
�

� � �
�

� � � � �

Espen J. Vestre
Netfonds ASA
Oslo, Norway

ev@netfonds.no

� �

� Established 1997

� Offers Internet-based (“self serve”) stock
trading

� Appr. 10% of Oslo Stock Exchange trades

� Other exchanges (e.g. Stockholm, New York)

� 11 employees

� 4 Common Lisp Developers / linux sysadmins

�

�

�

� Overview of systems

� “The Lisp-based Company”

� Some details from our systems and some
lessons learned

� System Demo

� � � � � � � � �
��� �	
��

 ��� �� �� �

���� ��� �� �

�� �� � � � ����� �� � ��� � 	 � �� �� �

���� �� � � �

� � � � �� �� �

��� �� �� �

�� �� � �
� � � � � �� �

�� �� � !� � � � �"�# # � �� � � � � �

�� ��� � !� � � � ��� � $� �

�� � �

� � � � �� �

�� �� � !� � � ���� � $���� �� � !� � � � ��� � $� �

"�% � � � � � �&� % � � �

'() *,+ - -.)/01 1 2 .) (3 .+4 567 78 9 : ; < :=> ; 7@? �� �� � �
� � � �� �� �
�� � � � �

� � � � � �� �

�� � �

� � � � � �� � ABC � � � � � �� �

� �� � �DE

�

� � � �

� Feeders (provide “real time” stock quotes to
internal systems)

� Auto Router (order examination and
forwarding)

� Stock Exchange Interfaces (order entry, trade
notifications etc.)

� “PrimeTrader” and its server (trading
application)

� Back Office Applications

� �

� � � �

� Several processes talk different protocols to
different stock exchanges

� Stock Quotes propagated to DB and trading
application servers

� Automatic order entry, order matching

� Complex protocols with frequent protocol
revisions

� �

� � � �

� Web interfaces (Apache, PHP, Oracle)

� Prime Trader (Trading Application)

� LispWorks CAPI application

� Developed on linux

� Built on

� Linux

� Windows

� Mac OS X

� Server-part also in Lisp

� � � �

� Net Fonds does no “rocket science”

� Lisp is our “Work Horse”

� Scripting and application development

� What's special about Net Fonds is that we use
lisp for even the most trivial tasks (where
others use perl)

� �

�� � �

� Emacs (gnus) developer Lars Ingebrigtsen
was initially the one-man it department

� Initially, most things were done in php a little
tcl, and quite a lot of emacs lisp

� Internal Broker interface is still running on
emacs (with a common lisp back end).

� � � � � � � � ��� � �

� Dynamic features ideal for server applications

� All servers have lisp listeners:

� Some servers are started from inside emacs which again
runs under the control of “screen”

� Other servers include their own eval server and accept
local socket connections

� “Hot” upgrades (load fasl files into running
images)

� “Hot” fixes (inspect errors in running images)

�
� � �

� � � �

� “Traditional” lisp stuff

� Complex, ever-changing protocols

� Auto-generation of parsers from specs (C
header files or more formal specs)

� � � � � � �

� Very reliable programs with less
programming effort

� Servers run for months non-stop

� Upgraded and bug-fixed while they run

�

�

� A “taste” of what we do with CL

� Rest of talk:

� PrimeTrader application and its server

� Automatic patch downloads

� Some useful server tools

� GC considerations

� Slave subprocesses

� Demonstration

�
�

� �

� “Real-time” stock quotes

� Fast order-entry

� Order status

� Written in LispWorks with CAPI

� Windows, linux (+ bsd) and Mac OS X

� Self-contained (even its own crypto code)

�
�

� � �

�

� � � � �

� Uses RSA encryption for handshaking and key transmission
(all in lisp)

� Uses on-demand blowfish encryption (when transferring
sensitive (personal) data)

� Automatic patch downloads

� Patches are created automatically from sexp-level diffs of
CVS tagged versions

� Protocol on top of a subset of http to avoid firewall problems

� “Subscription-model” ensures low bandwidth. If your setup
has only a small number of shares, you can stream stock
quotes over gsm (9600bps)

�
�

� �

� � � � �

(defmethod install-patch ((patch nftp:patch))
 (unless (find patch *installed-patches*)
 (set-status "Downloading ~a" (nftp:patch-name-of patch))
 (handler-case (download-patch patch)
 (error (cond) (error "Error during patch download: ~a" cond)))
 (set-status "Verifying ~a" (nftp:patch-name-of patch))
 (verify-sha1 patch)
 (set-status "Loading ~a" (nftp:patch-name-of patch))
 (load-patch patch)
 (set-status "Updating patch info")
 (push patch *installed-patches*)
 (recompute-active)
 (save-patch-file)))

(defmethod download-patch ((patch nftp:patch))
 (http:get-url (nftp:url-of patch)
 (patch-local-pathname patch)))

�

� �

� � � � �

� eval-srv.lisp: Connect to a lisp listener to do
system maintenance on live server

� cron.lisp: Similar to unix cron – run scheduled
reoccuring tasks

� at.lisp: Similar to unix at – run tasks once at
given time

� logger.lisp: Log important events, rotate and
compress log files

�

�
�� �

� Possibly do a global GC (every hour)

� Idle Job Killer: Remove state of aborted/inactive sessions
(every minute)

� Refresh stock exchange info (every morning)

� Regenerate stock “watch lists” (every hour)

� Log the number of logged-in users (every minute)

� Rotate and compress logs (every midnight)

� Regenerate eval-server password (every hour)

�
�

� � �

�

� Lots of data live long enough to be moved to
LispWorks generation 2

� Gen. 2 GC a little too time consuming (3-4
seconds) for a time-critical application (*)

� Solution: Manual gen. 2 GC. Let image grow
to (up to) 300MB – Full GC usually only once
a day, early morning before stock trading
starts

(*) on a linux server (~2Ghz, 1GB) with up to 100 simultanous LispWorks threads
and more than 100MB allocated

�

� � � �

� Problem: Oracle calls block the lisp process

� Consequences in PrimeTrader: Unacceptable
halts of the stock quote streaming threads,
inpredictable delays in stock order entry.

� Solution: Use a pool of sub-processes (each a
simple, standalone lisp application),
communicate with them through pipes and
with one “master thread” per “slave” sub
process

� �

� �
�

� �

(def un l i spsl ave ()
 (l et ((* er r or - out put * syst em: : * nul l - st r eam*))
 (i gnor e- er r or s
 (l oop f or er r or = ni l
 f or f or m = (handl er - case (r ead)
 (st r eam- er r or (cond)
 (er r or cond))
 (er r or (cond) (set f er r or cond)))
 whi l e (not (eq f or m : ex i t))
 do
 (l et ((i d (f i r st f or m)))
 (unl ess er r or
 (l et ((r esul t (handl er - case (eval ` (mul t i pl e- val ue- l i s t
, (r est f or m)))
 (er r or (cond) (set f er r or cond)))))
 (when (and r esul t (not er r or))
 (pr i nt - r esul t i d r esul t))))
 (when er r or (pr i nt - er r or i d er r or)))))))

(def un pr i nt - r esul t (i d r esl i s t &opt i onal (st r eam t))
 (l et ((* pr i nt - r eadbl y* t))
 (f or mat st r eam " ~&~s~%" ` (, i d NI L , r esl i s t))
 (f or ce- out put st r eam)))

(def un pr i nt - er r or (i d cond &opt i onal (st r eam t))
 (f or mat st r eam " ~&~s~%" ` (, i d ERR , (t ype- of cond) , (f or mat ni l " ~a"
cond)))
 (f or ce- out put st r eam))

�

� � � �

(def macr o wi t h- s l ave- eval uat i on (&r est f or ms)
 ` (s l ave- eval ' (pr ogn , @f or ms)))

(def un sl ave- eval (f or m)
 (l et ((pai r (l i s t f or m)))
 (l q: enqueue pai r * eval - queue*)
 (unl ess
 (mp: pr ocess- wai t - wi t h- t i meout " wai t i ng f or r esul t "
 * s l ave- t i meout *
 #' r est pai r)
 (er r or " No r esponse f r om sl ave subpr ocess"))
 (l et ((r esul t (r est pai r)))
 (i f (f i r s t r esul t)
 (er r or (f or mat ni l " ~a er r or i n l i spsl ave: ~a"
 (second r esul t)
 (t hi r d r esul t)))
 (val ues- l i st (second r esul t))))))

�

� � � �

(defun master-loop ()
 (push mp:*current-process* *slaves*)
 (let ((*id* 0))
 (loop
 (with-open-stream (s (open-slave))
 (ignore-errors
 (loop
 (mp:process-wait "Waiting for Queue"
 #'lq:non-empty-queue-p
 eval-queue)
 (let ((q-ent (lq:pop-queue *eval-queue*)))
 (when q-ent
 (process-job q-ent s))))))
 (sleep 5.0))))

(defun process-job (x s)
 (setf (rest x)(eval-in-slave (first x) s)))

�

�
�

�

� �

� Just a moment...

