Eurova
Eurova

Eurova
Eurova
 : 
European Oocyte Biology Research Innovation Training Network
European Oocyte Biology Research Innovation Training Network

A Project coordinated by IIIA.

Web page:

Principal investigator: 

Collaborating organisations:

University College Dublin, Universaita Degli Studi di Milano, Vrije Universiteit Brussel, The Babraham Institute, Euvitro SLU, Universiteit Gent, Cherry Biotech, Forschungsverbund Berlin EV, Region Hovedstaden

University College Dublin, Universaita Degli Studi di Milano, Vrije Universiteit Brussel, The Babraham Institute, Euvitro SLU, Universiteit Gent, Cherry Biotech, Forschungsverbund Berlin EV, Region Hovedstaden

Funding entity:

H2020-MSCA
H2020-MSCA

Funding call:

H2020-MSCA-ITN-2019
H2020-MSCA-ITN-2019

Funding call URL:

Project #:

MSCA-ITN-2019-860960
MSCA-ITN-2019-860960

Total funding amount:

2.678.919,00€
2.678.919,00€

IIIA funding amount:

250.905,00€
250.905,00€

Duration:

01/Nov/2019
01/Nov/2019
31/Oct/2024
31/Oct/2024

Extension date:

The hallmark of successful mammalian reproduction is the fusion between a haploid spermatozoon and a metaphase II oocyte. The generation of such an oocyte involves a series of steps whereby germinal-vesicle oocytes (in which the nuclei are intact) at prophase I are stimulated to resume meiosis and mature to metaphase II, a sequence of events that prepares the oocyte for fertilization. Although the treatment of infertility by Assisted Reproduction Technologies (ART) has been increasingly successful, the efficiency remains low with only about 1 in 10 eggs retrieved from women undergoing infertility treatments healthy enough to produce a pregnancy and birth. In healthy fertile livestock species, where ARTs are applied for production purposes this number increases to 1 in 6 eggs retrieved, which is still remarkably inefficient. The greatest block to advancement, is the substantial lack of knowledge on the key regulatory checkpoints and processes that determine oocyte health. Such knowledge is key not just to treating infertility and maximising livestock genetic potential and productivity, but also to the field of regenerative medicine, where the reprogramming potential of the oocyte cytoplasm is critical to reprogramming somatic genomes. The EUROVA ETN will train a consolidate European Oocyte Biology Research, train a new cohort of Reproductive scientists and generate new knowledge. A deeper knowledge and understanding of the mechanisms set in place during the trajectory of oocyte growth, maturation, fertilization and oocyte to zygote transition will lead to innovations in ART, animal breeding, endangered species preservation, regenerative medicine and reproductive toxicology.

The hallmark of successful mammalian reproduction is the fusion between a haploid spermatozoon and a metaphase II oocyte. The generation of such an oocyte involves a series of steps whereby germinal-vesicle oocytes (in which the nuclei are intact) at prophase I are stimulated to resume meiosis and mature to metaphase II, a sequence of events that prepares the oocyte for fertilization. Although the treatment of infertility by Assisted Reproduction Technologies (ART) has been increasingly successful, the efficiency remains low with only about 1 in 10 eggs retrieved from women undergoing infertility treatments healthy enough to produce a pregnancy and birth. In healthy fertile livestock species, where ARTs are applied for production purposes this number increases to 1 in 6 eggs retrieved, which is still remarkably inefficient. The greatest block to advancement, is the substantial lack of knowledge on the key regulatory checkpoints and processes that determine oocyte health. Such knowledge is key not just to treating infertility and maximising livestock genetic potential and productivity, but also to the field of regenerative medicine, where the reprogramming potential of the oocyte cytoplasm is critical to reprogramming somatic genomes. The EUROVA ETN will train a consolidate European Oocyte Biology Research, train a new cohort of Reproductive scientists and generate new knowledge. A deeper knowledge and understanding of the mechanisms set in place during the trajectory of oocyte growth, maturation, fertilization and oocyte to zygote transition will lead to innovations in ART, animal breeding, endangered species preservation, regenerative medicine and reproductive toxicology.

2024
Nuria Correa,  Jesus Cerquides,  Rita Vassena,  Mina Popovic,  & Josep Lluis Arcos (2024). IDoser: Improving Individualized Dosing Policies with Clinical Practice and Machine Learning. Expert Systems with Applications, 238, 121796. https://doi.org/10.1016/j.eswa.2023.121796. [BibTeX]  [PDF]
Annelies Raes,  Georgios Athanasiou,  Nima Azari-Dolatabad,  Hafez Sadeghi,  Sebastian Gonzalez Andueza,  Josep Lluis Arcos,  Jesus Cerquides,  Krishna Chaitanya Pavani,  Geert Opsomer,  Osvaldo Bogado Pascottini,  Katrien Smits,  Daniel Angel-Velez,  & Ann Van Soom (2024). Manual versus deep learning measurements to evaluate cumulus expansion of bovine oocytes and its relationship with embryo development in vitro. Computers in Biology and Medicine, 168, 107785. https://doi.org/10.1016/j.compbiomed.2023.107785. [BibTeX]  [PDF]
2023
Georgios Athanasiou,  Josep Lluis Arcos,  & Jesus Cerquides (2023). Enhancing Medical Image Segmentation: Ground Truth Optimization through Evaluating Uncertainty in Expert Annotations. Mathematics, 11. https://doi.org/10.3390/math11173771. [BibTeX]  [PDF]
A. Raes,  N. Azari-Dolatabad,  G. Athanasiou,  J.L. Arcos,  J. Cerquides,  G. Opsomer,  K. Smits,  D. Angel-Velez,  & A. {Van Soom} (2023). Measuring cumulus expansion of bovine cumulus-oocyte complexes: comparing the reliability of three methods. Animal - science proceedings, 14, 449-450. https://doi.org/10.1016/j.anscip.2023.03.032. [BibTeX]  [PDF]
2022
Georgios Athanasiou,  Jesus Cerquides,  Annelies Raes,  Nima Azari-Dolatabad,  Daniel Angel-Velez,  Ann Van Soom,  & Josep Lluis Arcos (2022). Detecting the Area of Bovine Cumulus Oocyte Complexes Using Deep Learning and Semantic Segmentation. A. Cortés al. (Eds.), Frontiers in Artificial Intelligence and Applications (pp 249-258). IOS Press. https://doi.org/10.3233/FAIA220346. [BibTeX]
Nuria Correa,  Jesús Cerquides,  Josep Lluis Arcos,  & Rita Vassena (2022). Supporting first FSH dosage for ovarian stimulation with machine learning. Reproductive Biomedicine Online. https://doi.org/10.1016/j.rbmo.2022.06.010. [BibTeX]
Josep Lluís Arcos
Scientific Researcher
Georgios Athanasiou
PhD Student
Jesus Cerquides
Scientific Researcher
Phone Ext. 431859

Jeronimo Hernandez-Gonzalez
Lecturer