CA | ES | EN
Tommaso
Tommaso
 
Flaminio
Flaminio

Tenured Scientist
Tenured Scientist


Tommaso
Tommaso
 
Flaminio
Flaminio
Tenured Scientist
Tenured Scientist

Logic and Reasoning
Logic and Reasoning
(+34) 93 580 9570 ext.
431841
431841
tommaso@iiia.csic.es
tommaso@iiia.csic.es
Research areas:
  • Fuzzy Logic
  • Modal Logic
  • Probability Logic
  • Belief Revision
  • Conditional logics
  • Nonmonotonic Reasoning
  • Uncertainty
  • Algebraic logic
  • Approximate Reasoning and Soft computing
  • Inconsitency-tolerant reasoning
  • Fuzzy Logic
  • Modal Logic
  • Probability Logic
  • Belief Revision
  • Conditional logics
  • Nonmonotonic Reasoning
  • Uncertainty
  • Algebraic logic
  • Approximate Reasoning and Soft computing
  • Inconsitency-tolerant reasoning
Impact areas:
SDGs:
In Press
Tommaso Flaminio,  Lluís Godo,  Sara Ugolini,  & Francesc Esteva (In Press). An approach to inconsistency-tolerant reasoning about probability based on Łukasiewicz logic. H. Antunes, A. Rodrigues, & A. Roque (Eds.), Volume in Honour of Walter Carnielli. Springer. [BibTeX]  [PDF]
Tommaso Flaminio,  Lluís Godo,  Ramón Pino Pérez,  & Lluís Subirana (In Press). On Lockean beliefs that are deductively closed and minimal change. Proc. of JELIA 2025 . Springer, Cham. [BibTeX]
Tommaso Flaminio,  Lluís Godo,  & Giuliano Rosella (In Press). On measuring the possibility of selection function-based conditionals, general updates, and qualitative capacities. Kai Sauerwald, & Matthias Thimm (Eds.), Proc. of ECSQARU 2025 . Springer, Cham. [BibTeX]
Lydia Castronovo,  Tommaso Flaminio,  Lluís Godo,  & Giuseppe Sanfilippo (In Press). Towards an algebraic and probabilistic setting for iterated Boolean conditionals. Kai Sauerwald, & Matthias Thimm (Eds.), Proc. of ECSQARU 2025 . Springer, Cham. [BibTeX]
2025
Tommaso Flaminio,  & Lluis Subirana (2025). Quantitative Lockean Thesis and its Logical Representation. M. Baczynski, B. De Baets, M. Holcapek, V. Kreinovich, & J. Medina (Eds.), Advances in Fuzzy Logic and Technology (pp. 347--358). Springer Nature Switzerland. [BibTeX]
2024
Tommaso Flaminio,  Lluís Godo,  Paula Menchón,  & Ricardo Oscar Rodríguez (2024). Algebras and relational frames for Gödel modal logic and some of its extensions. M. Coniglio, E. Koubychkina, & D. Zaitsev (Eds.), Many-valued Semantics and Modal Logics: Essays in Honour of Yuriy Vasilievich Ivlev (pp 179-216). Springer (Also as CoRR, abs/2110.02528. http://arxiv.org/abs/2110.02528). https://doi.org/10.1007/978-3-031-56595-3_7. [BibTeX]  [PDF]
Esther Anna Corsi,  Tommaso Flaminio,  & Hykel Hosni (2024). A logico-geometric comparison of coherence for non-additive uncertainty measures. Annals of Pure and Applied Logic, 175, 103342. https://doi.org/10.1016/j.apal.2023.103342. [BibTeX]
Tommaso Flaminio,  & Lluís Godo (2024). Conditional Objects as Possibilistic Variables. Zied Bouraoui, & Srdjan Vesic (Eds.), Symbolic and Quantitative Approaches to Reasoning with Uncertainty - 17th European Conference, ECSQARU 2023, Arras, France, September 19-22, 2023, Proceedings (pp. 372--385). Springer. https://doi.org/10.1007/978-3-031-45608-4_28. [BibTeX]  [PDF]
Tommaso Flaminio,  Lluís Godo,  & Giuliano Rosella (2024). Conditional Possibilities, Possibilistic Imaging and Boolean Algebras of Conditionals. Book of Abstracts, IPMU 2024 . [BibTeX]
Tommaso Flaminio,  & Sara Ugolini (2024). Encoding de Finetti's coherence within Łukasiewicz logic and MV-algebras. Annals of Pure and Applied Logic, 175, 103337. https://doi.org/10.1016/j.apal.2023.103337. [BibTeX]
Tommaso Flaminio,  Lluís Godo,  & Giuliano Rosella (2024). Possibility of Conditionals and Conditional Possibilities: From a Triviality Result to Possibilistic Imaging. Pierre Marquis, Magdalena Ortiz, & Maurice Pagnucco (Eds.), Proc. of the 21st International Conference on Principles of Knowledge Representation and Reasoning - Main Track (KR 2024) (pp. 372-382). https://doi.org/10.24963/kr.2024/35. [BibTeX]  [PDF]
2023
Esther Anna Corsi,  Tommaso Flaminio,  & Hykel Hosni (2023). A logico-geometric comparison of coherence for non-additive uncertainty measures. Annals of Pure and Applied Logic, 103342. https://doi.org/10.1016/j.apal.2023.103342. [BibTeX]
Tommaso Flaminio,  Lluís Godo,  Nicolás Madrid,  & Manuel Ojeda-Aciego (2023). A Logic to Reason About f-Indices of Inclusion over $\L_n$. Sebastia Massanet al. (Eds.), Fuzzy Logic and Technology, and Aggregation Operators. EUSFLAT 2023, AGOP 2023, Lecture Notes in Artificial Intelligence vol. 14069 (pp. 530--539). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-39965-7_44. [BibTeX]  [PDF]
Esther Anna Corsi,  Tommaso Flaminio,  Lluís Godo,  & Hykel Hosni (2023). A modal logic for uncertainty: a completeness theorem. 13th International Symposium on Imprecise Probabilities: Theories and Applications - ISIPTA 2023 (pp. 119-129). [BibTeX]  [PDF]
Giuliano Rosella,  Tommaso Flaminio,  & Stefano Bonzio (2023). Counterfactuals as modal conditionals, and their probability. Artificial Intelligence, 323, 103970. https://doi.org/10.1016/j.artint.2023.103970. [BibTeX]  [PDF]
Tommaso Flaminio,  & Sara Ugolini (2023). Encoding de Finetti's coherence within Łukasiewicz logic and MV-algebras. Annals of Pure and Applied Logic, 103337. https://doi.org/10.1016/j.apal.2023.103337. [BibTeX]  [PDF]
Tommaso Flaminio,  Angelo Gilio,  Lluís Godo,  & Giuseppe Sanfilippo (2023). On conditional probabilities and their canonical extensions to Boolean algebras of compound conditionals. International Journal of Approximate Reasoning, 159, 108943. https://doi.org/10.1016/j.ijar.2023.108943. [BibTeX]  [PDF]
2022
Tommaso Flaminio,  Lluís Godo,  Sara Ugolini,  & Francesc Esteva (2022). A fuzzy logic-based approach to reason with inconsistent probabilistic theories. Actas del XXI Congreso de Tecnologías y Lógica Fuzzy (ESTYLF’22) (pp. 73–-74). Universidad de Castilla-La Mancha. [BibTeX]  [PDF]
Tommaso Flaminio,  Lluís Godo,  & Sara Ugolini (2022). An Approach to Inconsistency-Tolerant Reasoning About Probability Based on Łukasiewicz Logic. F. Dupin al. (Eds.), SUM 2022 (pp. 124–-138). Springer. https://doi.org/10.1007/978-3-031-18843-5_9. [BibTeX]  [PDF]
Tommaso Flaminio,  Angelo Gilio,  Lluís Godo,  & Giuseppe Sanfilippo (2022). Canonical Extensions of Conditional Probabilities and Compound Conditionals. Davide Ciucci al. (Eds.), 17th Intl. Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2022) (pp. 584--597). Springer International Publishing. https://doi.org/10.1007/978-3-031-08974-9_47. [BibTeX]  [PDF]