MOSAIC
MOSAIC

MOSAIC
MOSAIC
 : 
Modalities in Substructural Logics: Theory, Methods and Applications
Modalities in Substructural Logics: Theory, Methods and Applications

A Project coordinated by IIIA.

Web page:

Principal investigator: 

Collaborating organisations:

CONSEJO NACIONAL DE INVESTIGACIONES CIENTIFICAS Y TECNICAS (CONICET)

UNIVERSITA DEGLI STUDI DI SALERNO

UNIVERSIDAD AUTONOMA DE BARCELONA

UNIVERSITAT DE BARCELONA

UNIVERSITEIT VAN AMSTERDAM

USTAV INFO...

[see more]

CONSEJO NACIONAL DE INVESTIGACIONES CIENTIFICAS Y TECNICAS (CONICET)

UNIVERSITA DEGLI STUDI DI SALERNO

UNIVERSIDAD AUTONOMA DE BARCELONA

UNIVERSITAT DE BARCELONA

UNIVERSITEIT VAN AMSTERDAM

USTAV INFORMATIKY AV CR

USTAV TEORIE INFORMACE A AUTOMATIZACE AV CR VVI

UNIVERSITAET BERN

UNIWERSYTET MIKOLAJA KOPERNIKA W TORUNIU

UNIVERSIDADE ESTADUAL DE CAMPINAS

TECHNISCHE UNIVERSITAET WIEN

UNIVERSITY OF DENVER COLORADO SEMINARY

THE AUSTRALIAN NATIONAL UNIVERSITY

UNIVERSITY OF THE WITWATERSRAND JOHANNESBURG

LA TROBE UNIVERSITY

UNIVERSITA DEGLI STUDI DI MILANO

UNIVERSITY COLLEGE LONDON

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

THE UNIVERSITY OF SYDNEY

Chapman University

ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

STICHTING VU

INSTITUT NATIONAL DES SCIENCES APPLIQUEES CENTRE VAL DE LOIRE

THE UNIVERSITY OF QUEENSLAND

UNIVERSITA DEGLI STUDI DI GENOVA

UNIVERSITEIT UTRECHT

UNIVERSITA DEGLI STUDI DELL'INSUBRIA

Funding entity:

European Commission - Marie Skłodowska-Curie Actions
European Commission - Marie Skłodowska-Curie Actions

Funding call:

Funding call URL:

Project #:

H2020-MSCA-RISE-2020 (101007627)
H2020-MSCA-RISE-2020 (101007627)

Total funding amount:

1.016.000,00€
1.016.000,00€

IIIA funding amount:

Duration:

01/Sep/2021
01/Sep/2021
31/Aug/2025
31/Aug/2025

Extension date:

Modal logics are a family of formal systems based on classical logic which aim at improving the expressive power of the classical calculus allowing to reason about “modes of truth”. The aim of the present project is to put forward a systematic study of substructural modal logics, understood as those modal logics in which the modal operators are based upon the general ground of substructural logics, weaker deductive systems than classical logic. Our aim is also to explore the applications of substructural modal logics outside the bounds of mathematical logic and, in particular, in the areas of knowledge representation; legal reasoning; data privacy and security; logical analysis of natural language.

Modal logics are a family of formal systems based on classical logic which aim at improving the expressive power of the classical calculus allowing to reason about “modes of truth”. The aim of the present project is to put forward a systematic study of substructural modal logics, understood as those modal logics in which the modal operators are based upon the general ground of substructural logics, weaker deductive systems than classical logic. Our aim is also to explore the applications of substructural modal logics outside the bounds of mathematical logic and, in particular, in the areas of knowledge representation; legal reasoning; data privacy and security; logical analysis of natural language.

In Press
Tommaso Flaminio,  Lluís Godo,  Sara Ugolini,  & Francesc Esteva (In Press). An approach to inconsistency-tolerant reasoning about probability based on Łukasiewicz logic. H. Antunes, A. Rodrigues, & A. Roque (Eds.), Volume in Honour of Walter Carnielli. Springer. [BibTeX]  [PDF]
Joan Gispert,  Francesc Esteva,  Lluís Godo,  & Marcelo Coniglio (In Press). On Nilpotent Minimum logics defined by lattice filters and their paraconsistent non-falsity preserving companions. Logic Journal of the IGPL. [BibTeX]  [PDF]
2024
Esther Anna Corsi,  Tommaso Flaminio,  & Hykel Hosni (2024). A logico-geometric comparison of coherence for non-additive uncertainty measures. Annals of Pure and Applied Logic, 175, 103342. https://doi.org/10.1016/j.apal.2023.103342. [BibTeX]
Tommaso Flaminio,  & Lluís Godo (2024). Conditional Objects as Possibilistic Variables. Zied Bouraoui, & Srdjan Vesic (Eds.), Symbolic and Quantitative Approaches to Reasoning with Uncertainty - 17th European Conference, ECSQARU 2023, Arras, France, September 19-22, 2023, Proceedings (pp. 372--385). Springer. https://doi.org/10.1007/978-3-031-45608-4_28. [BibTeX]  [PDF]
Tommaso Flaminio,  & Sara Ugolini (2024). Encoding de Finetti's coherence within Łukasiewicz logic and MV-algebras. Annals of Pure and Applied Logic, 175, 103337. https://doi.org/10.1016/j.apal.2023.103337. [BibTeX]
Tommaso Flaminio,  Lluís Godo,  & Giuliano Rosella (2024). Possibility of Conditionals and Conditional Possibilities: From a Triviality Result to Possibilistic Imaging. Pierre Marquis, Magdalena Ortiz, & Maurice Pagnucco (Eds.), Proc. of the 21st International Conference on Principles of Knowledge Representation and Reasoning - Main Track (KR 2024) (pp. 372-382). https://doi.org/10.24963/kr.2024/35. [BibTeX]  [PDF]
2023
Esther Anna Corsi,  Tommaso Flaminio,  & Hykel Hosni (2023). A logico-geometric comparison of coherence for non-additive uncertainty measures. Annals of Pure and Applied Logic, 103342. https://doi.org/10.1016/j.apal.2023.103342. [BibTeX]
Tommaso Flaminio,  Lluís Godo,  Nicolás Madrid,  & Manuel Ojeda-Aciego (2023). A Logic to Reason About f-Indices of Inclusion over $\L_n$. Sebastia Massanet al. (Eds.), Fuzzy Logic and Technology, and Aggregation Operators. EUSFLAT 2023, AGOP 2023, Lecture Notes in Artificial Intelligence vol. 14069 (pp. 530--539). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-39965-7_44. [BibTeX]
Esther Anna Corsi,  Tommaso Flaminio,  Lluís Godo,  & Hykel Hosni (2023). A modal logic for uncertainty: a completeness theorem. 13th International Symposium on Imprecise Probabilities: Theories and Applications - ISIPTA 2023 (pp. 119-129). [BibTeX]  [PDF]
Didier Dubois,  Lluís Godo,  & Henri Prade (2023). An elementary belief function logic. Journal of Applied Non-Classical Logics, 33, 582-605. https://doi.org/10.1080/11663081.2023.2244366. [BibTeX]  [PDF]
Giuliano Rosella,  Tommaso Flaminio,  & Stefano Bonzio (2023). Counterfactuals as modal conditionals, and their probability. Artificial Intelligence, 323, 103970. https://doi.org/10.1016/j.artint.2023.103970. [BibTeX]  [PDF]
Tommaso Flaminio,  & Sara Ugolini (2023). Encoding de Finetti's coherence within Łukasiewicz logic and MV-algebras. Annals of Pure and Applied Logic, 103337. https://doi.org/10.1016/j.apal.2023.103337. [BibTeX]  [PDF]
Tommaso Flaminio,  Angelo Gilio,  Lluís Godo,  & Giuseppe Sanfilippo (2023). On conditional probabilities and their canonical extensions to Boolean algebras of compound conditionals. International Journal of Approximate Reasoning, 159, 108943. https://doi.org/10.1016/j.ijar.2023.108943. [BibTeX]  [PDF]
2022
Tommaso Flaminio,  Lluís Godo,  & Sara Ugolini (2022). An Approach to Inconsistency-Tolerant Reasoning About Probability Based on Łukasiewicz Logic. F. Dupin al. (Eds.), SUM 2022 (pp. 124–-138). Springer. https://doi.org/10.1007/978-3-031-18843-5_9. [BibTeX]  [PDF]
Tommaso Flaminio,  Angelo Gilio,  Lluís Godo,  & Giuseppe Sanfilippo (2022). Canonical Extensions of Conditional Probabilities and Compound Conditionals. Davide Ciucci al. (Eds.), 17th Intl. Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2022) (pp. 584--597). Springer International Publishing. https://doi.org/10.1007/978-3-031-08974-9_47. [BibTeX]  [PDF]
Tommaso Flaminio,  Angelo Gilio,  Lluís Godo,  & Giuseppe Sanfilippo (2022). Compound Conditionals as Random Quantities and Boolean Algebras. Gabriele Kern{-}Isberner, Gerhard Lakemeyer, & Thomas Meyer (Eds.), Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning, {KR}2022, Haifa, Israel. July 31 - August 5, 2022 (pp. 141-151). https://doi.org/10.24963/kr.2022/15. [BibTeX]  [PDF]
Ricardo Oscar Rodriguez,  Olim Frits Tuyt,  Francesc Esteva,  & Lluís Godo (2022). Simplified Kripke Semantics for K45-Like Gödel Modal Logics and Its Axiomatic Extensions. Studia Logica, 110, 1081-1114. https://doi.org/10.1007/s11225-022-09987-0. [BibTeX]  [PDF]
Tommaso Flaminio
Tenured Scientist
Phone Ext. 431841

Lluís Godo
Research Professor
Phone Ext. 431857