CA | ES | EN
Sara
Sara
 
Ugolini
Ugolini

Contract Researcher
Contract Researcher


Sara
Sara
 
Ugolini
Ugolini
Contract Researcher
Contract Researcher

Logic and Reasoning
Logic and Reasoning
(+34) 93 580 9570 ext.
431848
431848
sara@iiia.csic.es
sara@iiia.csic.es
Research areas:
  • Fuzzy Logic
  • Modal Logic
  • Probability Logic
  • Algebraic logic
  • Approximate Reasoning and Soft computing
  • Uncertainty
  • Inconsitency-tolerant reasoning
  • Nonmonotonic Reasoning
  • Fuzzy Logic
  • Modal Logic
  • Probability Logic
  • Algebraic logic
  • Approximate Reasoning and Soft computing
  • Uncertainty
  • Inconsitency-tolerant reasoning
  • Nonmonotonic Reasoning
Impact areas:
SDGs:
In Press
Tommaso Flaminio,  Lluís Godo,  Sara Ugolini,  & Francesc Esteva (In Press). An approach to inconsistency-tolerant reasoning about probability based on Łukasiewicz logic. H. Antunes, A. Rodrigues, & A. Roque (Eds.), Volume in Honour of Walter Carnielli. Springer. [BibTeX]  [PDF]
2024
Tommaso Flaminio,  & Sara Ugolini (2024). Encoding de Finetti's coherence within Łukasiewicz logic and MV-algebras. Annals of Pure and Applied Logic, 175, 103337. https://doi.org/10.1016/j.apal.2023.103337. [BibTeX]
2023
Tommaso Flaminio,  & Sara Ugolini (2023). Encoding de Finetti's coherence within Łukasiewicz logic and MV-algebras. Annals of Pure and Applied Logic, 103337. https://doi.org/10.1016/j.apal.2023.103337. [BibTeX]  [PDF]
2022
Tommaso Flaminio,  Lluís Godo,  Sara Ugolini,  & Francesc Esteva (2022). A fuzzy logic-based approach to reason with inconsistent probabilistic theories. Actas del XXI Congreso de Tecnologías y Lógica Fuzzy (ESTYLF’22) (pp. 73–-74). Universidad de Castilla-La Mancha. [BibTeX]  [PDF]
Tommaso Flaminio,  Lluís Godo,  & Sara Ugolini (2022). An Approach to Inconsistency-Tolerant Reasoning About Probability Based on Łukasiewicz Logic. F. Dupin al. (Eds.), SUM 2022 (pp. 124–-138). Springer. https://doi.org/10.1007/978-3-031-18843-5_9. [BibTeX]  [PDF]
2021
Tommaso Flaminio,  Lluís Godo,  & Sara Ugolini (2021). Canonical Extension of Possibility Measures to Boolean Algebras of Conditionals. Jirina Vejnarová, & Nic Wilson (Eds.), Symbolic and Quantitative Approaches to Reasoning with Uncertainty - 16th European Conference, ECSQARU 2021, Prague, Czech Republic, September 21-24, 2021, Proceedings (pp. 543--556). Springer. https://doi.org/10.1007/978-3-030-86772-0_39. [BibTeX]  [PDF]
Paolo Aglianò,  & Sara Ugolini (2021). {Strictly join irreducible varieties of residuated lattices}. Journal of Logic and Computation, 32, 32-64. https://doi.org/10.1093/logcom/exab059. [BibTeX]
2020
Tommaso Flaminio,  & Sara Ugolini (2020). Hyperstates of Involutive MTL-Algebras that Satisfy $(2x)^2=2(x^2)$. Shier Ju, Alessandra Palmigiano, & Minghui Ma (Eds.), Nonclassical Logics and Their Applications (pp. 1--14). Springer Singapore. [BibTeX]  [PDF]
2018
Tommaso Flaminio,  Lluís Godo,  & Sara Ugolini (2018). Corrigendum to "Towards a probability theory for product logic: States, integral representation and reasoning" [Int. J. Approx. Reason. 93 (2018) 199-218]. International Journal of Approximate Reasoning, 103, 267-269. https://www.sciencedirect.com/science/article/pii/S0888613X18304481?via%3Dihub. [BibTeX]  [PDF]
Tommaso Flaminio,  Lluís Godo,  & Sara Ugolini (2018). Towards a probability theory for product logic: states, integral representation and reasoning. Internationa Journal of Approximate Reasoning, 93, 199-218. https://www.sciencedirect.com/science/article/pii/S0888613X17302360. [BibTeX]  [PDF]
2017
Tommaso Flaminio,  Lluís Godo,  & Sara Ugolini (2017). States of free product algebras and their integral representation. I. Stubbe, U. Hoehle, S. Saminger-Platz, & T. Vetterlein (Eds.), 37th Linz Seminar on Fuzzy Set Theory (pp. 35-38). [BibTeX]  [PDF]