CA | ES | EN
AI for Healthcare

The research theme on AI and healthcare aims at applying some of the IIIA AI techniques to the field of healthcare. Specifically, it is focused on the design of novel algorithms to provide solutions able to incorporate advanced Descriptive, Diagnostic, Predictive, and Prescriptive capabilities to Clinical Decision Support Systems (CDSS). 

Contact: Eva Armengol


The current trend of moving towards a more Predictive, Preventive, Personalized, and Participatory medicine, known as 4P Medicine, is changing the healthcare paradigm. Digital technologies are playing an important role in this 4P paradigm generating a volume and variety of information never seen before. Artificial Intelligence is contributing by providing tools for the management and exploitation of this huge amount of data.

The prescription of highly personalized treatments increases the complexity of the knowedge and decisions to be considered. Artificial Intelligence and Machine Learning aims at developing innnovative decision support systems to speed up the discovery and consolidation of new evidence.  

Time Series Analysis

Many information sources in healthcare have a temporal dimension. The explosion of biometrical sensors and wearables is an example of its relevance and an also of its noisy nature. Providing robust and efficient algorithms to deal with this amount of data is a challenging problem we are currently focused on.

Deep Learning

Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics.

Case-Based Reasoning

CBR systems are capable of solving new problems using domain knowledge and the experience acquired in solving precedent problems (cases). CBR is a powerful methodology that allows incremental prototyping and short design cycles. Our group is an international referent on CBR with high impact contributions both in research and in applications.

Probabilistic Graphical Models

Probabilistic graphical models are a powerful framework for representing complex domains using probability distributions, with numerous applications in machine learning, computer vision, natural language processing and computational biology. Graphical models bring together graph theory and probability theory, and provide a flexible framework for modeling large collections of random variables with complex interactions

Causal Reasoning

Distinguishing between co-occurence and causality is one of the main challenges in healthcare. Determining causal relationships and designing robust causal models from data usually requires of the combination of multiple and heterogeneous data sources. Our research has been exploited into technology transfer projects.

Semi-Supervised Learning

One of the main characteristics of healthcare datasets is that they are usually partially annotated. Annotating and curating information is one of the key issues to obtain high quality datasets. This task requires a titanic effort and easily it becomes unaffordable. Semi-supervised techniques focus on minimizing the amount of labeled information, i.e. expert resources, while maximizing the models generated.

Explainability,
Trust, and Accountability

The adoption of complex AI/ML algorithms to take critical decisions collides with the requirement to understand ​Why these systems are recommending their decisions, which is their robustness, and the ethical consequences of these decisions. These systems will not succeed in healthcase if they do not incorporate explainability capabilities.

Eva Armengol
Tenured Scientist
Phone Ext. 431851

Jesus Cerquides
Scientific Researcher
Phone Ext. 431859

Lissette Lemus del Cueto
Contract Engineer
Phone Ext. 431823

Borja Velasco
Industrial PhD Student
Phone Ext. 431866

2024
Manel Rodríguez Soto,  Nardine Osman,  Carles Sierra,  Paula Sánchez Veja,  Rocío Cintas García,  Cristina Farriols Danes,  Montserrat García Retortillo,  & Sílvia Mínguez Maso (2024). (pp. 8). to appear at the Special Session on AI with Awareness Inside of the 16th International Conference on Agents and Artificial Intelligence (ICAART 2024). [BibTeX]  [PDF]
Gil-Gonzalez Sergi,  Velasco-Regúlez Borja,  Cerquides Jesus,  Hinarejos Pedro,  Monllau Joan Carles,  & Pelfort Xavier (2024). Antibiotic-loaded bone cement is associated with a reduction of the risk of revision of total knee arthroplasty: Analysis of the Catalan Arthroplasty Register. Knee Surgery, Sports Traumatology, Arthroscopy, n/a. https://doi.org/10.1002/ksa.12361. [BibTeX]  [PDF]
David Gómez-Guillén,  Mireia Díaz,  Josep Lluís Arcos,  & Jesus Cerquides (2024). Bayesian Optimization with Additive Kernels for a Stepwise Calibration of Simulation Models for Cost-Effectiveness Analysis. International Journal of Computational Intelligence Systems, 17, 249. https://doi.org/10.1007/s44196-024-00646-x. [BibTeX]  [PDF]
Nuria Correa,  Jesus Cerquides,  Rita Vassena,  Mina Popovic,  & Josep Lluis Arcos (2024). IDoser: Improving Individualized Dosing Policies with Clinical Practice and Machine Learning. Expert Systems with Applications, 238, 121796. https://doi.org/10.1016/j.eswa.2023.121796. [BibTeX]  [PDF]
Annelies Raes,  Georgios Athanasiou,  Nima Azari-Dolatabad,  Hafez Sadeghi,  Sebastian Gonzalez Andueza,  Josep Lluis Arcos,  Jesus Cerquides,  Krishna Chaitanya Pavani,  Geert Opsomer,  Osvaldo Bogado Pascottini,  Katrien Smits,  Daniel Angel-Velez,  & Ann Van Soom (2024). Manual versus deep learning measurements to evaluate cumulus expansion of bovine oocytes and its relationship with embryo development in vitro. Computers in Biology and Medicine, 168, 107785. https://doi.org/10.1016/j.compbiomed.2023.107785. [BibTeX]  [PDF]
Nuria Correa,  Jesus Cerquides,  Josep Lluis Arcos,  Rita Vassena,  & Mina Popovic (2024). Personalizing the First Dose of FSH for IVF/ICSI Patients through Machine Learning: A Non-Inferiority Study Protocol for a Multi-Center Randomized Controlled Trial. Trials, 25, 38. https://doi.org/10.1186/s13063-024-07907-2. [BibTeX]  [PDF]
2023
N Correa Mañas,  J Cerquides,  J L Arcos,  R Vassena,  & M Popovic (2023). A clinically robust machine learning model for selecting the first FSH dose during controlled ovarian hyperstimulation: incorporating clinical knowledge to the learning process. Human Reproduction, 38, dead093.226. https://doi.org/10.1093/humrep/dead093.226. [BibTeX]  [PDF]
David Gómez-Guillén,  Mireia Díaz,  Josep Lluis Arcos,  & Jesus Cerquides (2023). Bayesian Optimization with Additive Kernels for the Calibration of Simulation Models to Perform Cost-Effectiveness Analysis. Artificial Intelligence Research and Development (pp 143--152). IOS Press. https://doi.org/10.3233/FAIA230677. [BibTeX]  [PDF]
Georgios Athanasiou,  Josep Lluis Arcos,  & Jesus Cerquides (2023). Enhancing Medical Image Segmentation: Ground Truth Optimization through Evaluating Uncertainty in Expert Annotations. Mathematics, 11. https://doi.org/10.3390/math11173771. [BibTeX]  [PDF]
Borja Velasco-Regulez,  & Jesus Cerquides (2023). Hydranet: A Neural Network for the Estimation of Multi-Valued Treatment Effects. Artificial Intelligence Research and Development (pp 16--27). IOS Press. https://doi.org/10.3233/FAIA230655. [BibTeX]  [PDF]
A. Raes,  N. Azari-Dolatabad,  G. Athanasiou,  J.L. Arcos,  J. Cerquides,  G. Opsomer,  K. Smits,  D. Angel-Velez,  & A. {Van Soom} (2023). Measuring cumulus expansion of bovine cumulus-oocyte complexes: comparing the reliability of three methods. Animal - science proceedings, 14, 449-450. https://doi.org/10.1016/j.anscip.2023.03.032. [BibTeX]  [PDF]
Becky White,  Arnault Gombert,  Tim Nguyen,  Brian Yau,  Atsuyoshi Ishizumi,  Laura Kirchner,  Alicia Leon,  Harry Wilson,  Giovanna Jaramillo-Gutierrez,  Jesus Cerquides,  & others (2023). Using artificial intelligence to inform infodemic insights: The development of the who ears platform. APHA 2023 Annual Meeting and Expo . [BibTeX]
Becky K. White,  Arnault Gombert,  Tim Nguyen,  Brian Yau,  Atsuyoshi Ishizumi,  Laura Kirchner,  Alicia León,  Harry Wilson,  Giovanna Jaramillo-Gutierrez,  Jesus Cerquides,  Marcelo D'Agostino,  Cristiana Salvi,  Ravi Shankar Sreenath,  Kimberly Rambaud,  Dalia Samhouri,  Sylvie Briand,  & Tina D. Purnat (2023). Using Machine Learning Technology (Early Artificial Intelligence-Supported Response With Social Listening Platform) to Enhance Digital Social Understanding for the COVID-19 Infodemic: Development and Implementation Study. JMIR Infodemiology, 3, e47317. https://doi.org/10.2196/47317. [BibTeX]  [PDF]
2022
Georgios Athanasiou,  Jesus Cerquides,  Annelies Raes,  Nima Azari-Dolatabad,  Daniel Angel-Velez,  Ann Van Soom,  & Josep Lluis Arcos (2022). Detecting the Area of Bovine Cumulus Oocyte Complexes Using Deep Learning and Semantic Segmentation. A. Cortés al. (Eds.), Frontiers in Artificial Intelligence and Applications (pp 249-258). IOS Press. https://doi.org/10.3233/FAIA220346. [BibTeX]
Borja Velasco-Regulez,  Jose L. Fernandez-Marquez,  Nerea Luqui,  Jesus Cerquides,  Josep Analia Fukelman,  & Josep Perelló (2022). Is the phase of the menstrual cycle relevant when getting the covid-19 vaccine?. American Journal of Obstetrics and Gynecology, 227, 913-915. https://doi.org/10.1016/j.ajog.2022.07.052. [BibTeX]  [PDF]
Jerónimo Hernández-González,  Olga Valls,  Adrián Torres-Martín,  & Jesús Cerquides (2022). Modeling three sources of uncertainty in assisted reproductive technologies with probabilistic graphical models. Computers in Biology and Medicine, 150, 106160. https://doi.org/10.1016/j.compbiomed.2022.106160. [BibTeX]  [PDF]
Borja Velasco,  Jesus Cerquides,  & Josep Lluis Arcos (2022). Multi-valued Treatment Effect Estimation for Health Technology Assessment with a Neural Network. NeurIPS 2022 Workshop on Causality for Real-world Impact . [BibTeX]  [PDF]
Nuria Correa,  Jesús Cerquides,  Josep Lluis Arcos,  & Rita Vassena (2022). Supporting first FSH dosage for ovarian stimulation with machine learning. Reproductive Biomedicine Online. https://doi.org/10.1016/j.rbmo.2022.06.010. [BibTeX]
2021
Emma Segura,  Jennifer Grau-Sánchez,  David Sanchez-Pinsach,  Myriam De-la-Cruz,  Esther Duarte,  Josep Lluis Arcos,  & Antoni Rodríguez-Fornells (2021). Designing an app for home-based enriched Music-supported Therapy in the rehabilitation of patients with chronic stroke: a pilot feasibility study. Brain Injury, 35, 1585-1597. https://doi.org/10.1080/02699052.2021.1975819. [BibTeX]
Núria Correa,  Jesús Cerquides,  Josep Lluis Arcos,  & Rita Vassena (2021). Development and validation of an Artificial Intelligence algorithm that matches a clinician ability to select the best follitropin dose for ovarian stimulation. Human Reproduction, 36. https://doi.org/10.1093/humrep/deab130.636. [BibTeX]
Jennifer Grau-Sánchez,  Emma Segura,  David Sanchez-Pinsach,  Preeti Raghavan,  Thomas F. Münte,  Anna Marie Palumbo,  Alan Turry,  Esther Duarte,  Särkämö Särkämö,  Jesus Cerquides,  Josep Lluis Arcos,  & Antoni Rodriguez-Fornells (2021). Enriched Music-supported Therapy for chronic stroke patients: a study protocol of a randomised controlled trial. BMC Neurology, 21. https://doi.org/10.1186/s12883-020-02019-1. [BibTeX]  [PDF]
Emma Segura,  Jennifer Grau-Sánchez,  David Sanchez-Pinsach,  Esther Duarte,  Josep Lluis Arcos,  & Antoni Rodríguez-Fornells (2021). Enriched music-supported therapy in the improvement of motor function and quality of life of chronic stroke patients: a pilot study. NeuroMusic VII . [BibTeX]
Núria Correa,  Rita Vassena,  Jesus Cerquides,  & Josep Lluis Arcos (2021). Limits of conventional Machine Learning methods to predict pregnancy and multiple pregnancy after embryo transfer. Ada Valls, & Mateu Villaret (Eds.), Frontiers in Artificial Intelligence and Applications (pp 245-253). IOS Press. [BibTeX]
Adri{\'{a}}n Torres{-}Mart{í}n,  Jer{\'{o}}nimo Hern{\'{a}}ndez{-}Gonz{\'{a}}lez,  & Jes{\'{u}}s Cerquides (2021). Validation on Real Data of an Extended Embryo-Uterine Probabilistic Graphical Model for Embryo Selection. Mateu Villaret, Teresa Alsinet, C{\\`{e}}sar Fern{\\'{a}}ndez, & A{\\"{\\i}}da Valls (Eds.), Artificial Intelligence Research and Development - Proceedings of the 23rd International Conference of the Catalan Association for Artificial Intelligence, {CCIA}2021, Virtual Event, 20-22 October, 2021 (pp. 225--234). {IOS}Press. https://doi.org/10.3233/FAIA210139. [BibTeX]  [PDF]
2020
Oguz Mulayim (2020). Anytime Lazy kNN (ALK): A fast anytime kNN search algorithm. https://doi.org/10.5281/zenodo.4472641. [BibTeX]
Oguz Mulayim,  & Josep Lluis Arcos (2020). Fast anytime retrieval with confidence in large-scale temporal case bases. Knowledge-Based Systems, 206, 106374. https://doi.org/10.1016/j.knosys.2020.106374. [BibTeX]  [PDF]
2019
David Sanchez-Pinsach,  Oguz Mulayim,  Jennifer Grau-Sánchez,  Emma Segura,  Berta Juan-Corbella,  Josep Lluis Arcos,  Jesus Cerquides,  Monique Messaggi-Sartor,  Esther Duarte,  & Antoni Rodriguez-Fornells (2019). Design of an AI Platform to Support Home-Based Self-Training Music Interventions for Chronic Stroke Patients. Jordi Sabater-Mir, Vicenç Torra, Isabel Aguilo, & Manuel González-Hidalgo (Eds.), Frontiers in Artificial Intelligence and Applications (pp 170--175). IOS Press. https://doi.org/10.3233/FAIA190120. [BibTeX]
2018
Oguz Mulayim,  & Josep Lluis Arcos (2018). Perks of Being Lazy: Boosting Retrieval Performance. Twenty-Sixth International Conference on Case-Based Reasoning . https://doi.org/10.1007/978-3-030-01081-2_21. [BibTeX]
2017
E. Ros-Cucurull,  A. Xicola,  R.F. Palma-Álvarez,  Arturo Ribes,  L. Grau-López,  Lissette Lemus,  Josep Lluis Arcos,  & C. Roncero (2017). Electrodermal activity monitoring on inpatient detoxification unit. 30th ECNP Congress . [BibTeX]
Martin Nettling,  Henrik Treutler,  Jesús Cerquides,  & Ivo Grosse (2017). Unrealistic phylogenetic trees may improve phylogenetic footprinting. Bioinformatics. [BibTeX]
David Sanchez-Pinsach,  Josep Lluis Arcos,  Sara Laxe,  Montserrat Bernabeu,  & Josep Maria Tormos (2017). Using community detection techniques to disc over non-explicit relationships in neurorehabilitation treatments. 20th International Conference of the Catalan Association for Artificial Intelligence (pp. 26-35). IOS Press. https://doi.org/10.3233/978-1-61499-806-8-26. [BibTeX]
2016
Martin Nettling,  Hendrik Treutler,  Jesús Cerquides,  & Ivo Grosse (2016). Detecting and correcting the binding-affinity bias in ChIP-seq data using inter-species information. BMC Genomics, 17, 347. https://doi.org/10.1186/s12864-016-2682-6. [BibTeX]
2013
Joan Serrà,  Josep Lluis Arcos,  Alejandro Garcia-Rudolph,  Alberto García-Molina,  Teresa Roig,  & Josep Maria Tormos (2013). Cognitive prognosis of acquired brain injury patients using machine learning techniques. Int. Conf. on Advanced Cognitive Technologies and Applications (COGNITIVE) (pp. 108-113). IARIA. [BibTeX]  [PDF]
2012
Josep Blat,  Josep Lluis Arcos,  & Sergio Sayago (2012). WorthPlay: juegos digitales para un envejecimiento saludable. LYCHNOS, 8. http://www.fgcsic.es/lychnos/es_es/articulos/WorthPlay-juegos-digitales-para-un-envejecimiento-activo-y-saludable. [BibTeX]
2011
Eva Armengol (2011). Classification of Melanomas in situ using Knowledge Discovery with Explained CBR. Artificial Intelligence in Medicine, 51, 12. [BibTeX]  [PDF]
Eva Armengol,  Pilar Dellunde,  & Carlo Ratto (2011). Lazy Learning Methods for Quality of Life Assessment in people with intellectual disabilities. CCIA-2011 (pp. 41-50). IOS Press. [BibTeX]
2009
Eva Armengol (2009). Using explanations for determining carcinogenecity in chemical compounds. International Journal on Engineering Applications of Artificial Intelligence, 22, 8. [BibTeX]
2008
Albert Fornells,  Eva Armengol,  Elisabet Golobardes,  Susana Puig,  & Josep Malvehy (2008). Experiences using clustering and generizations for knowledge discovery in melanomas domain. P. Perner (Eds.), Lecture Notes in Computer Science . Springer. [BibTeX]
2001
A. Palaudàries,  Eva Armengol,  & Enric Plaza (2001). Individual prognosis of diabetes long-term risks: A CBR approach. Methods of Information in Medicine, 40, 46-51. [BibTeX]
2000
Eva Armengol,  A. Palaudàries,  & Enric Plaza (2000). Raonament basat en Casos per Pronosticar Riscos a Llarg Termini en Pacients amb Diabetis Mellitus. Proceedings of the (pp. 209-218). [BibTeX]