structured data are not allowed to be shared unless they are encapsulated
within objects. This second approach was found acceptable for CDRS.

6.1. A Complete Solution

Supporting slot-level persistence for composite values required adding pholes as a level
of indirection between each composite slot and its value. This was easy to do within the
metaobject protocol, since slots are parts of objects. Supporting persistence for shared
structures requires adding pholes as a level of indirection in front of each shared structure.
This, unfortunately, cannot be done within the metaobject protocol.



52 LEE AND ZACHARY

O2: a 4.6

b 45

c -

a3:

6

a2

O1: a 3.4

b

c 50

-

a1:

?

Figure 4. An array shared by two objects

Just as we maintain virtual dirty bits for substructures of composite slot values via a hash
table, we maintain virtual pholes for shared structures via another hash table. Our solution
requires that we do the following:

• Create an“eq” -test hash table,ht2, that maps a key (an array) to a value (an array or
a phole). At any given time,ht2 will contain all arrays for which pholes have been
created, as well as all arrays that are contained by other arrays.

• Overload the write access routine for arrays, i.e.,(setf aref).

Figure 5 shows a snapshot in the execution of MetaStore. The arraysa1 anda3 are
indirectly contained in their respective slots via pholes, andht2 contains a mapping from the
shareda2 to the virtual pholephole2. (Ideally,a1 anda3would not containa2 directly, but
would do so indirectly via a non-virtualphole2, andht2would be unnecessary.) Although
not pictured,ht2 also mapsa1 anda3 to phole1 andphole3 respectively.

When an arraya4 becomes a substructure of another arraya5 via the call

(setf (aref a5 1) a4)

the following procedure is followed (in addition to the procedure for dealing with dirty
bits):

1. If a4 is in ht2, then:



ADDING SUPPORT FOR PERSISTENCE TO CLOS 53

O2: a 4.6

b 45

c - phole3 -

a3:

6

a2

O1: a 3.4

b

c 50

- phole1 -

a1:

?

ht2 (share):

. . .

a2

. . .

-

phole2:

14

((a1 . 1)

(a3 . 2))

. . .

ht1 (dirty):

. . .

a2 t

. . .

Figure 5. A persistable array shared by two persistable objects

(A) If ht2 mapsa4 to a phole (sayphole4), then adda5 to the reference list,
referrers, of phole4.

(B) If ht2 mapsa4 to another array (saya6) thencreatea phole (sayphole4) and add
botha5 anda6 to thereferrers of phole4. Modify ht2 so thata4 is mapped to
phole4.

2. If a4 is not inht2, then add a new entry toht2 that mapsa4 toa5. Notice that a virtual
phole is not created for an array until that array is shared. This is critical because our
experience with CDRS shows that structure sharing is very rare although many small
arrays (e.g., 3D point data arrays) are often referenced by a parent array.

This algorithm associates a phole with each array as soon as it is shared by at least
two other arrays. If the array is a direct member of an object slot, of course, a phole is



54 LEE AND ZACHARY

(defsetf aref (arr &rest subscripts) (new-val)
‘(progn

(setf (gethash ,arr ht1) t) ;for dirty bit
(when (composite-p ,new-val) ;for sharing

(let ((in-ht2 (gethash ,new-val ht2)))
(if in-ht2

(if (phole-p in-ht2)
(push ,arr (phole-referrers in-ht2))
(let ((phole2 (make-phole)))

(push in-ht2 (phole-referrers phole2))
(push ,new-val (phole-referrers phole2))))

(setf (gethash ,new-val ht2) ,arr))))
(setf (sysaref ,arr ,@subscripts) ,new-val)))

Figure 6. Modification to array updates for sharing

associated with it immediately. The virtual pholes contained inht2 come into play only
for write accesses.

This algorithm can be implemented by modifying the write access routine as shown in
Figure 6 in CLOS code. Arrays are used in the example code, thus modifying the array
mutating operator(setf aref).

The routine in Figure 6 assumes that the workhorse system routine foraref is sysaref.
If we do not have access to this routine, then we will have to require our application programs
to useparef instead ofaref which would require similar definitions instead as we saw
with the dirty bits (Section 5.1).

Suppose now that we want to saveO1 andO2, both of which are dirty. Suppose also that
a1, a2, anda3 are dirty. First, by savingO1, we will savea1, a2, andO1. At that point,
they will also be marked clean. Second, by savingO2, we will savea3 andO2, and mark
them clean. Note that by the timeO2 is saved,a2 is already clean, thus not saved multiple
times. Also note that this algorithm saves each composite value as a separate entity in the
object base.

Suppose nowO1 andO2 are loaded in that order by a different process at some later time.
When the value ofb of O1 is loaded, the value ofphole1 will be set witha1. The second
element ofa1 will then geta2 loaded by using the slot ID,14, in the object table. Note,
however, thata1 referencesa2 directly rather than the phole,phole2. When the value ofc
of O2 is loaded,a2 would have already been loaded anda3 will referencea2 directly again
by going through the object table.

When an object is declared deleted by a user program, MetaStore releases all the handles
that MetaStore is keeping track of, including the hash tables for dirty bits and structure
sharing.



ADDING SUPPORT FOR PERSISTENCE TO CLOS 55

6.2. Feasibility of the Complete Solution

As with the complete solution for tracking dirty bits, there are both performance and en-
gineering problems with the solution that we have just described. Because this solution
depends on the complete solution for tracking dirty bits, supporting this solution incurs the
following extra cost on top of the cost of dealing with dirty bits (Section 5.1):

• Each write access to a composite value must bear the cost of the case analysis done in
the presented algorithm and the cost of adding an entry to the hash table.

• With this solution, each composite value is saved as a separate entity in the object base,
thus the granularity of persistence is a composite value rather than a composite slot
value. This algorithm would suffer much more dealing with the smaller grain size.

• The hash table,ht2, will in general be quite large because of many small arrays (e.g.,
arrays of length three for 3D point data in a geometric application such as CDRS), thus
potentially severely affecting each write access.

Although many small arrays are referenced by a parent array, sharing is not very common
in CDRS. Even though this complete solution would preserve the semantics of Common
Lisp for sharing, supporting it in the context of persistence would be impractical in a
production quality application like CDRS.

6.3. A Practical Solution

The extra costs associated with the solution described in the previous section would outweigh
the benefits. Thus, we adopted a more pragmatic solution that limits the sharing of non-
object structured data.

Because a persistable object already has a unique ID, it can be shared freely. Therefore,
any composite value that is not an object can be made sharable by encapsulating it within
an object. Thus, the arraya2 in Figure 5 can be made sharable by making it a slot value of
an instance of the sharable composite class, saysharable-composite-class:

(defclass sharable-composite-class ()
((sharable-composite :initform nil

:initarg :sharable-composite
:accessor sharable-composite))

(:metaclass persistable-metaclass))

With this class defined,a2 now can be replaced by an object created by calling,

(make-instance ’sharable-composite-class :sharable-composite a2)

Using the accessorsharable-composite and its dual(setf sharable-composite),
one can conveniently perform read and write accesses respectively. The cost of using
this class is one extra slot access on both read and write accesses. However, this would



56 LEE AND ZACHARY

give much better system performance than would the “complete solution” presented in the
previous section. Because the amount of sharing done in an application like CDRS is so
small, this was considered an acceptable alternative.

7. Related Work

Metaprogramming has been used in a variety of different applications by a number of
researchers. Interestingly, none of these researchers reported the kinds of problems with
metaprogramming that we have observed. We believe that this is because our application
was much more ambitious than any of the others.

Rodriguez, with Anibus [24, 25], investigated whether it was possible to use the metaobject
protocol approach to develop an open parallelizing compiler in which new “marks” for
parallelization could be defined in a simple and incremental way. Anibus has its own
metaobject protocol. Unlike the metaobject protocol of CLOS, which is intended to be
used in executing CLOS programs at run time, that of Anibus was intended to be used to
map a Scheme [28] program to an SPMD Scheme [24] program at compile time.

The authors in [1] present three examples of how the CLOS metaobject protocol can be
used. The first example shows how atomic objects can be implemented for concurrency
control. Their second example outlines how persistence can be implemented through met-
alevel manipulations. This supports persistence at the object level. Their final example
illustrates how graphic objects can be implemented via the protocol.

PCLOS [22] is CLOS extended with persistence via the metaobject protocol of CLOS.
PCLOS also supports persistence at the object level. It uses data base management sys-
tems for secondary storage management, which suffers from the phenomenon known as
impedance mismatch [2, 7].

Unlike PCLOS [22] and the work described in [1], MetaStore supports persistence at the
slot level, which we believe is critical for the performance of a CAD application. Therefore,
neither of these efforts experienced the kinds of problems that we described in sections 3,
4, and 6. Two other important differences are that MetaStore, unlike [22] and [1], supports
incremental saves and addresses the problem of supporting persistence of shared structures.

There are other systems of interest, though they are more oriented toward persistence than
towards metaprogramming.

The authors in [9] implemented persistence of Common Lisp values featuring orthogonal
persistence, concurrent transactions, and compiled code support.

PS-Algol [6] is S-Algol [21] extended with persistence by applying the principle of
orthogonal persistence. The runtime system of PS-Algol maintains two separate heaps,
one in RAM and the other on disk, thus using two types of addresses: persistent and local.
A dereference instruction traps all persistent addresses and triggers the loading of objects
from disk. When a program finishes, the runtime system copies objects from the local heap
in RAM to the persistent heap in disk.

STATICE [30, 31], a database system for Symbolics LISP workstations with a multiple
clients/single server architecture, provides the usual features of an object-oriented database
system such as object identity, multiple inheritance, user-defined literal types, and a query
language.



ADDING SUPPORT FOR PERSISTENCE TO CLOS 57

Hosking describes a Smalltalk system extended with persistence in [8]. He used the object
faulting approach by modifying the language runtime system to give the illusion of a large
heap of objects, only some of which are actually resident in memory. When the runtime
system detects a reference to the contents of a non-resident object, an object fault occurs,
causing the object to be made resident.

Most of these systems support orthogonal persistence, which is theoretically attractive.
Some of them were found to be efficient enough for some applications, but the non-selective
persistence supported in most of these systems would not be practical enough for applica-
tions such as CDRS. Based on our experience, the majority of data/objects created in CDRS
never persist.

These other systems were also implemented with the benefit of having almost unlimited
access into the low-level implementation. For example, STATICE had access to both the
underlying object system implementation and the Common Lisp implementation. The work
by [9] had access to the underlying Common Lisp implementation. PS-Algol had access to
the runtime system, as did Hosking’s system.

In the case of Hosking’s work, the underlying system itself is a purely object-based
language, Smalltalk, that makes the persistence extension much easier. In comparison, the
implementation of MetaStore was constrained by both the metaobject protocol and by the
efficiency restrictions imposed by the commercial product CDRS.

8. Summary

Adding persistence to CLOS is no small undertaking. The protocol is sufficient to support
language extensions as long as these extensions involve modifying or augmenting the struc-
ture or behavior of objects. Since most of what was required to extend CLOS with object
persistence was related to objects, it was done easily via the protocol. We are convinced
that the idea of programming at the metalevel is the right approach for applications such
as ours. A few extensions to the protocol, coupled with better implementation techniques,
would yield a uniquely useful tool.

Our implementation revealed that the currently available design and implementation of
the CLOS metaobject protocol was lacking in several ways:

• The current implementations of the protocol are fairly efficient for the most part. How-
ever, we encountered some features that performed rather poorly. For example, we
observed up to 300 time slowdowns in PCL [4], and up to 50 time slowdowns in Lucid
CLOS, with:around methods. Specializing default behavior by the use of:around
methods is one of the most commonly used features in the metaobject protocol.

• To support persistence at the slot level requires one level of indirection on slot accesses
and the current protocol does not provide this feature. We were, however, able to deal
with this by extending the protocol by adding two more interface routines.

• Maintaining dirty bits for composite values and handling persistence of shared non-
object structured data were difficult because they are not object related and do not
belong to the domain of the metaobject protocol. Instead they belong to the base



58 LEE AND ZACHARY

language implementation level, thus requiring help from the language compiler and the
runtime support system. Since we could not get the necessary help from these either,
we handled them with some help from application programs. Most of the performance
penalty was caused by having to deal with dirty bits and shared non-object structured
data.

Based on our implementation we propose the following for the CLOS metaobject protocol:

• Add two new routines to the protocol so that one level of indirection on slot accesses
can be done. An even better solution would be to extend the semantics of method
combinations in CLOS in such a way that specialized methods, such as:around
methods, can be optionally skipped during execution.

• Extend the design in such a way that all composite data types can be implemented as
objects so that they can be included in the metaobject protocol. As it is, there is an
abstraction mismatch: maintaining dirty bits and dealing with non-object structured
data belong to the base language, yet we had to handle them at the metaobject level.
This extension would require a significant effort.

If the overhead currently inherent to:around methods in Lucid CLOS were eliminated,
we estimate that write accesses to persistent objects would be about seven times slower
than to non-persistent objects, that object creation would be about four times slower, and
that read accesses would be about the same. We also believe that these overheads would
be tolerable in CDRS, which is governed by the speed of user interaction. Nevertheless,
we are exploring some changes to the design to MetaStore to reduce these performance
penalties.

The poor performance results and the difficulties we experienced with dirty bits and
shared structures should be interpreted with caution. It is important to differentiate the
costs incurred by the metaobject protocol itself from the costs stemming from our persis-
tence requirements. Much of our performance hit was due to the severe requirements of
supporting almost-transparent persistence without any help from the compiler or the run-
time system. Our experiment was perhaps too ambitious for the pioneering, experimental
implementations of the metaobject protocol that were available. We remain excited about
the potential impact of open implementations and metaprogramming on software engineer-
ing and software science in general. The latest work on open implementations can be found
in [13] and [19].

Acknowledgments

Thanks go to Gregor Kiczales for helping us with the metaobject protocol and open imple-
mentation ideas and its implementation in PCL; to Andreas Paepcke for helping us with
the metaobject protocol of PCL; to Bob Kessler, Gary Lindstrom, and Mark Swanson for
stimulating discussions on technical issues; and to the members of the CDRS group at
Evans & Sutherland Computer Corporation for the opportunity to be persistent on object
persistence and for many technical discussions.



ADDING SUPPORT FOR PERSISTENCE TO CLOS 59

Notes

1. PCLOS [22] also uses the notion of a husk object, but with a different meaning. A husk in PCLOS is a
placeholder for an object and is used to make memory-resident references to the instance, that is not yet
loaded, work properly. Thus, a husk there is much like a phole in MetaStore, except that a phole is used for
a composite slot, whereas a husk in PCLOS is used only for objects. The notion of a husk object as used in
MetaStore does not exist in PCLOS.

References

1. G. Attardi, C. Bonini, M.R. Boscotrecase, T. Flagella, and M. Gaspari. Metalevel programming in CLOS.
In Proceedings of the European Conference on Object-Oriented Programming(1989).

2. F. Bancilhon and D. Maier. Multilanguage object-oriented systems: new answer to old database problems? In
Programming of Future Generation Computers II,Fuchi, K. and Kott, L. editors. Elsevier Science Publishers
B.V. (North-Holland) (1988).

3. D.G. Bobrow, L. DeMichiel, R.P. Gabriel, G. Kiczales, D. Moon, and S.E. Keene.The Common Lisp Object
System Specification:Chapters 1 and 2. Technical report 88-002R, X3J13 Standards Committee Document
(1988).

4. D.G. Bobrow and M. Stefik.The Loops Manual.Intelligent Systems Laboratory, Xerox Palo Alto Research
Center (1983).

5. G. Bracha. The programming language Jigsaw: mixins, modularity, and multiple inheritance. Ph.D. thesis,
Department of Computer Science, University of Utah (1992).

6. W.P. Cockshott.PS-Algol Implementations: Applications in Persistent Object-Oriented Programming.Ellis
Horwood Limited (1990).

7. G. Copeland and D. Maier. Making Smalltalk a database system. InProceedings of the ACM SIGMOD
International Conference on Management of Data(June 1984).ACM SIGMOD Record 14, 2(1984).

8. A.L. Hosking. Lightweight support for fine-grained persistence on stock hardware. Ph.D. thesis, University
of Massachusetts at Amherst (1995).

9. J.H. Jacobs and M.R. Swanson. Syntax and semantics of a persistent Common Lisp. InProceedings of the
ACM Symposium on Lisp and Functional Programming(1993).

10. G. Kiczales. Towards a new model of abstraction in software engineering. InProceedings of the IMSA’92
Workshop on Reflection and Meta-level Architectures(1992).

11. G. Kiczales. Why are black boxes so hard to reuse? (Towards a new model of abstraction in the engineer-
ing of software.) Invited Talk at the OOPSLA’94 Conference on Object-oriented Programming Systems,
Languages, and Applications, Portland, Oregon (October 1994).

12. G. Kiczales, J. des Rivi`eres, and D.G. Bobrow.The Art of the Metaobject Protocol.The MIT Press (1991).
13. G. Kiczales, J. Lamping, C.V. Lopes, A. Mendhekar, and G. Murphy. Open implementation design guidelines.

(submitted to ICSE-97: 19th International Conference on Software Engineering, Boston, Mass.)
14. A.H. Lee. An object-oriented programming approach to geometric modeling. InProceedings of Evans &

Sutherland Technical Retreat, Ocho Rio, Jamaica (1989).
15. A.H. Lee. Managing complex objects. Internal document, Evans & Sutherland Computer Co. (1990).
16. A.H. Lee. The persistent object system MetaStore: persistence via metaprogramming. Ph.D. thesis, Depart-

ment of Computer Science, University of Utah (1992).
17. A.H. Lee and J.L. Zachary. Reflections on metaprogramming.IEEE Transactions on Software Engineering,

21, 11(November 1995) 883-893.
18. Lucid Common Lisp/MIPS Version 4.0, Advanced User’s Guide.Lucid, Inc. (1990).
19. C. Maeda, A.H. Lee, G. Murphy, and G. Kiczales. Open implementation analysis and design[tm]. (submitted

to ICSE-97: 19th International Conference on Software Engineering, Boston, Mass.)
20. J.S. Miller. MultiScheme: a parallel processing system based on MIT Scheme. Ph.D. thesis, Massachusetts

Institute of Technology (1987).
21. R. Morrison.S-Algol Language Reference Manual.CS-79-1, University of St. Andrews (1979).
22. A. Paepcke. PCLOS: stress testing CLOS: experiencing the metaobject protocol. InProceedings of the ACM

Conference on Object-Oriented Programming Systems, Languages, and Applications(1990).



60 LEE AND ZACHARY

23. A. Paepcke. User-level language crafting: Introducing the CLOS metaobject protocol. A. Paepcke, ed.,
Object-Oriented Programming: The CLOS Perspective(1992).

24. L.H. Rodriguez, Jr. Coarse-grained parallelism using metaobject protocols. M.S. Thesis, Massachusetts
Institute of Technology (1991). (Also available as Technical report SSL-91-06, Xerox Palo Alto Research
Center, 1991.)

25. L.H. Rodriguez, Jr. Towards a better understanding of compile-time metaobject protocols for parallelizing
compilers. InProceedings of IMSA’92: International Workshop on Reflection and Meta-level Architecture,
Tokyo, Japan (1992).

26. B.C. Smith. Reflection and semantics in a procedural language (Ph.D. thesis). Technical Report TR-272,
Laboratory for Computer Science, MIT (1982).

27. B.C. Smith. Reflection and semantics in Lisp. InProceedings of the ACM Symposium on Principles of
Programming Languages (POPL),Salt Lake City, Utah (1984).

28. G. L. Steele, Jr and G.J. Sussman.Scheme: An interpreter for the extended lambda calculus.Memo 349,
MIT Artificial Intelligence Laboratory (1975).

29. G.L. Steele, Jr.Common Lisp: The Language,Second edition. Digital Press (1990).
30. D. Weinreb. An object-oriented database system to support an integrated programming environment.IEEE

Data Engineering, 11, 2(June 1988).
31. D. Weinreb, N. Feinberg, D. Gerson, and C. Lamb. An object-oriented database system to support an

integrated programming environment. R. Gupta and E. Horowitz, eds,Object-Oriented Databases with
Applications to CASE, Networks, and VLSI Design,Prentice Hall, Englewood Cliffs, NJ (1991) 117-129.


