Crowd4SDG
Crowd4SDG

Crowd4SDG
Crowd4SDG
 : 
Citizen Science for Monitoring Climate Impacts and Achieving Climate Resilience
Citizen Science for Monitoring Climate Impacts and Achieving Climate Resilience

A Project coordinated by IIIA.

Web page:

Principal investigator: 

Collaborating organisations:

UNIVERSITE DE GENEVE (UNIGE)

POLITECNICO DI MILANO (POLIMI)

UNIVERSITE DE PARIS (UP)

UNITED NATIONS INSTITUTE FOR TRAINING AND RESEARCH (UNITAR)

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

UNIVERSITE DE GENEVE (UNIGE)

POLITECNICO DI MILANO (POLIMI)

UNIVERSITE DE PARIS (UP)

UNITED NATIONS INSTITUTE FOR TRAINING AND RESEARCH (UNITAR)

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

Funding entity:

European Comission
European Comission

Funding call:

H2020-SwafS-2019-1
H2020-SwafS-2019-1

Funding call URL:

Project #:

872944
872944

Total funding amount:

1.999.436,25€
1.999.436,25€

IIIA funding amount:

293.373,75€
293.373,75€

Duration:

01/May/2020
01/May/2020
30/Apr/2023
30/Apr/2023

Extension date:

The 17 Sustainable Development Goals (SDGs), launched by the UN in 2015, are underpinned by 169 concrete targets and 232 measurable indicators. Some of these indicators have no established measurement methodology. For others, many countries do not have the data collection capacity. Measuring progress towards the SDGs is thus a challenge for most national statistical offices. The goal of the Crowd4SDG project is to research the extent to which Citizen Science (SC) can provide an essential source of non-traditional data for tracking progress towards the SDGs, as well as the ability of CS to generate social innovations that enable such progress. Based on shared expertise in crowdsourcing for disaster response, the transdisciplinary Crowd4SDG consortium of six partners will focus on SDG 13, climate action, to explore new ways of applying CS for monitoring the impacts of extreme climate events and strengthening resilience of communities to climate-related disasters. To achieve this goal, Crowd4SDG will initiate research on the applications of artificial intelligence and machine learning to enhance CS and explore the use of social media and other non-traditional data sources for more effective monitoring of SDGs by citizens. Crowd4SDG will use direct channels through consortium partner UNITAR to provide national statistical offices with recommendations on best practices for generating and exploiting CS data for tracking the SDGs. To this end, Crowd4SDG will rigorously assess the quality of the scientific knowledge and usefulness of practical innovations occurring when teams develop new CS projects focusing on climate action through three annual challenge-based innovation events, both online and in person. A wide range of stakeholders, from the UN, governments, the private sector, NGOs, academia, innovation incubators and maker spaces will be actively involved in advising the project and exploiting the scientific knowledge and technical innovations that it generates.

The 17 Sustainable Development Goals (SDGs), launched by the UN in 2015, are underpinned by 169 concrete targets and 232 measurable indicators. Some of these indicators have no established measurement methodology. For others, many countries do not have the data collection capacity. Measuring progress towards the SDGs is thus a challenge for most national statistical offices. The goal of the Crowd4SDG project is to research the extent to which Citizen Science (SC) can provide an essential source of non-traditional data for tracking progress towards the SDGs, as well as the ability of CS to generate social innovations that enable such progress. Based on shared expertise in crowdsourcing for disaster response, the transdisciplinary Crowd4SDG consortium of six partners will focus on SDG 13, climate action, to explore new ways of applying CS for monitoring the impacts of extreme climate events and strengthening resilience of communities to climate-related disasters. To achieve this goal, Crowd4SDG will initiate research on the applications of artificial intelligence and machine learning to enhance CS and explore the use of social media and other non-traditional data sources for more effective monitoring of SDGs by citizens. Crowd4SDG will use direct channels through consortium partner UNITAR to provide national statistical offices with recommendations on best practices for generating and exploiting CS data for tracking the SDGs. To this end, Crowd4SDG will rigorously assess the quality of the scientific knowledge and usefulness of practical innovations occurring when teams develop new CS projects focusing on climate action through three annual challenge-based innovation events, both online and in person. A wide range of stakeholders, from the UN, governments, the private sector, NGOs, academia, innovation incubators and maker spaces will be actively involved in advising the project and exploiting the scientific knowledge and technical innovations that it generates.

2024
Manel Rodríguez Soto,  Juan A. Rodríguez-Aguilar,  & Maite López-Sánchez (2024). An Analytical Study of Utility Functions in Multi-Objective Reinforcement Learning. The Thirty-eighth Annual Conference on Neural Information Processing Systems (NeurIPS 2024) . [BibTeX]  [PDF]
Rocco Ballester,  Yanis Labeyrie,  Oguz Mulayim,  Jose Luis Fernandez Marquez,  & Jesus Cerquides (2024). Crowdsourced geolocation: Detailed exploration of mathematical and computational modeling approaches. Cognitive Systems Research, 88, 101266. https://doi.org/10.1016/j.cogsys.2024.101266. [BibTeX]
Hafiz Budi Firmansyah,  Jose Luis Fernandez Marquez,  Oguz Mulayim,  Jorge Gomes,  Joao Ribeiro,  & Valerio Lorini (2024). Empowering Crisis Response Efforts: A Novel Approach to Geolocating Social Media Images for Enhanced Situational Awareness. ISCRAM Proceedings, 21. https://ojs.iscram.org/index.php/Proceedings/article/view/21. [BibTeX]  [PDF]
2023
Carlo Bono,  Oguz Mulayim,  Cinzia Cappiello,  Mark James Carman,  Jesus Cerquides,  Jose Luis Fernandez Marquez,  Maria Rosa Mondardini,  Edoardo Ramalli,  & Barbara Pernici (2023). A Citizen Science Approach for Analyzing Social Media With Crowdsourcing. IEEE Access, 11, 15329-15347. https://doi.org/10.1109/ACCESS.2023.3243791. [BibTeX]  [PDF]
Jordi Ganzer-Ripoll,  Natalia Criado,  Maite Lopez-Sanchez,  Simon Parsons,  & Juan A. Rodríguez-Aguilar (2023). A model to support collective reasoning: Formalization, analysis and computational assessment. Journal of Artificial Intelligence Research. [BibTeX]  [PDF]
Marc Serramia,  Manel Rodriguez-Soto,  Maite Lopez-Sanchez,  Juan A. Rodríguez-Aguilar,  Filippo Bistaffa,  Paula Boddington,  Michael Wooldridge,  & Carlos Ansotegui (2023). Encoding Ethics to Compute Value-Aligned Norms. Minds and Machines, 1--30. [BibTeX]  [PDF]
Carlo Bono,  Oguz Mulayim,  & Barbara Pernici (2023). Learning Early Detection of Emergencies from Word Usage Patterns on Social Media. Terje Gjøsæter, Jaziar Radianti, & Yuko Murayama (Eds.), Information Technology in Disaster Risk Reduction (pp. 308--323). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-34207-3_20. [BibTeX]  [PDF]
Rocco Ballester,  Yanis Labeyrie,  Oguz Mulayim,  Jose Luis Fernandez Marquez,  & Jesus Cerquides (2023). Mathematical and Computational Models for Crowdsourced Geolocation. Ismael Sanz, Raquel Ros, & Jordi Nin (Eds.), Frontiers in Artificial Intelligence and Applications, Vol. 375: Artificial Intelligence Research and Development (pp 301--310). IOS Press. https://doi.org/10.3233/FAIA230699. [BibTeX]  [PDF]
Manel Rodríguez Soto,  Maite López-Sánchez,  & Juan A. Rodríguez-Aguilar (2023). Multi-objective reinforcement learning for designing ethical multi-agent environments. Neural Computing and Applications. https://doi.org/10.1007/s00521-023-08898-y. [BibTeX]  [PDF]
Manel Rodríguez Soto,  Roxana Radulescu,  Juan A. Rodríguez-Aguilar,  Maite López-Sánchez,  & Ann Nowé (2023). Multi-objective reinforcement learning for guaranteeing alignment with multiple values. Adaptive and Learning Agents Workshop (AAMAS 2023) . [BibTeX]  [PDF]
Hafiz Budi Firmansyah,  Jose Luis Fernandez-Marquez,  Jesus Cerquides,  & Giovanna Di Marzo Serugendo (2023). Single or Ensemble Model ? A Study on Social Media Images Classification in Disaster Response. The 10th Multidisciplinary International Social Networks Conference (pp. 48--54). Association for Computing Machinery. https://doi.org/10.1145/3624875.3624884. [BibTeX]  [PDF]
Athina Georgara,  Raman Kazhamiakin,  Ornella Mich,  Alessio Palmero Approsio,  Jean-Christoph Pazzaglia,  Juan A. Rodríguez-Aguilar,  & Carles Sierra (2023). The AI4Citizen pilot: Pipelining AI-based technologies to support school-work alternation programmes. Applied Intelligence. https://doi.org/10.1007/s10489-023-04758-3. [BibTeX]  [PDF]
Becky K. White,  Arnault Gombert,  Tim Nguyen,  Brian Yau,  Atsuyoshi Ishizumi,  Laura Kirchner,  Alicia León,  Harry Wilson,  Giovanna Jaramillo-Gutierrez,  Jesus Cerquides,  Marcelo D'Agostino,  Cristiana Salvi,  Ravi Shankar Sreenath,  Kimberly Rambaud,  Dalia Samhouri,  Sylvie Briand,  & Tina D. Purnat (2023). Using Machine Learning Technology (Early Artificial Intelligence-Supported Response With Social Listening Platform) to Enhance Digital Social Understanding for the COVID-19 Infodemic: Development and Implementation Study. JMIR Infodemiology, 3, e47317. https://doi.org/10.2196/47317. [BibTeX]  [PDF]
2022
Athina Georgara,  Juan A. Rodríguez-Aguilar,  Carles Sierra,  Ornella Mich,  Raman Kazhamiakin,  Alessio P. Approsio,  & Jean-Christophe Pazzaglia (2022). An Anytime Heuristic Algorithm for Allocating Many Teams to Many Tasks. Proceedings of the 21st International Conference on Autonomous Agents and MultiAgent Systems . International Foundation for Autonomous Agents and Multiagent Systems. [BibTeX]  [PDF]
Eric Roselló-Marín,  Maite López-Sánchez,  Inmaculada Rodríguez Santiago,  Manel Rodríguez Soto,  & Juan A. Rodríguez-Aguilar (2022). An Ethical Conversational Agent to Respectfully Conduct In-Game Surveys. Artificial Intelligence Research and Development (pp 335--344). IOS Press. [BibTeX]  [PDF]
Fabio Murgese,  Gerard Alcaina,  Oguz Mulayim,  Jesus Cerquides,  & Jose Luis Fernandez Marquez (2022). Automatic Outdoor Image Geolocation with Focal Modulation Networks. Atia Cortés, Francisco Grimaldo, & Tommaso Flaminio (Eds.), Frontiers in Artificial Intelligence and Applications, Vol. 356: Artificial Intelligence Research and Development (pp 279--288). IOS Press. https://doi.org/10.3233/FAIA220349. [BibTeX]  [PDF]
Athina Georgara,  Juan A. Rodríguez-Aguilar,  & Carles Sierra (2022). Building Contrastive Explanations for Multi-Agent Team Formation. Proceedings of the 21st International Conference on Autonomous Agents and MultiAgent Systems . International Foundation for Autonomous Agents and Multiagent Systems. [BibTeX]  [PDF]
Manel Rodríguez Soto,  Juan A. Rodríguez-Aguilar,  & Maite López-Sánchez (2022). Building Multi-Agent Environments with Theoretical Guarantees on the Learning of Ethical Policies. . Adaptive and Learning Agents Workshop at AAMAS 2022 (ALA 2022). [BibTeX]  [PDF]
Jesus Cerquides (2022). crowdnalysis: A software library to help analyze crowdsourcing results. https://doi.org/10.5281/zenodo.5898579. [BibTeX]
Manel Rodríguez Soto,  Marc Serramia,  Maite López-Sánchez,  & Juan A. Rodríguez-Aguilar (2022). Instilling moral value alignment by means of multi-objective reinforcement learning. Ethics and Information Technology, 24. https://doi.org/10.1007/s10676-022-09635-0. [BibTeX]  [PDF]
Borja Velasco-Regulez,  Jose L. Fernandez-Marquez,  Nerea Luqui,  Jesus Cerquides,  Josep Analia Fukelman,  & Josep Perelló (2022). Is the phase of the menstrual cycle relevant when getting the covid-19 vaccine?. American Journal of Obstetrics and Gynecology, 227, 913-915. https://doi.org/10.1016/j.ajog.2022.07.052. [BibTeX]  [PDF]
Jerónimo Hernández-González,  Olga Valls,  Adrián Torres-Martín,  & Jesús Cerquides (2022). Modeling three sources of uncertainty in assisted reproductive technologies with probabilistic graphical models. Computers in Biology and Medicine, 150, 106160. https://doi.org/10.1016/j.compbiomed.2022.106160. [BibTeX]  [PDF]
Athina Georgara,  Juan A. Rodríguez-Aguilar,  & Carles Sierra (2022). Privacy-Aware Explanations for Team Formation. Proceedings of the 24th International Conference on Principles and Practice of Multi-Agent Systems . [BibTeX]  [PDF]
Barbara Pernici,  Carlo Bono,  Jose Luis Fernandez Marquez,  & Oguz Mulayim (2022). The Challenge of Collecting and Analyzing Information from Citizens and Social Media in Emergencies: The Crowd4SDG Experience and Tools. Renata Guizzardi, Jolita Ralyté, & Xavier Franch (Eds.), Research Challenges in Information Science: 16th International Conference, RCIS 2022, Proceedings (pp. 823-824). Springer. [BibTeX]  [PDF]
Carlo Bono,  Barbara Pernici,  Jose Luis Fernandez Marquez,  Amudha Ravi Shankar,  Oguz Mulayim,  & Edoardo Nemni (2022). TriggerCit: Early Flood Alerting using Twitter and Geolocation - a comparison with alternative sources. Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 674--686). [BibTeX]  [PDF]
2021
Jesus Cerquides,  Oguz Mulayim,  Jeronimo Hernandez-Gonzalez,  Amudha Ravi Shankar,  & Jose Luis Fernandez Marquez (2021). A Conceptual Probabilistic Framework for Annotation Aggregation of Citizen Science Data. Mathematics, 9. https://doi.org/10.3390/math9080875. [BibTeX]  [PDF]
Jesus Cerquides (2021). A First Approach to Closeness Distributions. Mathematics, 9. https://doi.org/10.3390/math9233112. [BibTeX]  [PDF]
Arthur Müller,  & Maite López-Sánchez (2021). Countering Negative Effects of Hate Speech in a Multi-Agent Society. Artificial Intelligence Research and Development (pp 103--112). IOS Press. [BibTeX]  [PDF]
Manel Rodríguez Soto,  Maite López-Sánchez,  & Juan A. Rodríguez-Aguilar (2021). Guaranteeing the Learning of Ethical Behaviour through Multi-Objective Reinforcement Learning. . Adaptive and Learning Agents Workshop at AAMAS 2021 (ALA 2021). [BibTeX]  [PDF]
Maite Lopez-Sanchez,  Marc Serramia,  & Juan A Rodríguez-Aguilar (2021). Improving on-line debates by aggregating citizen support. Artificial Intelligence Research and Development. IOS Press. [BibTeX]  [PDF]
Manel Rodríguez Soto,  Maite López-Sánchez,  & Juan A. Rodríguez-Aguilar (2021). Multi-Objective Reinforcement Learning for Designing Ethical Environments. Proceedings of the 30th International Joint Conference on Artificial Intelligence, (IJCAI-21) (pp. 545-551). [BibTeX]  [PDF]
Maite López-Sánchez,  & Arthur Müller (2021). On Simulating the Propagation and Countermeasures of Hate Speech in Social Networks. Applied Sciences, 11. https://doi.org/10.3390/app112412003. [BibTeX]  [PDF]
Borja Sánchez-López,  & Jesus Cerquides (2021). On the Convergence of Stochastic Process Convergence Proofs. Mathematics, 9. https://doi.org/10.3390/math9131470. [BibTeX]  [PDF]
Marc Serramia,  Maite López-Sánchez,  Stefano Moretti,  & Juan A. Rodríguez-Aguilar (2021). On the dominant set selection problem and its application to value alignment. Autonomous Agents and Multi-agent Systems, 35. [BibTeX]  [PDF]
Jon Perez,  Jose Luis Flores,  Christian Blum,  Jesus Cerquides,  & Alex Abuin (2021). Optimization Techniques and Formal Verification for the Software Design of Boolean Algebra Based Safety-Critical Systems. IEEE Transactions on Industrial Informatics, 1-1. https://doi.org/10.1109/TII.2021.3074394. [BibTeX]
Jesus Cerquides (2021). Parametrization invariant interpretation of priors and posteriors. arXiv:2105.08304 [cs, math, stat]. http://arxiv.org/abs/2105.08304. [BibTeX]
Athina Georgara,  Juan A. Rodríguez-Aguilar,  & Carles Sierra (2021). Towards a Competence-Based Approach to Allocate Teams to Tasks. Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems (pp. 1504–1506). International Foundation for Autonomous Agents and Multiagent Systems. [BibTeX]  [PDF]
Adri{\'{a}}n Torres{-}Mart{í}n,  Jer{\'{o}}nimo Hern{\'{a}}ndez{-}Gonz{\'{a}}lez,  & Jes{\'{u}}s Cerquides (2021). Validation on Real Data of an Extended Embryo-Uterine Probabilistic Graphical Model for Embryo Selection. Mateu Villaret, Teresa Alsinet, C{\\`{e}}sar Fern{\\'{a}}ndez, & A{\\"{\\i}}da Valls (Eds.), Artificial Intelligence Research and Development - Proceedings of the 23rd International Conference of the Catalan Association for Artificial Intelligence, {CCIA}2021, Virtual Event, 20-22 October, 2021 (pp. 225--234). {IOS}Press. https://doi.org/10.3233/FAIA210139. [BibTeX]  [PDF]
2020
Jordi Ganzer,  Natalia Criado,  Maite Lopez-Sanchez,  Simon Parsons,  & Juan A. Rodríguez-Aguilar (2020). A model to support collective reasoning: Formalization, analysis and computational assessment. arXiv preprint arXiv:2007.06850. [BibTeX]  [PDF]
Jerónimo Hernández-González,  & Jesús Cerquides (2020). A Robust Solution to Variational Importance Sampling of Minimum Variance. Entropy, 22, 1405. https://doi.org/10.3390/e22121405. [BibTeX]  [PDF]
Josep Lluís Arcos
Scientific Researcher
Jesus Cerquides
Scientific Researcher
Phone Ext. 431859

Jeronimo Hernandez-Gonzalez
Lecturer
Maite López-Sánchez
Tenured University Lecturer
Phone Ext. 431821

Oguz Mulayim
Contract Researcher
Juan A. Rodríguez-Aguilar
Research Professor
Phone Ext. 431861