CA | ES | EN
Georgios
Georgios
 
Athanasiou
Athanasiou

PhD Student
PhD Student


Georgios
Georgios
 
Athanasiou
Athanasiou
PhD Student
PhD Student

Learning Systems
Learning Systems
(+34) 93 580 9570 ext.
431833
431833
gathanasiou@iiia.csic.es
gathanasiou@iiia.csic.es
Research areas:
  • Deep Learning
  • Machine Learning
  • Image Segmentation
  • Probabilistic Graphical Models
  • Deep Learning
  • Machine Learning
  • Image Segmentation
  • Probabilistic Graphical Models
Impact areas:
  • Healthcare
  • Healthcare
SDGs:
  • GOAL 03: Good Health and Well-being
  • GOAL 03: Good Health and Well-being
2024
Annelies Raes,  Georgios Athanasiou,  Nima Azari-Dolatabad,  Hafez Sadeghi,  Sebastian Gonzalez Andueza,  Josep Lluis Arcos,  Jesus Cerquides,  Krishna Chaitanya Pavani,  Geert Opsomer,  Osvaldo Bogado Pascottini,  Katrien Smits,  Daniel Angel-Velez,  & Ann Van Soom (2024). Manual versus deep learning measurements to evaluate cumulus expansion of bovine oocytes and its relationship with embryo development in vitro. Computers in Biology and Medicine, 168, 107785. https://doi.org/10.1016/j.compbiomed.2023.107785. [BibTeX]  [PDF]
2023
Georgios Athanasiou,  Josep Lluis Arcos,  & Jesus Cerquides (2023). Enhancing Medical Image Segmentation: Ground Truth Optimization through Evaluating Uncertainty in Expert Annotations. Mathematics, 11. https://doi.org/10.3390/math11173771. [BibTeX]  [PDF]
A. Raes,  N. Azari-Dolatabad,  G. Athanasiou,  J.L. Arcos,  J. Cerquides,  G. Opsomer,  K. Smits,  D. Angel-Velez,  & A. {Van Soom} (2023). Measuring cumulus expansion of bovine cumulus-oocyte complexes: comparing the reliability of three methods. Animal - science proceedings, 14, 449-450. https://doi.org/10.1016/j.anscip.2023.03.032. [BibTeX]  [PDF]
2022
Georgios Athanasiou,  Jesus Cerquides,  Annelies Raes,  Nima Azari-Dolatabad,  Daniel Angel-Velez,  Ann Van Soom,  & Josep Lluis Arcos (2022). Detecting the Area of Bovine Cumulus Oocyte Complexes Using Deep Learning and Semantic Segmentation. A. Cortés al. (Eds.), Frontiers in Artificial Intelligence and Applications (pp 249-258). IOS Press. https://doi.org/10.3233/FAIA220346. [BibTeX]